
Computing a Loss Function to Bound the
Interleaving Distance for Mapper Graphs
Erin Wolf Chambers #�

St. Louis University, USA

Ishika Ghosh #�

Michigan State University, USA

Elizabeth Munch # �

Michigan State University, USA

Sarah Percival # �

Michigan State University, USA

Bei Wang #�

University of Utah, USA

Abstract
Mapper graphs preserve the connected components of the inverse image function f : X → R over any
given cover. Inspired by the interleaving distance for Reeb graphs, (Chambers et al. 2024) extends
this notion of distance to discretized mapper graphs. The distance is upper-bounded using a loss
function. Unlike the NP-hard interleaving distance computation for Reeb graphs, the algorithm of
the loss function has polynomial complexity. In this paper, we implement the categorical framework
of mapper graphs and compute the loss function to bound the interleaving distance.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry

Keywords and phrases Mapper graphs, geometric graphs, interleaving distance

Funding This research was partially supported by a grant from the Department of Energy (DOE) DE-
SC0021015 and and grants from the National Science Foundation (NSF) DMS-2301361, CCF-1907591,
CCF-2106578, CCF-2142713, CCF-2106578, CCF-2106672, and CCF-1907612.

1 Introduction

Developing efficient and computable metrics to compare graphical representations of data is
crucial for data analysis. Computationally, topological descriptors of discretized underlying
space are essential, as such input data is common. Often, these datasets are equipped with
a function f : X → R. Here, we direct our attention to mapper graphs; see Fig. 1 for an
example. These graphical data structures keep track of the relationship between connected
components of the inverse image of elements of a particular choice of cover. Such mapper
graphs can be compared using a variant of the interleaving distance [2, 3, 7]. However, the
computation of the interleaving distance is NP-hard in general [1, 2]. Formally, we encode
our mapper inputs as functors (see e.g. [5, 6]) of the form F : Open(K) → Set for a space K
encoding the cover information. In [3], K is defined for a chosen δ > 0 as a cubical complex
over the bounding interval [−B,B] with diameter δ.

The result is that the open sets of K are intervals of the form (iδ, jδ) for i, j ∈ {−L, · · · , L}
where L · δ = B. In [3], a 1-thickening on these intervals is introduced, where the thickening

This is an abstract of a presentation given at CG:YRF 2024. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

mailto:erin.chambers@slu.edu
https://orcid.org/0000-0001-8333-3676
mailto:ghoshis3@msu.edu
https://orcid.org/0000-0002-7901-5912
mailto:muncheli@msu.edu
https://orcid.org/0000-0002-9459-9493
mailto:perciva9@msu.edu
https://orcid.org/0000-0003-1024-4618
mailto:beiwang@sci.utah.edu
https://orcid.org/0000-0002-9240-0700


2 Computing a Loss Function to Bound the Interleaving Distance for Mapper Graphs

F G

σj

σj+1

σj+2

σj+3

σj+4

σj−1

σj−2

σj−3

σj−4

τj

τj+1

τj−1

τj+2

τj+2

Figure 1 Two input mapper graphs F and G. Discretization on the left.

(iδ, jδ)n is the interval ((i− n)δ, (j + n)δ). This can be pre-composed with the functor F to
result in an n-thickened functor Fn : Open(K) → Set given by Fn(U) = F (Un). This in
turn defines an interleaving distance dI [4, 7] as follows. An interleaving is a pair of natural
transformations φ : F ⇒ Gn and ψ : G ⇒ Fn which must satisfy certain commutativity
properties. We will denote the four diagrams required to commute by φ(U, V ), ψ(U, V ),
▽φ,ψ(U), and △φ,ψ(U); see [3] for details. Then the interleaving distance is the smallest n
for which such interleaving exists, otherwise the distance is set to infinity [3].

Chambers et al. [3] defined a loss function for structures that have the format of a natural
transformation without being provided the commutativity assumptions. They call a collection
of maps φU : F (U) → Gn(U) and ψU : G(U) → Fn(U) an n-assignment; noting that if φ
and ψ satisfy the commutativity properties it would constitute an interleaving. Then the
loss function LB(φ,ψ) is defined in a way that results in finding the minimum k such that φ
and ψ can be turned into an (n+ k)-interleaving. When storing the functor information in a
graph, the result is that one must check whether two representatives under a particular map
are in the same connected component of a slice of the graph; see Fig. 2 for these diagrams.

▶ Theorem 1 (Chambers et al. [3]). For an n-assignment, φ : F ⇒ Gn and ψ : G ⇒ Fn,

dI(F,G) ≤ n+ LB(φ,ψ).

In this work, we provide additional details of the algorithmic setup for computing this
loss function on graph representations of the functor data. See [3] for additional details.

2 Algorithm and Computation

We set up the mapper graph data structure first. Our input is a pair of functors F,G :
Open(K) → Set and an n-assignment φ,ψ. Here K (i.e., the discretization of [−Lδ, Lδ] ⊂ R)
consists of vertices σi = iδ for −L ≤ i ≤ L. Additionally, we have edges τj = (σj , σj+1) for
−L ≤ j < L. We write a basis for Open(K) by defining the collection of intervals Uσi =
((i− 1)δ, (i+ 1)δ) and Uτi

= (iδ, (i+ 1)δ) for all i. The vertex set of the graph representation



E.W. Chambers, I. Ghosh, E. Munch, S. Percival, B. Wang 3

F (Uτi) F (Uσl)

G(Un
τi) G(Un

σl
) G(Un+k

σl
)

e v1

[e′] [w] [w]
[e′] [e′]

F [⊆]

G[⊆]

φUσi

ψUn
τi

e ≡ (v1, v2)

F (Uσi
) F (U2n

σi
)

G(Un
σi
)

F (U2(n+k)
σi

)

v [v]

w

[v]
[v′] [v′]

F [Uσi ⊆ U2n
σi

]

φUσi

ψUn
σi

Figure 2 Example diagrams that must be checked for commutativity to determine the loss
function. At right are the representatives from the data structures which must be checked for being
in the same connected component of the same slice of the representative graph. See [3] for details.

F G

σj

σj+1

σj−1

τj

τj−1

Figure 3 Map the vertices of F at height σj with n = 1. The G slice contains vertices with
heights σj−1, σj , σj+1. Vertices in same connected component in F end up in different components.

of the functor is given by V =
∐
i F (Uσi

). The edge set is given by E =
∐
i F (Uτi

) and are
attached to the vertices using the functor. See Fig. 1 for an example and [3] for details.

We implement this structure in Python using the NetworkX package. We build a custom
MapperGraph class to encode the functors F and G which constructed as graphs (VF , EF )
and (VG, EG). We also store the height information for each vertex as node attributes. The
MapperGraph class also contains some useful functions for visualization and retrieval of data.

The n-assignments φ,ψ are encoded as vertex and edge maps; see [3] for details. To
define φ (ψ is similar), for height i of each vertex (or height of lower vertex for an edge) in
F , we only look at the n-thickening of G at that height. In other words, we define a slice
of the functor which only includes the vertices and edges within height [i− n, i+ n]. Each
element in F gets randomly paired with an element in the corresponding slice of G. The
resulting map is stored as a dictionary, with (object, image) as key-value pairs. Figure 3 and
4 illustrate some examples.

Given two mapper graphs F,G, and assignments φ,ψ, we compute the loss separately
for LUτ ,Uσ (or, LUτ ,Uσ ) and LUσ

▽ (or, LUσ

△ ). Fix a k for each step with binary search on
[0, · · · , 2L], where [−L,L] is the bounding box of the functors. For each k, we verify if
LB(φ,ψ) ≤ k. We travel across the diagrams and note if the resulting edges or vertices are
in same connected component. We show an example of two types of diagrams in Fig. 2. Loss
is the smallest k for which all diagrams commute. If no such k exits, then the loss is deemed
infinite.



4 Computing a Loss Function to Bound the Interleaving Distance for Mapper Graphs

F G

σj

σj+1

σj+2

σj−1

τj

τj+1

τj−1

Figure 4 Map edges of F with lower vertex-height σj with n = 1. The G slice contains edges
with lower vertex-heights σj−1, σj , σj+1. Notice how slicing varies from vertex mapping.

3 Discussion

Now that we have set up the data structure to encode 1-dimensional mapper graphs, we
are focusing on optimizing the loss function. Given two mapper graph functors F,G and an
initial n-assignment φ,ψ, our goal is to perturb the assignments cleverly such that the loss
function is minimized. In future work, we will deploy the Metropolis–Hastings algorithm
over the space of n-assignments to optimize and improve the bound. Further, our goal is to
extend this implementation to higher dimensional mapper graphs; i.e. when the input data
is of the form f : X → Rd.

References
1 Håvard Bakke Bjerkevik and Magnus Bakke Botnan. Computational Complexity of the

Interleaving Distance. In Bettina Speckmann and Csaba D. Tóth, editors, 34th Interna-
tional Symposium on Computational Geometry (SoCG 2018), volume 99 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 13:1–13:15, Dagstuhl, Germany, 2018.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops-dev.dagstuhl.de/
entities/document/10.4230/LIPIcs.SoCG.2018.13, doi:10.4230/LIPIcs.SoCG.2018.13.

2 Peter Bubenik, Vin De Silva, and Jonathan Scott. Metrics for generalized persistence modules.
Foundations of Computational Mathematics, 15:1501–1531, 2015.

3 Erin W Chambers, Elizabeth Munch, Sarah Percival, and Bei Wang. Bounding the interleaving
distance for geometric graphs with a loss function. arXiv preprint arXiv:2307.15130, 2023.

4 Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J Guibas, and Steve Y Oudot.
Proximity of persistence modules and their diagrams. In Proceedings of the twenty-fifth annual
symposium on Computational geometry, pages 237–246, 2009.

5 Justin Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania,
2014. arXiv:1303.3255.

6 Emily Riehl. Category theory in context. Courier Dover Publications, 2017.
7 V De Silva, E Munch, and A Stefanou. THEORY OF INTERLEAVINGS ON CATEGORIES

WITH A FLOW. Theory and Applications of Categories, 33(21):583–607, 2018. URL:
http://www.tac.mta.ca/tac/volumes/33/21/33-21.pdf, arXiv:1706.04095.

https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.13
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.13
https://doi.org/10.4230/LIPIcs.SoCG.2018.13
https://arxiv.org/abs/1303.3255
http://www.tac.mta.ca/tac/volumes/33/21/33-21.pdf
https://arxiv.org/abs/1706.04095

	1 Introduction
	2 Algorithm and Computation
	3 Discussion

