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Abstract

Data consisting of a graph with a function mapping into Rd arise in many data applications, encom-
passing structures such as Reeb graphs, geometric graphs, and knot embeddings. As such, the ability to
compare and cluster such objects is required in a data analysis pipeline, leading to a need for distances
between them. In this work, we study the interleaving distance on discretization of these objects, Rd-
mapper graphs, where functor representations of the data can be compared by finding pairs of natural
transformations between them. However, in many cases, computation of the interleaving distance is
NP-hard. For this reason, we take inspiration from recent work by Robinson to find quality measures for
families of maps that do not rise to the level of a natural transformation, called assignments. We then
endow the functor images with the extra structure of a metric space and define a loss function which mea-
sures how far an assignment is from making the required diagrams of an interleaving commute. Finally
we show that the computation of the loss function is polynomial with a given assignment. We believe
this idea is both powerful and translatable, with the potential to provide approximations and bounds on
interleavings in a broad array of contexts.

1 Introduction

Graphs with additional geometric information arise in many contexts in data analysis. For instance, a
geometric graph is generally defined as an abstract graph along with a well-behaved embedding of the graph
into R2, while a graph with a well-behaved map into R is called a Reeb graph. In particular from the viewpoint
of the Reeb graph, these types of input data can arise by studying connected component structures from
more general input Rd-spaces, meaning a topological space X with a function f : X → Rd. Such graphs
are a fundamental object used to model a wide range of data sets, ranging from maps and trajectories, to
commodity networks (e.g. electrical grids) and shape skeletons for object recognition. The input data can be
quite noisy, so the ability to compare, cluster, and simplify such representative objects is essential in a data
analysis pipeline, leading to a need for theoretically motivated and computable distances. In this paper, we
study a distance for a discretization of the input data, that is, an Rd-mapper graph [34]. That is, starting
from a topological space X with a function f : X → Rd (resp. a point cloud P with a function f : P → Rd),
the mapper graph is an encoding of the connected components (resp. clusters) of f−1(Uα) for some cover
U = {Uα} of Rd.

There has been extensive work on metrics for general graphs, geometric graphs, and Reeb graphs (see
surveys [13, 16, 17, 35], [9], and [4, 36] respectively). In this paper, we will draw inspiration from the inter-
leaving distance; specifically, we develop a natural extension of the interleaving distance on Reeb graphs [15]
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Figure 1: (Left) An example of a Reeb graph (d = 1) where the discretization of R is used to generate a
mapper graph. (Right) An example of a pair of geometric graphs (d = 2) which we study using the connected
components restricted to the grid.

to the setting of Rd-mapper graphs. Interleaving distances arose in the context of generalizing the bottleneck
distance for persistence modules [12] and were subsequently translated to more general categorical frame-
works in [8, 15]. With the exception of 1-parameter persistence [24], the interleaving distance is NP-hard in
many contexts including multi-parameter persistence [2, 3], and Reeb graphs [15]. However, some additional
structural information can give better algorithms such as FPT computation for merge trees [18], and poly-
nomial time for formigrams [22] and labeled merge trees [19, 27]. See [2] for a recent summary of interleaving
distance complexity results.

When d = 1, there is already work using the interleaving distance to relate the Reeb graph and its
mapper graph [5, 6, 10, 11, 28]. We will encode the structure of our more general Rd-mapper graphs in a
discretized setting by imposing a grid structure K on Rd. Then we can represent the input data f : X → Rd
as a cosheaf of the form F : Open(K) → Set where we store the connected components of inverse images
of open sets π0(f

−1(U)). The idea of the interleaving distance, in this context, is to compare two cosheaves
F,G : Open(K) → Set using a pair of natural transformations φ : F ⇒ Gn and ψ : G ⇒ Fn mapping
into relaxations of the original inputs. The complexity of computing this distance then relies on finding
the smallest n with available φ and ψ maps, which in our setting immediately connects to hard underlying
problems such as graph isomorphism.

The ideas building this distance are rooted in previous work that study interleavings in related contexts.
In some sense, we can view this distance as a discretized cosheaf version of the continuous sheaf version of
the interleaving distance that was previously studied [14]. It can fit into the more general framework of an
interleaving distance arising from a category with a flow [33], or as an interleaving distance on generalized
persistence modules with a family of translations [8], but prior work in these areas focused on theoretical
properties and did not address computational aspects, as the more general framework makes such study
incredibly difficult. Perhaps the closest example of this distance is mentioned in the d = 1 case as an example
in prior work [5]; however, that example keeps the thickening of the open sets structure tightly bound to
thickening in Rd, whereas we choose to define the distance entirely over the combinatorial structures.

While all this prior work is powerful in theory, the computational complexity of the construction in more
general settings has meant a lack of the use of the interleaving distance in practice. To circumvent these
issues, we take inspiration from recent work of Robinson [32] to define quality measures for families of maps
that do not rise to the level of a natural transformation, in order to allow for non-optimal maps φ and ψ
in this framework. We then apply these quality measures to Rd-mapper graphs, in the hopes of utilizing
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algorithms from geometry and graph theory to make computation more feasible.
In particular, in [32] the object of study is a single input assignment of data of the form P : Open(X) →

Set and, with the added structure of a pseudometric for each set P (U), provides a measurement for how
far the input data is from having a global section. In our work, we instead work with a pair of functors
F,G : Open(K) → Set as input, and study collections of maps φ = {φU : F (U) → G(Un) | U} and ψ =
{ψU : G(U) → F (Un) | U} which we call an assignment when they do not necessarily form a true interleaving.
We then endow the image with the extra structure of a metric space, so that we have pairs (F (U), dU ) for
every open set U . Using this metric structure, we define a loss function L(φ,ψ) which measures how far the
required diagrams of an interleaving are from commuting, given any input assignment (Thm. 3.8). We modify
this bound by only focusing on the loss function computed for a basis of the topology, LB(φ,ψ) (Thm. 3.17),
which not only improves the computational complexity but also improves the bound. Then, we show that
the computation of the bound is polynomial, opening up the potential for algorithmic approximation of the
interleaving distance. Throughout, we show examples encoding the data of a geometric graph (i.e. a graph
G with a straight line embedding f : G → R2) or a Reeb graph (a graph G with a straight line map to R),
however, this kind of input is not a requirement for our framework; see Fig. 1 for an illustration.

We note that this paper is the first step in a larger project. That is, the paper here presents a loss
function that can be computed given an input n-assignment φ,ψ and results in a bound on the distance
by explicitly constructing an (n+ LB(φ,ψ))-interleaving. As with many garbage-in-garbage-out settings,
this bound is only as good as the input, but this study seeks to determine the most general possible bound
with no guarantees on the input at all. In future work, we plan to include this loss function as part of an
optimization strategy to update a given assignment in order to find better bounds as well as provide further
study on how close to optimal is possible. We suspect that tools from computational geometry may provide
particularly nice starting maps and strategies to improve our assignment.
Outline. In Sec. 2 we provide the necessary technical background to set up the interleaving distance
for Rd-mapper graph inputs. In Sec. 3, we define the loss functions and bounds. We discuss algorithmic
requirements of the bound in Sec. 4. Next, we show how this loss function can be used to similarly bound
the Reeb graph interleaving distance by approximating the Reeb graph with a mapper graph in Sec. 5. We
include all technical proofs in Sec. 6. Finally, we discuss broader implications of this work in Sec. 7.

2 Technical Background

We will assume several example types of inputs in this paper. All are tied together by having data of the
form f : G → Rd, where G is a finite graph. We view each input as a topological graph by treating the
graph as a 1-dimensional CW complex. We call this input an Rd-graph. Prior to discussing the specifics
of Rd-graphs in our use cases, we give the necessary categorical framework in order to formulate a precise
notion of the interleaving distance.

2.1 Functors and Cosheaves

We give basic definitions for the category theoretic notions required in this paper, and direct the interested
reader to [14, 30] for further details. A category C consists of a collection of objectsX,Y, Z, . . . and morphisms
f, g, h, . . . with the following requirement: morphisms f : X → Y have designated domain X and codomain
Y ; every object has a designated identity morphism 1X : X → X, and any pair of morphisms f : X → Y
and g : Y → Z has a composite morphism g ◦ f : X → Z. These objects and morphisms satisfy an identity
axiom, where f : X → Y is the same as the 1Y ◦ f and f ◦ 1X ; and composition (denoted by ◦ but often
dropped when unnecessary) is associative, so h◦ (g ◦f) = (h◦g)◦f . Some example categories are Set where
objects are finite sets and morphisms are set maps; Top where objects are topological spaces and morphisms
are continuous functions; and Open(K) for a given topological space K, where the objects are open sets
and morphisms are given by inclusion.

A functor F : C → D is a map between categories preserving the relevant structures. Specifically, for
every object X ∈ C there is a an object F (X) ∈ D, and for every morphism f : X → Y , there is a morphism
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F [f ] : F (X) → F (Y ). To be a functor, F must further satisfy that for any X ∈ C, F [1X ] = 1F (X) and
for any composable pair f, g ∈ C, we have F [gf ] = F [g]F [f ]. Given functors F,G : C → D, a natural
transformation η : F ⇒ G consists of a map ηX : F (X) → G(X) for every X ∈ C (called the components)
so that for any morphism f : X → Y in C, the following diagram

X F (X) G(X)

Y F (Y ) G(Y )

f

ηX

F [f ] G[f ]

ηY

commutes. One example is π0 : Top → Set, where π0(X) is the set of path-connected components of X, and
morphisms are set maps π0[f ] : π0(X) → π0(Y) sending a connected component A in X to the connected
component of f(A) in Y.

A diagram is a functor F : J → C where J is a small category. In essence, this construction picks out
a collection of objects F (j) and a collection of morphisms F (j) → F (k). A cocone on a given diagram is a
natural transformation λ : F → c where we abuse notation to write that c : J → C is the constant functor
returning the object c(j) = c ∈ C for all j ∈ J . We often call the components λ : F (j) → c the legs, and
note that this requirement says that for any f : j → k in J , λk ◦ F [f ] = λj . A cocone λ : F → c is called a
colimit if for any other cocone λ′ : F → c′, there is a unique morphism u : c→ c′ such that

F (j) F (k)

c

c′

F [f ]

λj

λ′
j

λk

λ′
k

u

commutes for all f : j → k in J .
We will be particularly interested in functors of the form F : Open(X) → Set, which can also be

called pre-cosheaves. A pre-cosheaf is a cosheaf if it satisfies a gluing axiom, meaning that F (U) is entirely
determined by F (Uα) for any cover {Uα}α. Specifically, given an open set U and a cover {Uα | α ∈ A} of U ,
define a category U = {Uα ∩ Uα′ | α, α′ ∈ A} with morphisms given by inclusion. Then we have a diagram
F : U → Set, and as such can consider its colimit λ : F → L. If the unique map L → F (U) given by the
colimit definition is an isomorphism, then F is called a cosheaf.

2.2 Functorial Representation of Embedded Data

We start by defining a cubical complex on [−B,B]d, where [−B,B]d will be the bounding box for the image
of the graphs f : X → Rd and g : Y → Rd to be compared. Following [21], we define a cubical complex
given by diameter δ, with a modification to result in open sets. For the sake of simplicity, assume that B is
a multiple of δ, so that the bounding box can be written as [−Lδ, Lδ]d. An elementary interval is an open
interval in R of the form (ℓδ, (ℓ + 1)δ) or a single point viewed as a degenerate interval [ℓ] := [ℓδ, ℓδ] for
ℓ ∈ [−L, · · · , L] ⊂ Z. These are called non-degenerate and degenerate intervals, respectively. An elementary
cube Q is a finite product of d elementary intervals, i.e. σ = I1 × I2 × · · · × Id ⊂ [−B,B]d. The dimension
of a cube σ is given by the number of intervals used which are non-degenerate. This means that 0-cubes are
vertices at grid locations (iδ, jδ, . . . , kδ) ∈ δ · Zd, 1-cubes are edges (not including their endpoints), 2-cubes
are squares (not including their boundaries), 3-cubes are voxels, etc. The collection of elementary cubes
discretizing [−B,B]d is a finite cubical complex K. This construction comes with a face relation which gives
a poset structure, where we write σ ≤ τ iff σ ⊆ τ , where τ denotes the closure of the set. In order to
differentiate between the combintorial and continuous settings, we write |σ| for the geometric realization in
Rd of a combinatorial object σ ∈ K.
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Figure 2: Examples of open sets for d = 2. The basic open (upset) is given in light purple for each cell type
shown in dark purple (vertex σ1, edge σ2 and square σ3). The 1-thickening of the open sets are given by
including the green portion.

We next endow the complex K with the Alexandroff topology, following [1]. Given the poset (K,≤), for
any set S ⊆ X, the up-set is S↑ = {x | x ≥ y, y ∈ S} and the down-set is S↓ = {x | x ≤ y, y ∈ S}. We give
K the Alexandroff topology1 Open(K), where a set U ⊆ K is open iff the following holds: for any x ∈ U
and any y ≥ x, y ∈ U . Equivalently, this means that U is its own up-set, i.e. U = U↑. It can be checked that
this topology has a basis given by the collection {Uσ}σ∈K where Uσ := {σ}↑ = {τ | τ ≥ σ}. This complex is
constructed so that for any open set U ⊂ K, the geometric realization |U | ⊆ Rd is open in the usual sense.

The example inputs here are given by f : G → Rd where G is a finite topological graph; however the
graph assumption is needed only for simplicity of drawing examples. For our purpose, we only require that
for any open set U , the set of connected components π0f

−1(|U |) is finite. Then we can encode f in a functor
F : Open(K) → Set given by

F : Open(K) → Set
U 7→ π0f

−1(|U |).
Functoriality of π0 means that for U ⊆ V , there is an induced map

F [U ⊆ V ] : π0f
−1(|U |) → π0f

−1(|V |),

so that F satisfies the requirements of a functor. Indeed, this functor is actually a cosheaf. When the sets
involves are obvious in the notation, we will write the induced map as F [⊆] : F (U) → F (V ).

2.3 Thickenings

Given any set U ∈ Open(K), the 1-thickening is defined by taking the upset of the downset of U , written
as U1 = (U↓)↑. This operation can be thought of as taking the star of the closure of the set; see Fig. 2 for
examples. The n-thickening is defined to be n repetitions of the process given recursively as

Un =

{
U n = 0

(Un−1)↓↑ n ≥ 1.

Each Un is itself an open set in Open(K), and that if U ⊆ V , then Un ⊆ V n. Thus we can view this
operation as a functor on the category Open(K) with morphisms given by inclusion:

(−)n : Open(K) → Open(K)
U 7→ Un.

1In the case of finite posets, either down- or up-sets can be used to define the topology; while the Alexandroff topology is
defined using the down-sets as opens in the textbook we follow [1]. However, we choose to use the upsets as opens since we are
trying to avoid using the opposite poset as much as possible to alleviate notation woes, and the correspondence with stars in
this setting is useful for our purpose.
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In Sec. 6, we show that (−)n is a functor. Another useful property of this thickening, proved in Sec. 6, is
described in Lem. 2.1.

Lemma 2.1. For any n, n′ ≥ 0 and U ∈ Open(K),

(Un)n
′
= Un+n

′
.

We can use this thickening to build an interleaving distance on functors of the form
F : Open(K) → Set. The first necessary ingredient is the composition of functors F ◦ (−)n : Open(K) →
Set, which we denote by Fn. This means Fn(U) = F (Un), followed by a similar setup for Gn. With this
notation, an interleaving is a pair of natural transformations φ : F ⇒ Gn and ψ : G⇒ Fn, so a component
of φ is a set-map φU : F (U) → G(Un). There is another component at Un, φUn : F (Un) → G(U2n), which
can also be viewed as a component of a different natural transformation φn : Fn ⇒ G2n. For this reason,
we use the notation φUn and φnU interchangeably when φ is indeed a natural transformation.2

We are now ready to introduce our notion of interleaving distance.

Definition 2.2. Given cosheaves F,G : Open(K) → Set and n ≥ 0, an n-interleaving is a pair of natural
transformations φ : F ⇒ Gn and ψ : G⇒ Fn such that the diagrams

F (U) F (U2n) F (Un)

G(Un) G(U) G(U2n)

F [U⊆U2n]

φU

φUn

ψUn

G[U⊆U2n]

ψU

commute for all U ∈ Open(K). The interleaving distance is given by

dI(F,G) = inf{n ≥ 0 | there exists an n-interleaving},

and is set to be d(F,G) = ∞ if there is no interleaving for any n.

As shown in Sec. 6, this definition fits in the framework built by Bubenik et al. [8] and thus it is an
extended pseudometric.

3 Loss Function and Bounds

In this section, we introduce a loss function for interleavings on Rd-mapper graphs. We give the definition
of the loss function (Defn. 3.4) in Sec. 3.1, and present our first version of the bound as Thm. 3.8 in Sec. 3.2.
However, this version of the bound requires checking diagrams for all possible open sets U ∈ Open(K) which
creates a combinatorial explosion that is counterproductive in practice. Thus, in Sec. 3.3, we prove this loss
function can be replaced with an improved loss function which only needs to check the open sets for a basis
of Open(K).

3.1 Loss Function Definition

We start by turning each F (U) (similarly G(U)) into a metric space, as follows.

Definition 3.1. Define the distance dFU (A,B) for A,B ∈ F (U) to be the smallest n such that A and B
represent the same connected component when included into Un. Specifically,

dFU (A,B) = min{n ≥ 0 | F [U ⊂ Un](A) = F [U ⊂ Un](B)}.

If no such n exists, then we set dFU (A,B) = ∞.

2We are implicitly using Lem. 2.1 to write the maps this way.
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Figure 3: An example geometric graph used to calculate example distances in dFU and dFV .

Consider the example of Fig. 3 with a single input graph encoded by a cosheaf F : Open(K) → Set.
The set F (U) has two elements, which we denote by A and B as they represent the connected components
containing the points a and b respectively. Then dFU (A,B) = 1, since thickening the set U by 1 puts a and
b in the same connected component. Likewise, denoting the elements of F (V ) by W and Z, we see that
dFV (W,Z) = 2 since we must expand the set V twice before w and z are in the same connected component.

As a first useful property of this distance, thickening a set implies that the distance between components
will only decrease. For an example, consider W,Z ∈ F (V ) representing points w and z in Fig. 3. As noted
previously, dFV (W,Z) = 2. However, if the elements W ′, Z ′ ∈ F (V 1) represent the connected components
in the 1-thickening of V , then dFV 1(W ′, Z ′) = 1, and in particular, dFV (W,Z) ≥ dFV 1(W ′, Z ′). This idea is
formalized in the following lemma:

Lemma 3.2. Fix k ≥ 0 and any A,B ∈ F (U) with images A′ = F [U ⊆ Uk](A) and
B′ = F [U ⊆ Uk](B) in F (Uk). Then dFU (A,B) ≥ dFUk(A

′, B′).

Proof. Let n = dFU (A,B), so that we know the image of A and B in F (Un) is the same. If k ≥ n, then
we use the functor maps F (U) → F (Un) → F (Uk) to see that the images of A and B are the same in
F (Un) so they are the same in F (Uk). Then dFUk(A

′, B′) = 0 ≤ dFU (A,B). If k < n, then we have the maps
F (U) → F (Uk) → F (Un). This means that dFUk(A

′, B′) ≤ n− k ≤ n = dFU (A,B), completing the proof.

We use this framework as follows: first, assume we are given F and G but our attempts at finding an
interleaving do not necessarily satisfy the requirements of a natural transformation. Normally, a natural
transformation η : H ⇒ H ′ is a collection of component morphisms η : H(U) → H ′(U) which commute with
the inclusions:

H(U) H(V )

H ′(U) H ′(V ).
H[⊆]

ηu

H′[⊆]

ηV

The following definitions, inspired by [32] and [29], give names to collections of component morphisms used
to define an interleaving where the square might not commute.
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Definition 3.3. Given functors H,H ′ : Open(K) → Set, an unnatural transformation3 η : H → H ′ is a
collection of maps ηU : H(U) → H ′(U) with no additional promise of commutativity.

For a fixed n ≥ 0 and cosheaves F and G, an assignment, or more specifically an n-assignment, is a pair
of unnatural transformations φ : F ⇒ Gn and ψ : G⇒ Fn.

In order to clarify notation, for the remainder of the paper, we will be using n-assignments to build (n+k)-
interleavings, which by definition will be required to be natural transformations. When the n-assignment
might not commute, we denote its maps by lower case φ and ψ; for (n+k)-assignments which are constructed
to be natural transformations, we denote them by Φ and Ψ.

In the spirit of [32], we measure the quality of a choice of an n-assignment φ,ψ using the collections of
distances {dFU | U ∈ Open(K)} and {dGU | U ∈ Open(K)}. First, note that checking that φ and ψ are
natural transformations means ensuring the diagrams

F (U) F (V )

G(Un) G(V n)

F [⊆]

φU φUn

G[⊆]

F (Un) F (V n)

G(U) G(V )

F [⊆]

G[⊆]

ψU ψUn

commute. As we use them repeatedly, we will denote these diagrams by φ(U, V ) and ψ(U, V ), dropping
the subscript when it is clear from context. Then checking whether the pair constitutes an interleaving
involves checking commutativity of the diagrams

F (U) F (U2n) F (Un)

G(Un) G(U) G(U2n)

F [U⊆U2n]

φU

φUn

ψUn

G[U⊆U2n]

ψU

which we denote by ▽φ,ψ(U) and △φ,ψ(U) respectively, again dropping the subscripts when unnecessary.
We measure quality of the given assignments by checking how far these four diagrams are from commuting
in the sense of the distances defined at the terminal vertex of the shape.

Definition 3.4. Fix an n-assignment (φ,ψ). We define four diagram loss functions:

LU,V (φ) = max
α∈F (U)

dGV n(φnU ◦ F [U ⊆ V ](α), G[Un ⊆ V n] ◦ φU (α))

LU,V (ψ) = max
α∈G(U)

dFV n(ψnU ◦G[U ⊆ V ](α), F [Un ⊆ V n] ◦ ψU (α))

LU▽(φ,ψ) = max
α∈F (U)

⌈
1
2 · dFU2n(F [U ⊆ U2n](α), ψUn ◦ φU (α))

⌉
LU△(φ,ψ) = max

α∈G(U)

⌈
1
2 · dGU2n(G[U ⊆ U2n](α), φUn ◦ ψU (α))

⌉
.

Then the loss for the given assignment is defined to be

L(φ,ψ) = max
U⊆V

{
LU,V , LU,V , LU△, L

U
▽

}
.

These loss functions are defined in a way so that while the diagram in question might not commute,
pushing n forward by the loss value will send the elements to the same place. For example, if LU,V (φ) = k,

3A natural transformation is an unnatural transformation which just happens to follow commutativity properties. In other
words, natural and unnatural transformations are not mutually exclusive. This vocabulary follows from [29] so please do not
blame us for the linguistic implications.
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then in the diagram

F (U) F (V )

G(Un) G(V n) G(V n+k)

F [⊆]

φU φUn

G[⊆]

(3.5)

the image of a point from F (U) is the same in G(V n+k) following both paths. Similarly, if LU▽(φ,ψ) = k,
then in the diagram

F (U) F (U2n) F (U2(n+k))

G(Un)

F [⊆]

φU ψUn

(3.6)

the image of a point in F (U) is the same (following both paths) in F (U2(n+k)) even if not in F (U2n).
An Example: Consider Fig. 4 and fix n = 1. Denote the connected component of the point a in F (U),
F (U1), and F (U2) by A, A′, and A′′, respectively. Similarly, the connected component of the point b is
denoted by B′′ ∈ G(U2). Follow the same form for the connected components of points w and z in G. The
interleaving diagrams can be collected together as

{A} {A′} {A′′, B′′}

{W,Z} {W ′, Z ′} {W ′′, Z ′′}

F [U⊆U1]

φU

F [U1⊆U2]

φUn

G[U⊆U1]

ψU

G[U1⊆U2]

ψU1
(3.7)

noting that the horizontal maps are determined by sending a letter to the same letter with an additional
prime. The distances between the points in their respective sets are

dFU2(A′′, B′′) = 1;

dGU (W,Z) = 3, dGU1(W ′, Z ′) = 2, dGU2(W ′′, Z ′′) = 1.

Consider the following example assignment:

φU : A 7→W ′, ψU :W,Z 7→ A′,
φU1 : A′ 7→W ′′, ψU1 : W

′ 7→A′′

Z′ 7→B′′ .

In this case, we then have that LU,U
n

= 0, LU,U
n

= 1, LU▽ = 0, and LU△ = 1, so again L(φ,ψ) ≥ 1. For this
particular example, no n = 1 interleaving is possible so any choice of assignment will have a non-zero loss
(the easiest check is to see that any choice of assignment will force LU△ = 1).

3.2 Bounding the Interleaving Distance

We now use the loss function to give an upper bound for the interleaving distance.

Theorem 3.8. For an n-assignment, φ : F ⇒ Gn and ψ : G⇒ Fn,

dI(F,G) ≤ n+ L(φ,ψ).

To prove this, we require the following technical lemma, proved in Sec. 6.

Lemma 3.9. Assume we are given an n-assignment φ : F ⇒ Gn and ψ : G ⇒ Fn. For a fixed k, define
(n+ k)-assignments ΦU = G[Un ⊆ Un+k] ◦ φU and ΨU = F [Un ⊆ Un+k] ◦ ψU for all U ∈ Open(K). Then
the following hold:

9



Figure 4: An example of two input geometric graphs, X and Y .

1. LU,V (φ) ≤ k implies Φ(U, V ) commutes, and thus LU,V (Φ) = 0.

2. LU,V (ψ) ≤ k implies Ψ(U, V ) commutes, and thus LU,V (Ψ) = 0.

3. LU▽(φ,ψ) ≤ k and LU
n,Un+k

(ψ) ≤ k imply ▽Φ,Ψ(U) commutes, and thus LU▽(Φ,Ψ) = 0.

4. LU△(φ,ψ) ≤ k and LU
n,Un+k

(φ) ≤ k imply △Φ,Ψ(U) commutes, and thus LU△(Φ,Ψ) = 0.

In particular, if φ and ψ have L(φ,ψ) = 0, then φ and ψ constitute an interleaving, and so dI(F,G) ≤ n.

Proof of Thm. 3.8 . Set k = L(φ,ψ), so by definition, LU,V (φ) ≤ k, LU,V (ψ) ≤ k, LU▽(φ,ψ) ≤ k, and

LU△(φ,ψ) ≤ k. As in Lem. 3.9, construct two (n+ k)-assignments: Φ given by ΦU = G[Un ⊆ Un+k] ◦φ, and
Ψ given by ΨU = F [Un ⊆ Un+k]◦ψ. By Lem. 3.9, this means the diagrams Φ(U, V ), Ψ(U, V ), ▽Φ,Ψ(U),
and △Φ,Ψ(U) commute for all pairs U ⊆ V . This implies that Φ and Ψ are an (n + k)-interleaving, giving
the theorem.

First, notice that this proof works by explicitly constructing an interleaving from a given n-assignment.
Second, we have no reason to believe that this bound is tight. In particular, in Sec. 3.3 we improve the
bound by way of restricting the computation to the basis for the topology of K but even that is depending
on input quality and gives no guarantee.

We include one additional note about when this loss function can be promised to be finite. Define the
diameter of a metric space to be the largest distance between points, which we denote by diam(X, d) =
sup{d(a, b) | a, b ∈ X}, and note that here, the sup can be replaced with a max since we are working in finite
metric spaces.

Lemma 3.10. The loss function for an n-assignment (φ,ψ) is bounded above; specifically,

L(φ,ψ) ≤ max

({
diam(F (Uk), dU

k

F ) | U ∈ Open(K), k ∈ {n, 2n}
}

∪
{
diam(G(Uk), dU

k

G ) | U ∈ Open(K), k ∈ {n, 2n}
})

.

In particular, if the original graphs are each connected, then L(φ,ψ) is finite.
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Figure 5: An example of the comparison of two geometric graphs with different numbers of connected
components. In this case, because X has one connected component and Y has two, the loss function will be
infinite for any assignment.

Proof. The parallelogram portions of the loss function L and L take values from distances in F (Un)
and G(Un), . The triangle portions L▽ and L△ take values from distances in F (U2n) and G(U2n). So,
the maximum for the loss function must be attained on one of these sets, giving the inequality. For the
second statement, if the input graphs each have a single connected component, then any pair of elements
a, b ∈ F (U) map to the same element under the inclusion F (U) → F (UK) for a large enough K. This in
turn implies that the diameter of dFU is finite for every U .

Consider the example in Fig. 5. Let {A,B}, {A′, B′}, and {A′′, B′′} be the representatives of the
connected components of the points a and b in F (U), F (U1) and F (U2) respectively. Because there is no n
for which the two points are the same connected component of X, the distance between A and B is ∞ in all
three sets. Then no matter the choice of 1-assignment, L▽ = ∞, making the loss function infinite.

3.3 Restriction to Basis Elements

We have so far measured the loss function by studying all possible open sets U . While this is helpful for
definitions, it does not make for a reasonable computational setting. To that end, we now focus on a basis
of the topology, and prove that this basis suffices.

Definition 3.11. An open set defined by the upset of a cell σ ∈ K (that is, a vertex, edge, square, etc),
Uσ = {τ | τ ≥ σ}, is called a basic open set.

Note that {Uσ | σ ∈ K} is a basis for the Alexandroff topology. Also, this is an order reversing process,
as for σ ≤ τ , Uτ ⊆ Uσ. We next give a name to the case where we are only given n-assignment information
for basis elements, or equivalently, if we are given a full assignment but ignore the maps for non-basis open
sets.

Definition 3.12. A basis unnatural transformation for functors H and H ′ is a collection of maps ηUσ
:

H(Uσ) → H ′(Uσ) for all basis elements Uσ from σ ∈ K. A basis n-assignment (or simply a basis assignment)
is a pair of basis unnatural transformations

{φUσ
: F (Uσ) → G(Unσ ) | σ ∈ K} and {ψUσ

: G(Uσ) → F (Unσ ) | σ ∈ K}

11



In this section, we prove that we can focus our loss function efforts on only those diagrams associated to
basic opens, and the solution can be extended to any open set.

Definition 3.13. The basis loss function is defined to be

LB(φ,ψ) = max
σ≤τ

{
LUτ ,Uσ , LUτ ,Uσ , LUσ

△ , LUσ

▽

}
.

It is immediate from the definitions that LB ≤ L as the LB maximum is taken over a subset of those
used to determine L. This means, in particular, that if L = 0 then LB = 0. These values are not always
equal; for instance, we might have chosen a basis assignment for which every diagram commutes (making
LB = 0), but φV defined on non-basis elements causes a non-zero loss function so L > 0. However in the
special case where LB = 0, and thus the basis open diagrams are commutative, we do have the ability to
extend the information checked to a full interleaving. This can be seen in the following lemma, proved in
Sec. 6.

Lemma 3.14. Given a basis unnatural transformation

{ΦUσ
: F (Uσ) → G(UNσ ) | σ ∈ K}

with LUτ ,Uσ = 0 for all σ ≤ τ , we can extend this to a full natural transformation Φ; i.e. we can define ΦU
for all U such that LU,V = 0 for all U ⊆ V .

Note that the symmetric version extending a basis unnatural transformation Ψ to a natural transformation
Ψ : G ⇒ FN is obtained in exactly the same way. Next, we can take these natural transformations and
ensure the triangles commute (thus giving an interleaving) by only checking the basis set triangles, again
proved in Sec. 6.

Lemma 3.15. Given natural transformations Φ : F ⇒ GN and Ψ : GN ⇒ F such that LUσ

▽ = 0 for all

σ ∈ K, then LU▽ = 0 for all open sets U .

Taken together, we immediately have the following proposition.

Proposition 3.16. Fix a basis N -assignment (Φ,Ψ). If LB(Φ,Ψ) = 0, then Φ and Ψ can be extended to
natural transformations with L(Φ,Ψ) = 0, and thus constitute an interleaving.

Finally, we arrive at our main theorem, where we can use the provided basis n-assignment and the
calculated loss function to give a bound for the interleaving distance.

Theorem 3.17. Given a basis n-assignment

φ = {φUσ
| σ ∈ K} and ψ = {ψUσ

| σ ∈ K},

we have
dI(F,G) ≤ n+ LB(φ,ψ).

Proof. This proof proceeds in the same way as that of Thm. 3.8 with some minor modifications of input
assumptions. First, let k = LB(φ,ψ); and define a basis (n+ k)-assignment by

{ΦUσ
= G[⊆] ◦ φUσ

| σ ∈ K} and {ΨUσ
= F [⊆] ◦ ψUσ

| σ ∈ K}.

By Lem. 3.9, we know that LUτ ,Uσ (Φ) = 0 and LUτ ,Uσ (Ψ) = 0 for all τ ≤ σ. Then by Lem. 3.14, we can
extend Φ and Ψ to full natural transformations defined for all U ∈ Open(K).
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To show that Φ and Ψ constitute an (n + k)-interleaving, we must check triangles; i.e. ensure that
LU▽(Φ,Ψ) = LU△(Φ,Ψ) = 0. With the goal of using part 3 of Lem. 3.9, first note that LUσ

▽ (φ,ψ) ≤ k for basis

elements. We can see that L
Un

σ ,U
n+k
σ ≤ k by using the (non-commutative) diagram

F (U2n
σ ) F (U2n+k

σ ) F
(
U

2(n+k)
σ

)

G(Unσ ) G(Un+kσ ).

F [⊆] F [⊆]

G[⊆]

ψ• Ψ•
ψ• Ψ•

The leftmost and rightmost triangles commute by definition of Ψ, and the orange parallelogram commutes

because Ψ is a natural transformation. Then chasing any x ∈ G(Unσ ) up to the top right F
(
U

2(n+k)
σ

)
results

in the same element, giving the required bound on L
Un

σ ,U
n+k
σ . Using Lem. 3.15 for Φ and Ψ, LU▽(Φ,Ψ) = 0

for all open sets U . The proof that LU△(Φ,Ψ) = 0 is similar. Therefore Φ and Ψ are an (n+ k)-interleaving,
giving the bound.

What is surprising about this bound is that despite checking fewer open sets, the loss function for LB
is actually lower than that found using L. One reason for this is that when we work with the smaller set
of input maps, we extend the collection to a “better” full assignment, potentially getting rid of some of the
causes of a nonzero loss function in the first place. For example, a full assignment would be required to
provide a map φU for a U with multiple connected components, say U = V1 ∪ V2. Since no requirements
were made of this map based on the φV1 and φV2 maps, there is a reasonable chance that the loss function

contribution from the LV1,U is higher than necessary. However, in the basis version, we can build the best
possible φV given the information over φU1 and φU2 , providing a potentially better, but certainly no worse,
bound.

4 Computation

In this section, we show that given an n-assignment φ and ψ, we can compute the loss function LB(φ,ψ) in
polynomial time. For simplicity, we describe the algorithm explicitly in the case where d = 1 for clarity of
exposition, before addressing the run time in higher dimensions.

4.1 Data Structures

In this section, we describe the encoding of the data structures for a pair of input functors F,G and a given
n-assignment φ and ψ. We will start with the case d = 1, and follow the example of Fig. 6 to illustrate our
construction. At a high level, we construct graphs for F and G, which we denote by (VF , EF ) and (VG, EG).
Then we build data structures to encode the natural transformations φ and ψ. For clarity, we use phi and
psi to denote the data structures that store information for φ and ψ, respectively. These encode set maps
phi : (VF , EF ) → (VG, EG) and psi : (VG, EG) → (VF , EF ), which map each vertex to a vertex in the other
graph and each edge to an edge in the other graph.

When d = 1, recall thatK, i.e., the discretization of R, consists of vertices σ−L, · · · , σL with heights in our
bounding box [−Lδ, Lδ], and with edges τj = (σj , σj+1). Then we construct the graph for F : Open(K) →
Set by generating a vertex for every object in every F (σi) and connect them using the morphisms of the

functor. This results in a vertex set VF =
∐B
i=1 F (Uσi

), and an edge for every object in every F (Uτi), giving

edge set EF =
∐B−1
i=1 F (Uτi). The endpoints of any edge e ∈ F (Uτi) ⊆ EF can be found via the attaching

maps:

F [Uτi ⊆ Uσi ](e) ∈ F (Uσi) and

F [Uτi ⊆ Uσi+1 ](e) ∈ F (Uσi+1).
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v1 : {v2}, σ2

v2 : {v3, v1}, σ3

v3 : {v5, v2}, σ4

v4 : {v6}, σ4

v5 : {v3, v7, v8}, σ5

v6 : {v4, v8}, σ5

v7 : {v5, v9}, σ6

v8 : {v5, v6, v9}, σ6

v9 : {v7, v8, v10, v11}, σ7

v10 : {v9, v12}, σ8

v11 : {v9, v13}, σ8

v12 : {v10}, σ9

v13 : {v11, v14}, σ9

v14 : {v13}, σ10

Figure 6: From left to right: an example input Reeb graph (d = 1), a discretization of R, the generated
mapper graph, and the data structure encoding the mapper graph.

For example, e = (v4, v6) ∈ F (Uτ4) in Fig. 6 has endpoints v6 ∈ F (Uσ4) and v4 ∈ F (Uσ5). We store this data
in a standard adjacency list. In addition, each vertex also keeps track of its height, so a vertex v ∈ F (Uσi)
also stores the value i as a representation of its height.

Next, we encode the information for an assignment (φ,ψ) between F,G : Open(K) → Set by construct-
ing the maps phi and psi using the graphs (VF , EF ) and (VG, EG). Specifically, for every v ∈ VF , we store
a vertex phi(v) ∈ VG with the requirement that if v ∈ F (Uσi

) and phi(v) ∈ G(Uσj
), then |i − j| ≤ n. In

addition, for every e ∈ EF , we store an edge phi(e) ∈ EG again with the requirement that if e ∈ F (Uτi) and
phi(e) ∈ G(Uτj ) then |i− j| ≤ n. The symmetric situation is setup for psi.

To see how these maps arise from an input assignment φ and ψ, we start by focusing on the vertex set.
For this, we need to encode the map φUσi

: F (Uσi
) → G(Unσi

). The elements of F (Uσi
) are already encoded

as vertices, however the elements of G(Unσi
) are not. But, because of the cosheaf structure of G, the elements

of G(Unσi
) can be seen as the connected components of particular subgraphs. Let

VG,σi,n = {v | v ∈ G(σj), j ∈ [i− n, i+ n]}

and
EG,σi,n = {e | e ∈ G(τj), j ∈ [i− n− 1, i+ n]}.

The elements ofG(Unσi
) are the connected components of the subset of the graph (VG, EG)σi,n := (VG,σi,n, EG,σi,n).

Note that because of the endpoints, this is not an induced subgraph; see Fig. 7 for examples. Similarly for
the edges of K, we can define

VG,τi,n = {v | v ∈ G(σj), j ∈ [i− n+ 1, i+ n]

and
EG,τi,n = {e | e ∈ G(τj), j ∈ [i− n, i+ n]}

so that the connected components of (VG, EG)τi,n := (VG,τi,n, EG,τi,n) are the elements of G(Unτi).
So, for each v ∈ F (Uσi), we store a vertex phi(v) ∈ VG,σi,n, where phi(v) is in the connected component

of (VG, EG)σi,n represented by φUσi
(v) ∈ G(Unσi

). For instance, consider the example of Fig. 7 where we
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phi :



b 7→ w

c 7→ z

ab 7→ xy

bc 7→ uv
...

psi :


x 7→ b

w 7→ c
...

Figure 7: At left are two example input mapper graphs. In the middle are a subset of an example phi and
psi input assignment used throughout the text. At right are two example slices of the graphs used when
checking connectivity.

assume n = 1. If phi(b) = w, then φUσi
(b) is the connected component that includes w of (VG, EG)σi,1 as

shown on the right. We can similarly find the edge map phi(e) for e ∈ F (Uτi) by setting it to be an edge
in EG,τi,n representing the connected component of φUτi

(e) ∈ G(Unτi) in (VG, EG)τi,n. So, for example, in
Fig. 7 where n = 1, the input data might have phi(ab) = (xy) ∈ EG and phi(bc) = (uv) ∈ EG.

4.2 Algorithm and Complexity

In this section, we discuss the complexity of determining LB(φ,ψ) given phi and psi. First, we will proceed
using a binary search on k ∈ [0, · · · , 2L] where the maximum is determined by the diameter of the bounding

box. For a fixed k, we will determine if LB(φ,ψ) ≤ k. We will describe the cases for LUτ ,Uσ and LUσ

▽ , as

LUτ ,Uσ and LUσ

△ are symmetric.

Start with LUτ ,Uσ and note that in the case where d = 1, there are two pairs necessary to check for each
edge: τj , σj and τj , σj+1. Fixing σℓ to be either σj or σj+1, for each edge e ∈ F (Uτj ), we need to check if
the two possible images in G(Un+kσℓ

) under the diagram

F (Uτi) F (Uσℓ
) e v

G(Unτi) G(Unσℓ
) G(Un+kσℓ

) [e′]
[w]
[e′]

[w]
[e′]

F [⊆]

φUτi

φUn
τi

G[⊆]

(4.1)

are the same. Note that we use [−] to note that the elements represent the connected component in the
relevant sliced graph containing that edge or vertex. Following the top of diagram Eq. (4.1), we know that
e has a unique endpoint vertex v ∈ F (Uσℓ

), and that vertex has an image under φUn
τi
, which is a connected

component represented by phi(v) = w ∈ VG. Following down, the edge e has an edge image phi(e) = e′ ∈ EG.
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So the question becomes: are e′ and w in the same connected component of (VG, EG)σℓ,n+k? This can be
done by filtering through the adjacency lists, keeping only vertices and edges in the correct strip, and then
checking for connectivity using a standard graph traversal like breadth or depth first search. As we do this
once per grid element, we get a total time (when d = 1) of O(VG + EG) time per parallelogram. If d > 1,

then the correct “strip” for σ−→
ℓ
with indices

−→
ℓ ∈ Zd involves checking a portion of the graph with indices in

a d-dimensional box [ℓ1−(n+k), ℓ1+(n+k)]×· · ·× [ℓd−(n+k), ℓd+(n+k)] and hence takes O(d(VG+EG))
time.

In the example of Fig. 7, assume n = k = 1 and assume the given input phi is as noted. Then for the
diagram of Eq. (4.1) with ℓ = j and chasing bc ∈ F (Uτj ), this comes down to checking if the connected
component of phi(b) = w and phi(bc) = xy are the same in the portion of (VG, EG)σj ,2. In this particular
example, there are two connected components in this slice and the images are not in the same component.

Then we know that L
Uτj

,Uσj > k so we would immediately move on in our binary search. If it were the case

that the two images were in the same connected component, then L
Uτj

,Uσj ≤ k and thus we would move on
to the next commutative diagram check.

Checking if LUτ

▽ ≤ k is similar so we briefly highlight the differences. First, there are two types of basis

elements in our case where d = 1, so we need to check L
Uσi

▽ ≤ k (meaning checking vertices) and L
Uτi

▽ ≤ k
(meaning checking edges). We focus on the case of vertices since the edge version is similar. For any vertex
element v ∈ Uσi

, we need to chase it around the diagram

F (Uσi
) F (U2n

σi
) F (U

2(n+k)
σi ).

G(Unσi
) v [v]

[v′]
[v]
[v′]

w

F [Uσi
⊆U2n

σi
]

φUσi ψUn
σi (4.2)

If phi : v 7→ w, and psi : w 7→ v′, the question again becomes: are v and v′ in the same connected
component of (VG, EG)σj ,2(n+k)? Similar to the parallelogram case, we take a strip of the graph and check
this connectivity question in O(d(VG + EG)) time. As before, either the elements checked are in the same
connected component of the relevant slice of the graph, in which case we move to the next diagram; or it
does not, and we move to a different k in our binary search. In our example case of Fig. 7 with n = k = 1, we
have 2(n+ k) = 4. Then chasing b, we need to check that b and psi ◦ phi(b) = c are in the same connected
component of (VG, EG)σj ,4. As this slice has one connected component, this triangle commutes. We can

check another triangle L
Uσj

△ ≤ k chasing w. In this case, we must check if w and phi ◦ psi(w) = z are in
the same component of (VG, EG)σi,4, which again, they both are. In either case, if they were not, we would
know the loss function is at least k and continue in the binary search.

To count the number of (complected) diagram checks, a vertex v ∈ F (Uσi
) is checked for one triangle

loss L
Uσi

▽ ; and a vertex w ∈ G(Uσi
) is checked for one triangle loss L

Uσi

△ . An edge e ∈ F (Uτi) is checked for

one triangle loss L
Uτi

▽ and for two parallelograms: L
(Uτi

,Uσi
)
and L

(Uτi
,Uσi+1

)
. Likewise, an edge e′ ∈ G(Uτi)

is checked in diagrams L
Uτi

△ , L
(Uτi

,Uσi
)
and L

(Uτi
,Uσi+1

)
. This means that if the graph representations of F

and G are (VF , EF ) and (VG, EG) respectively, the time for computing the loss function is

O

(
[(VF + VG) + 3(EF + EG)] ·max{(VF + EF ), (VG + EG)}

)
.

In d-dimensions, a similar construction holds, except that our σ cells are now indexed by Bd, giving an extra
multiplicative factor of Bd in the run time.
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5 Extension to Reeb Graphs

We now take a brief diversion into understanding how the loss function framework can be used to approximate
the Reeb graph interleaving distance. In this case, we consider a 1-dimensional mapper graph to be an
approximation of the Reeb graph [5, 6, 10, 11, 28]. We show that in order to bound the Reeb graph
interleaving distance, we can compute the mapper graph for a resolution δ, and then use the loss function
to provide a similar bound.

5.1 Definitions

Given input data f : X → R, the Reeb graph of (X, f) is computed as follows. Define an equivalence relation
by setting x ∼ y iff x and y are in the same path-connected component of the levelset f−1(a). With enough
restrictions on the space and function (for example, a Morse function on a manifold), the resulting Reeb
graph is a topological graph; i.e. a 1-dimensional stratified space. Similar to the vantage taken for the mapper
graphs in this paper, the data of a Reeb graph can be stored in a cosheaf.

Definition 5.1. For a given (X, f), the associated Reeb cosheaf is given by

F̃ : Int → Set
I 7→ π0f

−1(I)⊆ ↓ π0[⊆]
J 7→ π0f

−1(J)

where morphisms are induced by the π0 functor.

For clarity, we write the Reeb cosheaf with a tilde to distinguish it from the mapper cosheaf without a
tilde. Given this input, we have the Reeb graph interleaving distance [33], given as follows.

Definition 5.2. Define the functor (−)ε : Int → Int by (a, b) 7→ (a − ε, b + ε) with morphisms induced by

inclusion. Then F̃ε : Int → Set is given by F̃ε(J) = F̃ (Jε).

For given F̃ , G̃ : Int → Set, an ε-interleaving is a pair of natural transformations φ̃ : F̃ ⇒ G̃ε and
ψ̃ : G̃⇒ F̃ε such that

F̃ (I) F̃ (I2n) F̃ (In)

G̃(In) G̃(I) G̃(I2n)

F̃ [I⊆I2n]

φ̃I

φ̃In

ψ̃In

G̃[I⊆I2n]

ψ̃I

commute for all I ∈ Int. The (categorical) Reeb graph interleaving distance is given by

dR(F̃ , G̃) = inf{ε ≥ 0 | there exists an ε-interleaving}.

Fix a δ. Following Sec. 2, denote the vertices of K by {σ−L, · · · , σL} where σi is at the point iδ ∈ R.
Denote the edges by τi = (iδ, (i+1)δ) which has faces σi and σj . Given some input data f : X → R, we can

either construct its Reeb cosheaf F̃ : Int → Set, or by fixing some choice of δ, we can construct its mapper
cosheaf F : Open(K) → Set.

We next show that the loss function we have computed here on the mapper version dI can be used to
similarly bound the Reeb interleaving distance dR. We do this by showing that dI is an approximation of
dR, which can be viewed as a special case of [5, Thm. 5.15]; however, for clarity, we include a direct proof in
Sec. 6 as our setting allows a proof with considerably less use of category theoretic machinery.

Proposition 5.3. For inputs f : X → R and g : Y → R, denote the respective Reeb cosheaves as F̃ , G̃ :
Int → Set, and the respective mapper cosheaves as F,G : Open(K) → Set. Then

dR(F̃ , G̃) ≤ (dI(F,G) + 1) δ.

17



Given this bound, we combine Prop. 5.3 with Thm. 3.17 to show that the loss function for the mapper
graph discretization bounds the Reeb graph interleaving as well and that, in particular, this bound is
controlled by the diameter δ chosen for K.

Corollary 5.4. Given a basis n-assignment φ = {φUσ
| σ ∈ K} and ψ = {ψUσ

| σ ∈ K} for F,G :
Open(K) → Set, we have that

dR(F̃ , G̃) ≤ δ(dI(F,G) + 1) ≤ δ(n+ LB(φ,ψ) + 1).

6 Technical Proofs

In this section, we include the technical proofs from the previous sections.

6.1 Proofs from Sec. 2

Lemma 6.1. (−)n is a functor.

Proof. First, we check that the images of morphisms are well defined, which is to say that if U ⊆ V , then
Un ⊆ V n. The statement is clear if n = 0, so by induction, we assume that Un−1 ⊆ V n−1. Given an
arbitrary σ ∈ Un, the statement is immediate if σ ∈ Un−1 ⊆ Un, so we assume σ ∈ Un \ Un−1. For this to
happen, there must be a γ ∈ Un−1 and τ ∈ K with γ ≥ τ ≤ σ. But as γ ∈ Un−1 ⊆ V n−1, this sequence also
implies that σ ∈ V n, finishing the well-defined check.

To ensure this is a functor, we need to check that the identity morphism is sent to the identity, and that
composition holds. For the former, we see that U ⊆ U gets sent to Un ⊆ Un, and each is an identity. The
latter is immediate from the property that Open(K) is a poset category, meaning that there is at most one
morphism between any pair of objects.

One property of this construction that will be useful is as follows. For any σ ∈ Un, there is a τ ∈ U and
a sequence of cells

τ ≥ γ1 ≤ τ1 ≥ γ2 ≤ τ2 ≥ · · · ≥ γn ≤ σ. (6.2)

Further, given such a sequence with τ ∈ U , we know that σ ∈ Un. Two examples of this can be seen in
Fig. 8, where σ and σ′ from U3 are given, along with a path satisfying Eq. (6.2). Of course, the choice of
sequence for Eq. (6.2) is not unique, so other options are possible.

Next we show that the distance of Eq. (2.2) is indeed a distance using the super-linear family of trans-
lations framework of [8]. This construction can be generalized to the concept of a category with a flow [15],
but the added generality is not needed here.

Definition 6.3 ([8]). Let P = (P,≤) be a preordered set. A translation on P is a functor Γ : P → P along
with a natural transformation η : 1P ⇒ Γ. A super-linear family of translations is a collection {Γε}ε≥0 such
that ΓεΓε′(p) ≤ Γε+ε′(p) for all p ∈ P , and ε, ε′ ≥ 0.

Lemma 2.1. For any n, n′ ≥ 0 and U ∈ Open(K),

(Un)n
′
= Un+n

′
.

Proof. First, we check that (−)n is indeed a translation using the above terminology. In particular, we define
γn : 1Open(K) ⇒ (−)n to have components γnU : U → Un as simply the inclusion, and we can easily check
that this satisfies the naturality requirements.

Fix U ∈ Open(K). We need to show that (Un)n
′
= Un+n

′
. Let σ ∈ (Un)n

′
. By previous remarks, this

is true if and only if there is a sequence

τ ≥ γ1 ≤ τ1 ≥ γ2 ≤ τ2 ≥ · · · ≥ γn′ ≤ σ
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Figure 8: Given the purple set U , we have an edge σ and a square σ′ which are elements of U3. Then we
provide an example sequence for each satisfying Eq. (6.2) leading to τ and τ ′ in U .

with τ ∈ Un. But this property of τ happens iff there is also a sequence

τ ′ ≥ γ′1 ≤ τ ′1 ≥ γ′2 ≤ τ ′2 ≥ · · · ≥ γ′n ≤ τ

with τ ′ ∈ U . Concatenating the two sequences gives a sequence of length (n + n′) from τ ∈ U to σ. Thus
σ ∈ Un+n

′
iff σ ∈ (Un)n

′
, and hence (Un)n

′
= Un+n

′
.

Theorem 6.4. The interleaving distance of Defn. 2.2 is an extended pseudometric.

Proof. Because Lem. (2.1) is a stronger requirement than needed for Defn. 6.3, the collection {(−)n}n≥0

forms a super-linear family of translations. Then the result is immediate from [8, Theorem 3.21].

6.2 Proofs from Sec. 3

Lemma 3.9. Assume we are given an n-assignment φ : F ⇒ Gn and ψ : G ⇒ Fn. For a fixed k, define
(n+ k)-assignments ΦU = G[Un ⊆ Un+k] ◦ φU and ΨU = F [Un ⊆ Un+k] ◦ ψU for all U ∈ Open(K). Then
the following hold:

1. LU,V (φ) ≤ k implies Φ(U, V ) commutes, and thus LU,V (Φ) = 0.

2. LU,V (ψ) ≤ k implies Ψ(U, V ) commutes, and thus LU,V (Ψ) = 0.

3. LU▽(φ,ψ) ≤ k and LU
n,Un+k

(ψ) ≤ k imply ▽Φ,Ψ(U) commutes, and thus LU▽(Φ,Ψ) = 0.

4. LU△(φ,ψ) ≤ k and LU
n,Un+k

(φ) ≤ k imply △Φ,Ψ(U) commutes, and thus LU△(Φ,Ψ) = 0.

In particular, if φ and ψ have L(φ,ψ) = 0, then φ and ψ constitute an interleaving, and so dI(F,G) ≤ n.

Proof of Lem. 3.9. We prove the lemma for the first and third entries only as the other arguments are
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symmetric. Assume LU,V (φ) ≤ k and consider the diagram

F (U) F (V )

G(Un) G(V n)

G(Un+k) G(V n+k).

F [⊆]

φU

ΦU

φV

ΦV

G[⊆]

G[⊆] G[⊆]

G[⊆]

Note that the top of the diagram does not necessarily commute in the case that k ≥ 1, and the bottom of the
diagram is Φ(U, V ), for which we wish to check for commutativity. For any x ∈ F (U), following around
the top square gives

x x′

a b′

a′

with dGV n(a′, b′) ≤ k. By definition, the image of a′ and b′ is the same under the map
G(V n) → G(V n+k). Then since the front square commutes by functoriality of G, and the side triangles
commute by definition of Φ, we have that the image of x under either direction of the back square com-
mutes, proving claim (1).

Turning to claim (3), consider the noncommutative diagram

F (U) F (U2n) F (U2n+k) F (U2(n+k)).

G(Un) G(Un+k)

F [⊆]

φ•

Φ•

F [⊆] F [⊆]

G[⊆]

ψ• ψ•

Ψ•

The two yellow triangles commute by definition of Φ and Ψ. The blue parallelogram is the diagram

ψ(U
n, Un+k) which also has loss function bounded by k, thus elements of G(Un) are not necessarily

the same in the image of F (U2n+k) following the parallelogram, but are the same in F (U2(n+k)).
Checking that ▽Φ,Ψ(U) commutes amounts to a diagram chase. For an arbitrary α ∈ F (U), consider

the following elements aligning with the diagram above,

α a
a′

b
b′

b′′

}
c

x x′

Both α and x map to x′ because of the yellow triangle commuting, and both b′′ and x′ map to the same
c for the same reason. Even if α and x map to different elements in F (U2n), they must map to the same
element in F (U2(n+k)), and this element must be c, since both b′ and b′′ map to the same element by the
bound on the blue parallelogram. As this was done for an arbitrary α, we have that ▽Φ,Ψ(U) commutes.

Claims (2) and (4) are similar with appropriate choices of diagrams. The final statement is immediate
since L(φ,ψ) = 0 implies all diagrams needed for an interleaving commute.

Lemma 3.14. Given a basis unnatural transformation

{ΦUσ
: F (Uσ) → G(UNσ ) | σ ∈ K}

with LUτ ,Uσ = 0 for all σ ≤ τ , we can extend this to a full natural transformation Φ; i.e. we can define ΦU
for all U such that LU,V = 0 for all U ⊆ V .

20



Proof of Lem. 3.14. We start by defining ΦU for arbitrary open sets. Note that since LUτ ,Uσ = 0, for any
σ ≤ τ , the diagram of the form

F (Uτ ) F (Uσ)

G(Unτ ) G(Unσ )

F [⊆]

ΦUτ ΦUσ

G[⊆]

commutes.
For an arbitrary open U , define the cover U = {Uσ | σ ∈ U}. It is straightforward to check that

U =
⋃
Uσ∈U Uσ and that any nonempty intersection Uσ ∩ Uτ is also an element of U . Then we use the fact

that F is a cosheaf, and in particular this means that F (U) is the coequalizer of the diagram

∐
σ,σ′

F (Uσ ∩ Uσ′)
∐
τ

F (Uτ ).
F [Uσ∩Uσ′⊆Uσ ]

F [Uσ∩Uσ′⊆Uσ′ ]

Rephrased, this means that for any set S with maps F (Uσ) → S such that the solid arrow diagrams of the
form

F (Uσ ∩ Uσ′) F (Uσ)

F (Uσ′) F (U)

S

F [⊆]

F [⊆]

F [⊆]

F [⊆]

∃!

commute for any σ, σ′, then there is a unique map F (U) → S whose addition still has all diagrams commute.
In our case, set S = G(Un), and define the legs of the cocone to be G[⊆] ◦ ΦUσ

as seen in the bold purple
arrows of the diagram

F (Uσ ∩ Uσ′) G((Uσ ∩ Uσ′)n)

F (Uσ′) G(Unσ′)

F (Uσ) G(Unσ′)

F (U) G(Un)

Φ•

F [⊆]

F [⊆]

G[⊆]
G[⊆]

Φ•

G[⊆]
Φ•

F [⊆] G[⊆]

∃! ΦU

F [⊆] (6.5)

where Φ• means ΦV for the appropriate set V , but is dropped to simplify the notation. Note that the
diagram prior to the inclusion of the dotted line commutes, since we can check the relevant faces as follows.
The left and right squares commute because F and G are functors. The back and top panels commute

because they involve only basis opens; equivalently, because we assumed L
Uσ∩Uσ′ ,Uσ = L

Uσ∩Uσ′ ,Uσ′ = 0.
Then, because F (U) is a colimit of the diagram, there exists a unique map ΦU : F (U) → G(U) as noted,
making any diagram of this form commute.

To ensure that the resulting ΦU maps make diagrams of the form

F (U) G(Un)

F (V ) G(V n)
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commute for arbitrary U ⊆ V , fix such a pair and an x ∈ F (U). Because F (U) is the colimit, there is a σ
and an xσ ∈ F (Uσ) such that xσ 7→ x. In this case we have the diagram

F (Uσ) G(Uσ)
n

F (U) G(Un)

F (V ) G(V n)

Φ•

Φ•

Φ•

The top and back squares commute because they are the front of the cube of the diagram in Eq. (6.5). The
left and right triangles commute since F and G are functors. Thus the front square, and in particular the
element x ∈ F (U), commute. This means the resulting Φ is a natural transformation, and thus LU,V = 0.

Lemma 3.15. Given natural transformations Φ : F ⇒ GN and Ψ : GN ⇒ F such that LUσ

▽ = 0 for all

σ ∈ K, then LU▽ = 0 for all open sets U .

Proof of Lem. 3.15. Because LUσ

▽ = 0 for all basis elements, diagrams of the form

F (Uσ) F (U2n
σ )

G(Unσ )

F [⊆]

ΦUσ ΨUn
σ

commute for any σ ∈ K. Given an arbitrary open set U , let x ∈ F (U) be given. As in the proof of Lem. 3.14,
there is a σ and an xσ ∈ F (Uσ) with xσ 7→ x. Then consider the diagram

F (Uσ) F (U2n
σ )

F (U) F (U2n)

G(Unσ )

G(Un)

Ψ•

Ψ•

F [⊆]

Φ•

F [⊆] F [⊆]

G[⊆]

F [⊆]

Φ•

where we again replace map subscripts with • to simplify notation. The top square commutes because F is
a functor. The back triangle commutes by this lemma’s assumption. The left and right squares commute
because Φ and Ψ are natural transformations. Taken together, this means that the diagram commutes and
in particular, the image of x ∈ F (U) chased around the front triangle commutes.

6.3 Proof from Sec. 5

Proposition 5.3. For inputs f : X → R and g : Y → R, denote the respective Reeb cosheaves as F̃ , G̃ :
Int → Set, and the respective mapper cosheaves as F,G : Open(K) → Set. Then

dR(F̃ , G̃) ≤ (dI(F,G) + 1) δ.
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Proof. Let φ,ψ be an n-interleaving for F,G : Open(K) → Set. We will construct an ε = δ(n + 1)-

interleaving φ̃, ψ̃ for F̃ , G̃ : Int → Set.
We start by defining φ̃ : F̃ ⇒ G̃ε as ψ̃ is analogous. Given an arbitrary interval I = (a, b), let J = (jδ, kδ)

be the smallest grid-aligned interval containing I; i.e. jδ ≤ a < (j + 1)δ and (k − 1δ) < b ≤ kδ.
Note that I ⊆ J ⊆ Jδn ⊆ I(n+1)δ = Iε. Let S = {τi | j ≤ i ≤ k − 1} ∪ {σi | j < i < k}. A quick

check shows that S ∈ Open(K), that J = |S|, and that Jδn = |Sn|. Chasing definitions, this means that

F̃ (J) = π0(f
−1(J)) and F (S) = π0(f

−1(|S|)) are equal; similarly F̃ (Jδn) = F (Sn). Then define φ̃I to be
the map defined by the composition

F̃ (I) G̃(I(n+1)δ)

F̃ (J) G̃(Jδn)

F (S) G(Sn).

φ̃I

F̃ [⊆]

=

φ̃J

G̃[⊆]

φS

=

Notice that setting I to be an axis aligned interval J gives the map φ̃J marked.
Now that we have built φ̃ and ψ̃, we need to check (i) that each is a natural transformation and (ii) that

they satisfy the triangle diagrams of Defn. 5.2. For (i) we check only φ̃ as, again, ψ̃ is symmetric. To this
end, assume we have I ⊆ I ′ with minimal grid-aligned intervals J and J ′, and let S, S′ ∈ Open(K) be such
that |S| = J and |S′| = J ′. Then consider the diagram

F̃ (I) G̃(I(n+1)δ)

F̃ (J) G̃(Jδn)

F (S) G(Sn)

F̃ (I ′) G̃((I ′)(n+1)δ)

F̃ (J ′) G̃((J ′)δn)

F (S′) G((S′)n).

φ̃I

F̃ [⊆]

G̃[⊆]
=

G̃[⊆]

φS

F [⊆]

=

G[⊆]

φ̃I′

F̃ [⊆]

F̃ [⊆]

=

G̃[⊆]

φS′

=

Note that the front and back panels of the cube are the diagrams that were used to define φ̃I and φ̃I′ , so they
commute. The bottom panel commutes because φ is a natural transformation. The left and right panels
commute because F and F̃ arise from computing connected components on the same underling input data.
Thus, the top square commutes, and this is exactly what is needed to say that φ̃ is a natural transformation.

To check (ii), fix an interval I with grid aligned J ⊆ I and S ∈ Open(K) with |S| = J . Then consider
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the diagram

F̃ (I) G̃(I(n+1)δ) F̃ (I2(n+1)δ)

F̃ (J) G̃(Jδn) G̃(J (n+1)δ)) F̃ (Jδ(2n+1))

F (S) G(Sn) G(Sn+1) F (S2n+1)

F (S2n).

φ̃I

F̃ [⊆]

ψ̃Iε

=

G̃[⊆]

G̃[⊆]

=

F̃ [⊆]

φS

F [⊆]

=

G[⊆]

ψSn

ψSn+1

=

F [⊆]

The left and right hexa-laterals commute by definition of φ̃ and ψ̃ respectively. The middle top triangle
commutes because G̃ is a functor, and the middle square commutes because G̃ and G are defined as con-
nected components of the same input data. The bottom left triangle commutes because φ and ψ are an
n-interleaving. The right quadrilateral commutes because ψ is a natural transformation. All this shows that
the outside boundary of the diagram commutes. Swapping out the interior, we have

G̃(I(n+1)δ)

F̃ (I) F̃ (I2(n+1)δ)

F̃ (J) F̃ (Jδ(2n+1))

F (S) F (S2n+1)

F (S2n).

ψ̃Iεφ̃I

F̃ [⊆]

F̃ [⊆]

=

F̃ [⊆]

F̃ [⊆]

F [⊆]

F [⊆]

=

F [⊆]

The bottom triangle commutes because F is a functor, the next square up commutes by definition of F and F̃ ,
and the top square commutes because F̃ is a functor. Combining this with the outside ring commuting means
that the top triangle commutes, which is the final ingredient needed for the definition of an interleaving.

7 Discussion

In this paper, we define a loss function that quantifies how far a diagram is from being commutative, and use
such a loss function to bound the interleaving distance, both for mapper and Reeb graph settings. This work
provides a way to evaluate a particular set of maps, which immediately suggests the question of utilizing
this quantification to iteratively improve our comparison. Here, the quality of the bound is dependent on
the quality of the input n-assignment, but we assume no control over that input in this paper and so we
cannot evaluate the tightness of the bound. In the long term, we envision this bound to be used in the
context of a gradient descent style framework, where an input n-assignment can be improved incrementally
thus finding a better bound on the distance. Of course, we know that deciding if two Reeb graphs are
ϵ-interleaved (for ϵ ≥ 1) is NP-hard [2], so our gradient decent has no guarantee of reaching the global
optimal solution. However, the potential for not only getting better approximations but also returning the
actual interleaving maps used in the bound is an exciting step toward computing interleaving distances for
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graph-based signatures available in practice. Furthermore, the current approach focuses on 0-dimensional
interleavings involving connected components, it is possible to extend our framework in the future to study
1-dimensional interleavings by studying homologous cycles.

We also believe that our loss function based framework is applicable in a broader context where data
are modeled as sheaves or cosheaves in the category of sets, as sheaf theory is emerging as a tool in data
science to study, e.g., distributed systems [25, 26], sensor networks [31], model fit [23], and uncertainty
quantification [20]. In particular, one interesting next step is to study how to extend our framework to
work with persistence modules as cosheaves in the category of vector spaces (e.g., [7]). As the interleaving
distance for multiparameter persistence modules is similarly NP-hard [3], this would be an exciting step
toward computational efforts in this broad class of topological signatures.
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