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Abstract1

A Reeb graph is a graphical representation of a scalar function on a topological space that encodes the2

topology of the level sets. A Reeb space is a generalization of the Reeb graph to a multiparameter3

function. In this paper, we propose novel constructions of Reeb graphs and Reeb spaces that4

incorporate the use of a measure. Specifically, we introduce measure-theoretic Reeb graphs and5

Reeb spaces when the domain or the range is modeled as a metric measure space (i.e., a metric6

space equipped with a measure). Our main goal is to enhance the robustness of the Reeb graph7

and Reeb space in representing the topological features of a scalar field while accounting for the8

distribution of the measure. We first introduce a Reeb graph with local smoothing and prove its9

stability with respect to the interleaving distance. We then prove the stability of a Reeb graph of a10

metric measure space with respect to the measure, defined using the distance to a measure or the11

kernel distance to a measure, respectively.12
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1 Introduction13

A Reeb graph [48] is a topological descriptor that captures the evolution of level sets of a14

scalar function. Specifically, given f : X → R defined on a topological space X with enough15

regularity, the Reeb graph of f is a graph where each node corresponds to a critical point of16

f and each edge captures the relationships among the connected components of the level17

sets of f . A Reeb space is a generalization of the Reeb graph to a multiparameter function18

f : X → Rd. Reeb graphs and Reeb spaces are popular in topological data analysis and19

visualization; see [12, 38, 60] for surveys.20

In this paper, we introduce measure-theoretic Reeb graphs, extensions to the conventional21

Reeb graph constructions that integrate metric measure spaces—metric spaces endowed with22

probability measures—to enhance their robustness in capturing the topological features. We23

argue that a metric measure space arises naturally in data. In many data science applications,24

we would like to associate weights to data points in the domain or function values in the range,25

which represent how much we trust these data points or how important their corresponding26

features are. Conventional Reeb graphs, however, do not take into consideration the data27

distributions and (possibly) non-uniform importance of data points, leading to discrepancies28

between the represented and actual topologies of the data. For example, a significant loop29
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XX:2 Measure-Theoretic Reeb Graphs

in the Reeb graph might be caused by a sparse set of data points or lie in regions of low30

importance in function values. Our measure-theoretic approach allows Reeb graphs to capture31

robust topology in data, in line with recent advances in topological data analysis for building32

robust topological descriptors [13, 47, 19]. Our contributions include:33

We define a Reeb graph of a metric measure space where the domain is equipped with a34

measure, and present two stability results:35

We first introduce a Reeb graph with local smoothing (Definition 17) and prove its36

stability with respect to the interleaving distance (Lemma 18);37

We then prove the stability of a Reeb graph of a metric measure space with respect to38

the measure, defined using the distance to a measure [19] and the kernel distance to a39

measure [47], respectively (Theorem 19 and Theorem 20).40

We expand the measure-theoretic construction to consider a measure on the range,41

referred to as a range-integrated Reeb graph (Definition 31), and prove its stability42

(Proposition 33).43

We extend our measure-theoretic constructions (Definition 27 and Definition 35) and44

stability results to Reeb spaces (Theorem 29, Theorem 30, and Proposition 36).45

We define a geometric notion of interleaving distance between Reeb spaces (Definition 23)46

that generalizes that of Reeb graphs and prove the stability of Reeb spaces with respect47

to this interleaving distance (Theorem 26).48

2 Related Work49

Reeb graphs and Reeb spaces. A Reeb graph [48] is a topological abstraction of the level50

sets of a scalar function. A Reeb space [35] is analogous to Reeb graphs for a multiparameter51

function. Theoretical investigations of Reeb graphs, Reeb spaces, and their variants (in52

particular, Mapper constructions [45]) have been quite active, exploring their distances,53

information content [33, 23], stability [31, 9, 41, 10, 11, 6, 15, 10, 23], and convergence [5,54

44, 33, 21, 16].55

There are a number of distances proposed for Reeb graphs and their variants, such as56

interleaving distance [17, 25, 31, 42, 43, 24], functional distortion distance [9, 11], functional57

contortion distance [7], edit distance [34, 8, 10, 50], Gromov-Hausdorff distance [22, 55], and58

bottleneck distance [22]; see [14, 60] for surveys. In particular, de Silva et al. [31] introduced59

an interleaving distance that quantifies the similarity between Reeb graphs by utilizing a60

smoothing construction. The smoothing idea was further expanded by Munch and Wang [44],61

where they proved the convergence between the Reeb space and Mapper [49] in terms of62

the interleaving distance between their corresponding categorical representations. Bauer63

et al. [11] showed that the interleaving distance is strongly equivalent to the functional64

distortion distance [9]. In this paper, we introduce a local smoothing idea and define an65

interleaving distance between Reeb spaces that generalizes that of Reeb graphs and prove66

the stability of Reeb spaces with respect to this interleaving distance.67

Reeb graphs and their variants have been widely used in data analysis and visualization,68

including shape analysis [40, 56, 54, 32], flexible isosurfaces [20], isosurface denoising [59], data69

skeletonization [36], topological quadrangulations [39], loop surgery [53], feature tracking [28],70

and metric reconstruction of filament structures [27]. See [12, 60] for more applications in71

computer graphics and data visualization, respectively.72

Metric measure spaces. A metric measure space is a metric space equipped with a73

probability measure, providing a natural framework for statistical inference, machine learning,74
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and data analysis [52]. This concept is particularly relevant in real-world data, often sampled75

from probabilistic distributions, with inherent distance relationships among data points.76

In machine learning, metric measure spaces have been used in the study of generative77

models [4], graph learning [29], and natural language processing [3]. In topological data78

analysis, metric measure spaces are instrumental in developing statistically robust persistent79

homology invariants [13, 19], studying functional data [37] and providing measure-theoretic80

perspective on Vietoris-Rips complexes [1, 2].81

Robust geometric inferences. Chazal et al. [26, 19] introduced the distance to a measure82

function that supports geometric inferences that are robust to noise and outliers. As an83

alternative method, Phillips et al. [47] showed that robust geometric inference of a point84

cloud can be achieved by examining its kernel density estimate, and subsequently, the85

kernel distance. The kernel distance enjoys similar reconstruction properties of distance to86

a measure, and additionally possesses small coresets [46] for inference tasks. These robust87

techniques enhance the resilience of geometric inference against noise and outliers, and are88

utilized in this paper to attune the measures on metric measure spaces.89

3 Background on Reeb Graphs and Reeb Spaces90

A Reeb graph [48] starts with a topological space X equipped with a continuous real-valued91

function f : X → R. It captures the evolution of the level sets of f . Unless otherwise92

specified, we always work with continuous functions in this paper.93

▶ Definition 1 (Reeb graph). The Reeb graph is the quotient space R(X, f) := X/∼f obtained94

by identifying equivalent points where, for every x, y ∈ X,x ∼f y if and only if x and y belong95

to the same connected component of the level set f−1(f(x)).96

By construction, as shown in Figure 1, there is a natural quotient map π : X → R(X, f)97

that sends a point x ∈ X to its equivalence class [x] ∈ R(X, f). Meanwhile, f naturally98

induces a function f̃ : R(X, f) → R defined as f̃([x]) = f(x). With some appropriate99

regularity conditions (for example, f being a piecewise linear function on a finite simplicial100

complex or a Morse function on a compact manifold), the Reeb graph R(X, f) is a finite101

graph and f̃ is a monotonic function on the edges of R(X, f). The pair (X, f) is referred102

to as an R-space [31]. In this paper, we assume that X and f are regular enough (e.g.103

constructible R-spaces [31]) so that the Reeb graph R(X, f) is a finite graph. We will use104

this regularity assumption of Reeb graphs throughout the paper.105
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Figure 1 An example of a Reeb graph.106
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Let (X, f) and (Y, g) be two R-spaces. Following the terminology in [24], we say that a107

continuous map ϕ : X → Y is a function preserving map if f = g ◦ ϕ. A function preserving108

map ϕ : X → Y induces a map ϕ̃ : R(X, f) → R(Y, g) between the Reeb graphs by sending109

[x] to [ϕ(x)]. Additionally, ϕ̃ is also a function preserving map between (R(X, f), f̃) and110

(R(Y, g), g̃). This comes from the universal property of quotient maps; for a proof in the111

setting of Reeb graphs, see [31, Proposition 2.8].112

To simplify the notation, we write a Reeb graph R(X, f) as G := (G, f) with G being a113

finite graph and f being a real-valued function on G such that f is monotonic on each edge114

of G. We omit f from (G, f) when it is clear from the context. In particular, G is a special115

case of an R-space. We say two Reeb graphs are isomorphic if there exist function preserving116

maps between them that are inverse to each other.117

We review the smoothing of Reeb graphs [31] that facilitates the study of the stability of118

Reeb graphs. It is used to define the interleaving distance between Reeb graphs.119

▶ Definition 2 (Smoothing of Reeb graph [31]). Given a Reeb graph G, the ε-smoothing of G120

is defined as the Reeb graph of the function:121

fε : G× [−ε, ε] −→ R
(x, t) 7−→ f(x) + t.

122

That is, the ε-smoothing of a Reeb graph is the quotient space G× [−ε, ε]/ ∼fε
, denoted as123

Sε(G, f).124

Figure 2 From left to right: a Reeb graph G, its ε-thickening with a function fε, and the Reeb
graph of the ε-thickening.

125

126

The space G× [−ε, ε] is referred to as the ε-thickening of G. Then the ε-smoothing is the127

Reeb graph of the ε-thickening. See Figure 2 for an example, where the ε-thickening is tilted128

slightly to reveal its structure. We have the following maps associated with the smoothing of129

a Reeb graph:130

The zero-section inclusion η : G → Sε(G, f) is defined as η(x) = [x, 0], where we use [x, 0]131

to denote the equivalence class of (x, 0) in Sε(G, f);132

Let ϕ : (G, f) → (H,h) be a function preserving map between two Reeb graphs. Then133

we have the induced map Sε[ϕ] between their smoothings Sε[ϕ] : Sε(G, f) → Sε(H,h)134

defined as ϕε([x, t]) = [ϕ(x), t].135

With the above preparations, we can now present the definition of interleaving distance136

between Reeb graphs introduced by de Silva et al. [31].137

▶ Definition 3 (Interleaving distance [31, Definition 4.35]). For any ϵ > 0, an ε-interleaving138

between two Reeb graphs (G, f) and (H,h) is a pair of maps, ϕ : (G, f) → Sε(H,h) and139
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ψ : (H,h) → Sε(G, f) such that the diagram140

(G, f) Sε(G, f) S2ε(G, f)

(H,h) Sε(H,h) S2ε(H,h)

Sε[ϕ]ϕ

ψ Sε[ψ]
141

commutes, where Sε[ϕ] is the map induced by ϕ : G× [−ε, ε] → Sε(H,h) × [−ε, ε] defined as142

ϕ(x, t) = (ϕ(x), t). The interleaving distance dI((G, f), (H,h)) is defined as143

dI((G, f), (H,h)) = inf
ε

{there exists an ε-interleaving of (G, f) and (H,h)}.144

It is shown in [31] that the interleaving distance is a pseudometric on the set of isomorphism145

classes of Reeb graphs that takes values in [0,∞]. Additionally, the interleaving distance is146

zero if and only if the two Reeb graphs are isomorphic.147

▶ Proposition 4 ([31, Proposition 4.6]). Let (G, f) and (H,h) be two Reeb graphs. Then

dI((G, f), (H,h)) = 0

if and only if (G, f) is isomorphic to (H,h).148

Note that the smoothing can also be applied to the ambient space directly, that is, we149

consider Sε(X, f) = X × [−ε, ε]/ ∼fε
where fε : X × [−ε, ε] → R is defined as fε(x, t) =150

f(x) + t. Indeed, the above smoothing construction is discussed in [31, Definition 4.19], and151

this construction is naturally isomorphic to the one used in Definition 2 (in the sense of152

category theory) as shown in [31, Theorem 4.21]; see also Lemma 24, where we prove this153

result in the general context of Reeb spaces. This fact allows the following construction of154

interleaving maps between Reeb graphs.155

▶ Proposition 5. Let (X, f) and (Y, g) be two R-spaces. Then R(X, f) and R(Y, g) are ϵ-156

interleaved if there are function preserving maps ϕ : X → Y × [−ε, ε] and ψ : Y → X× [−ε, ε]157

such that the following diagram commutes:158

R(X, f) R(X × [−ε, ε], fε) R(X × [−2ε, 2ε], f2ε)

R(Y, g) R(Y × [−ε, ε], gε) R(Y × [−2ε, 2ε], g2ε)

Tε[ϕ̃]ϕ̃

ψ̃ Tε[ψ̃]
159

where Tε[ϕ̃] is the map induced by Tε[ϕ] : X × [−ε, ε] → Y × [−2ε, 2ε] defined as

Tε[ϕ](x, t) = (Pr1(ϕ(x)),Pr2(ϕ(x)) + t).

We use Pr1 and Pr2 to denote the projection maps from Y ×[−ε, ε] to Y and [−ε, ε] respectively.160

Finally, we present the following stability result of Reeb graphs R(X, f) and R(X, g) that161

are built from the same ambient space X.162

▶ Theorem 6 ([31, Theorem 4.4]). Let R(X, f) and R(X, g) be two Reeb graphs built from163

the same ambient space X. Then the interleaving distance defined in Definition 3 satisfies164

dI(R(X, f), R(X, g)) ≤ ∥f − g∥∞.165
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The Reeb space [35] is a natural generalization of the Reeb graph to a multiparameter166

function f : X → Rd. Again, we will assume that X and f are regular enough (e.g. they167

induce a constructible cosheaf [30]).168

▶ Definition 7 (Reeb space). For any continuous Rd-valued functions f : X → Rd, the Reeb169

space R(X, f) := X/∼f is a quotient space of X obtained by identifying points that belong to170

the same connected component of the level set f−1(c) for any c ∈ Rd.171

As in the case of the Reeb graph, the multiparameter function f also induces a continuous172

function f̃ : R(X, f) → Rd on the Reeb space R(X, f) by f̃([x]) = f(x) for any x ∈ X. For173

two Reeb spaces R(X, f) and R(Y, g), a map ϕ : X → Y is function preserving if f = g ◦ ϕ.174

Then the function preserving map ϕ induces a map ϕ̃ : R(X, f) → R(Y, g) on the Reeb175

spaces by ϕ̃([x]) = [ϕ(x)] for any x ∈ X. With an abuse of notation, similar to the Reeb176

graph, we also use the notation (G, f) to denote a Reeb space in Section 6.177

4 Background on Measure-Theoretic Concepts178

We review measure-theoretic concepts, in particular, the Wasserstein distance between two179

probability measures on a metric space that originates from optimal transport. We refer the180

readers to [57] for more details on the Wasserstein distance. We also discuss distance to a181

measure [26, 19] and kernel distance [51, 47] important for robust structural inference.182

▶ Definition 8 (Metric measure space [52]). A metric measure space is a triple (X, dX , µ)183

where (X, dX) is a metric space and µ is a probability measure on the Borel σ-algebra of X.184

Here, we require that the metric space (X, dX) is complete and separable, and the measure185

µ is a locally finite (Borel) probability measure. For simplicity, we use X to denote a metric186

space (X, dX), and (X,µ) for a metric measure space, when dX is obvious from the context.187

▶ Definition 9 (2-Wasserstein distance). Let (X, dX) be a metric space and µ, ν be two188

probability measures on X. The 2-Wasserstein distance between µ and ν is defined as189

W2(µ, ν) = inf
π∈Π(µ,ν)

(∫
X×X

dX(x, y)2dπ(x, y)
)1/2

,190

where Π(µ, ν) is the set of all probability measures on X ×X with marginals µ and ν.191

The distance to a measure function is introduced in [19] and it serves as a robust192

enhancement for geometric inference.193

▶ Definition 10 (Distance to a measure [19, Definition 1.1]). Let (X,µ) be a metric measure194

space and let m ∈ (0, 1] be a mass parameter. We define the distance to a measure function195

dµ,m : X → R as196

dµ,m : x ∈ X 7→

√
1
m

∫ m

0
δ2
µ,s(x)ds,197

where δµ,s is defined as δµ,s : x ∈ X 7→ inf{r > 0 | µ(B̄(x, r)) > s} and B̄(x, r) denotes the198

closed ball of radius r centered at x.199

The distance to a measure function satisfies the following stability property:200
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▶ Theorem 11 ([19, Theorem 3.3] for Rn; [18, Proposition 3.14] for general metric spaces). Let201

µ and ν be two probability measures on a metric space (X, dX) and let m ∈ (0, 1] be a mass202

parameter. Then: ∥dµ,m − dν,m∥∞ ≤ 1√
m
W2(µ, ν), where W2(µ, ν) is the 2-Wasserstein203

distance between µ and ν.204

The kernel distance to a measure, as introduced in [47], also offers an alternative robust205

enhancement for geometric inference. It is closely related to the kernel density estimation206

from statistics. We generalize this definition from Rn to general topological spaces by utilizing207

the notion of integrally strictly positive definite kernel functions [51].208

▶ Definition 12 (Integrally strictly positive definite kernel function, [51]). Let X be topological209

space. A (Borel) measurable function K : X ×X → R is called an integrally strictly positive210

definite kernel function if for all finite signed Borel measures µ on X, there is211 ∫
X×X

K(x, x′)dµ(x)dµ(x′) > 0.212

Examples include the Gaussian kernel function K(x, x′) = exp(−∥x− x′∥2/2σ2), σ > 0213

on Rn, and certain period function K(x, x′) = expα cos(x−x′) cos(α sin(x− x′)), 0 < α ≤ 1 on214

the circle S1 (See Section 3.3 of [51] for details). It is shown in [51] that Defn. 12 allows us215

to define a metric on the set of probability measures on X.216

▶ Definition 13 (Kernel distance, [51, 47]). Let X be a topological space. Let µ and ν be two217

probability measures on X. Let K be an integrally strictly positive definite kernel function.218

Then the kernel distance DK between µ and ν is defined as219

DK(µ, ν) :=
√
κ(µ, µ) + κ(ν, ν) − 2κ(µ, ν),220

where κ(µ, ν) is defined as κ(µ, ν) :=
∫
X×X K(x, x′)dµ(x)dν(x′).221

▶ Theorem 14 ([51, Theorem 7]). Let X be a topological space. Let µ and ν be two probability222

measures on X. Let K be an integrally strictly positive definite kernel function. Then DK is223

a metric on the set of probability measures on X.224

The kernel distance (Definition 13) is utilized in [47] to define the kernel distance to a225

measure by considering the kernel distance between a measure and the Dirac delta measure226

at a point. We make a slight generalization of the definition to general topological spaces.227

▶ Definition 15 (Kernel distance to a measure, [47]). Let µ be a probability measure on228

a topological space X. Let K be an integrally strictly positive definite kernel function.229

Then the kernel distance Dµ,K with respect to µ is a function Dµ,K : X → R defined as230

Dµ,K(x) = DK(µ, δx), where δx is the Dirac delta measure at x.231

Applying the triangle inequality for the kernel distance, we obtain the following stability232

result of the kernel distance to a measure function.233

▶ Theorem 16 (Stability of kernel distance to a measure, [47]). Let µ and ν be two probability234

measures on a topological space X. Let K be an integrally strictly positive definite kernel235

function. Then ∥Dµ,K −Dν,K∥∞ ≤ DK(µ, ν), where DK(µ, ν) is the kernel distance between236

µ and ν.237
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5 Reeb Graphs for Metric Measure Spaces238

With the ingredients from Section 3 and Section 4, we now introduce Reeb graphs for metric239

measure spaces that are robust to noise in the domain. We achieve this by utilizing the240

smoothing operation and using either the distance to a measure [19] or the kernel distance to241

a measure [47] to define a measure-aware local smoothing factor. We first introduce a Reeb242

graph with local smoothing and prove its stability with respect to the interleaving distance.243

We then prove the stability of Reeb graphs with respect to the measure, defined using the244

distance to a measure and the kernel distance to a measure, respectively.245

▶ Definition 17 (Reeb graph with local smoothing). Let (X, f) be a R-space. Let r : X → R246

be a bounded positive function on X with M := supx∈X r(x). The function r is viewed as a247

local smoothing factor. Let Xr denote the space Xr = {(x, t) ∈ X × [−M,M ] | |t| ≤ r(x)}.248

Then the function f naturally extends to a function fr on Xr by fr(x, t) = f(x) + t. We249

define the r-smoothed Reeb graph of (X, f) to be the Reeb graph R(Xr, fr).250

The standard Reeb graph smoothing is a special case of local smoothing where r is a251

constant function. The choice of r can be either the distance to measure function dµ,m252

or the kernel distance to a measure function Dµ,K . We will call them the distance to a253

measure smoothed Reeb graph and the kernel distance smoothed Reeb graph, denoted as254

R(Xdµ,m
, fdµ,m

) and R(XDµ,K
, fDµ,K

) respectively.255

We have the following stability result regarding the local smoothing of Reeb graphs.256

▶ Lemma 18 (Stability of locally smoothed Reeb graph). Let X be a topological space and257

f be a function on X. Additionally, let r1 and r2 be two bounded positive function on X258

with ε := supx∈X |r1(x) − r2(x)|. Then the r1-smoothed Reeb graph R(Xr1 , fr1) and the259

r2-smoothed Reeb graph R(Xr2 , fr2) are ε-interleaved.260

Proof. According to Proposition 5, we need to show the existence of maps ϕ and ψ such261

that the following diagram commutes:262

R(Xr1 , fr1) R(Xr1 × [−ε, ε], fr1,ε) R(Xr1 × [−2ε, 2ε], fr1,2ε)

R(Xr2 , fr2) R(Xr2 × [−ε, ε], fr2,ε) R(Xr2 × [−2ε, 2ε], fr2,2ε)

ηr1 ηr1,ε

Tε[ϕ]

ηr2,εηr2

ϕ

ψ Tε[ψ]

263

In the above diagram, we use the notation fr1,ε to denote the function Xr1 × [−ε, ε] → R264

defined as fr1,ε(x, t) = fr1(x) + t. We define fr2,ε, fr1,2ε, and fr2,2ε in a similar manner.265

Now, let us introduce the maps ϕ and ψ. We use the pair (x, t) to represent a point in266

Xr1 and the pair ((x, t), t′) to represent a point in Xr1 × [−ε, ε] or Xr1 × [−2ε, 2ε].267

For any r > 0, we define the r-parameterized projection map πr : R → [−r, r] as268

πr(t) = arg min
−r≤t′≤r

|t− t′|.269

Recall r1 and r2 are bounded positive functions on X. We now define the map ϕ : Xr1 →270

Xr2 × [−ε, ε] as ϕ : (x, t) 7→
(
(x, πr2(x)(t)), t− πr2(x)(t)

)
. We want to prove that the map271

ϕ preserves the function value, i.e., fr1 = fr2,ε ◦ ϕ for all (x, t) ∈ Xr1 . Indeed, for any272

(x, t) ∈ Xr1 , we have273

fr2,ε(ϕ(x, t)) = fr2

(
x, πr2(x)(t)

)
+ t− πr2(x)(t) = f(x) + t = fr1(x, t).274
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We define the map ψ : Xr2 → Xr1 × [−ε, ε] as ψ : (x, t) 7→
(
(x, πr1(x)(t)), t− πr1(x)(t)

)
. By275

a similar proof as above, we can show that the map ψ preserves the function value, i.e.,276

fr2 = fr1,ε ◦ ψ for all (x, t) ∈ Xr2 . We define ηr1 to be the inclusion map ηr1 : Xr1 →277

Xr1 × [−ε, ε], that is, ηr1(x, t) = ((x, t), 0). Additionally, let ηr1,ε be the natural inclusion278

map Xr1 × [−ε, ε] → Xr1 × [−2ε, 2ε], and the maps ηr2 and ηr2,ε are defined similarly. It279

is straightforward to see that ηr1 , ηr1,ε, ηr2 , ηr2,ε are all function preserving maps. Then we280

have the following diagram with all the maps preserving function values:281

(Xr1 , fr1) (Xr1 × [−ε, ε], fr1,ε) (Xr1 × [−2ε, 2ε], fr1,2ε)

(Xr2 , fr2) (Xr2 × [−ε, ε], fr2,ε) (Xr2 × [−2ε, 2ε], fr2,2ε)

ηr1 ηr1,ε

Tε[ϕ]

ηr2,εηr2

ϕ

ψ Tε[ψ]

282

Since each map preserves function values, we obtain a diagram about maps between Reeb283

graphs induced by the maps between the spaces in the diagram above. To conclude the proof,284

it suffices to show that the induced diagram between Reeb graphs commutes. We use the285

notation [φ] to denote the induced map between Reeb graphs for any map φ between spaces.286

By symmetry, it suffices to show287

(i) [Tε[ϕ]] ◦ [ηr1,ε] = [ηr2,ε] ◦ [ϕ], as maps between R(Xr1 , fr1) and R(Xr2 × [−2ε, 2ε], fr2,2ε).288

(ii) [Tε[ψ]] ◦ [ϕ] = [ηr1,ε] ◦ [ηr1 ] , as maps between R(Xr1 , fr1) and R(Xr1 × [−2ε, 2ε], fr1,2ε).289

For item (i), let (x, t) ∈ Xr1 , we have290

(Tε[ϕ] ◦ ηr1,ε)(x, t) = (Tε[ϕ])((x, t), 0) = (Pr1(ϕ(x, t)),Pr2(ϕ(x, t)) + 0)291

= ϕ((x, t)) = ηr2,ε ◦ ϕ(x, t),292

where Pr1 and Pr2 are the projection maps from Xr1 × [−ε, ε] to Xr1 and [−ε, ε], respectively.293

For item (ii), let (x, t) ∈ Xr1 , we have294

(Tε[ψ] ◦ ϕ)(x, t) = (Tε[ψ])((x, πr2(x)(t)), t− πr2(x)(t))295

= (Pr1(ψ((x, πr2(x)(t)), t− πr2(x)(t))),Pr2(ψ((x, πr2(x)(t)), t− πr2(x)(t))) + t− πr2(x)(t)).296

Note that ψ((x, πr2(x)(t))) = ((x, πr1(x) ◦ πr2(t)), πr2(x)(t) − πr1(x) ◦ πr2(t)). Since |t| ≤ r1(x)297

and |πr2(x)(t)| ≤ t, |πr2(x)(t)| ≤ r1(x), consequently, πr1(x) ◦ πr2(t) = πr2(x)(t). Therefore,298

ψ((x, πr2(x)(t))) = ((x, πr2(x)(t)), 0).299

Thus, we have300

(Tε[ψ] ◦ ϕ)(x, t)301

= (Pr1(ψ((x, πr2(x)(t)), t− πr2(x)(t))),Pr2(ψ((x, πr2(x)(t)), t− πr2(x)(t))) + t− πr2(x)(t))302

= (Pr1((x, πr2(x)(t)), 0),Pr2((x, πr2(x)(t)), 0) + t− πr2(x)(t))303

= ((x, πr2(x)(t)), t− πr2(x)(t))304

Note that ηr1,ε ◦ ηr1(x, t) = ((x, t), 0) and hence the images of Tε[ψ] ◦ ϕ and ηr1,ε ◦ ηr1305

are not necessarily the same maps. However, when we pass down to the Reeb graph306

R(Xr1 × [−2ε, 2ε], fr1,2ε), the induced maps from (Tε[ψ] ◦ ϕ) and (ηr1,ε ◦ ηr1) agree with each307

other. Indeed, note that the path γ : [0, 1] → Xr1 × [−2ε, 2ε] defined by308

γ : s 7→ ((x, πr2(x)(t) + s(t− πr2(x)(t))), (1 − s)t− πr2(x)(t))309
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satisfies γ(0) = ((x, πr2(x)(t)), t − πr2(x)(t)) = (Tε[ψ] ◦ ϕ)(x, t) and γ(1) = ((x, t), 0) =310

(ηr1,ε ◦ ηr1)(x, t). Additionally, fr1,2ε is a constant function on the path γ and hence311

(Tε[ψ] ◦ ϕ) and (ηr1,ε ◦ ηr1) are the same maps from R(Xr1 , fr1) to R(Xr1 × [−2ε, 2ε], fr1,2ε).312

This completes the proof. ◀313

Now we are ready to prove the stability result of the dµ,m-smoothed Reeb graph and the314

Dµ,K -smoothed Reeb graph with respect to a pair of measures µ and ν; see a full version of315

the paper [58] for proofs using triangle inequalities.316

▶ Theorem 19 (Stability of dµ,m-smoothed Reeb graph). Let (X, dX , µ) and (X, dX , ν) be317

two metric measure spaces and f, g : X → R be two continuous functions. Let m ∈ (0, 1] be a318

mass parameter. Then we have319

dI(R(Xdµ,m
, fdµ,m

), R(Xdν,m
, gdν,m

)) ≤ ∥f − g∥∞ + 1√
m
W2(µ, ν).320

Similarly, for a topological space X with an integrally strictly positive definite kernel321

function K, we can obtain a similar stability result for the Dµ,K-smoothed Reeb graph.322

▶ Theorem 20 (Stability of Dµ,K-smoothed Reeb graph). Let X be a topological space. Let323

µ and ν be two probability measures on X. Let K be an integrally strictly positive definite324

kernel function on X. Consider two continuous functions f, g : X → R. Then we have325

dI(R(XDµ,K
, fDµ,K

), R(XDν,K
, gDν,K

)) ≤ ∥f − g∥∞ +DK(µ, ν).326

▶ Example 21. We use an example in Figure 3 to demonstrate the dµ,m-smoothed Reeb332

graphs (top) and Dµ,K-smoothed Reeb graph with Gaussian kernel function (bottom),333

respectively. Our original space X consists of one large loop containing two small loops α and334

β, where α is slightly bigger than β. Since the measure based on Dµ,K considers the larger335

loop α on the bottom left corner to be more important, the Dµ,K-smoothed Reeb graph336

retains α at a larger µ value. On the other hand, the measure based on dµ,m emphasizes the337

significance of the smaller loop β on the upper right corner, the dµ,m-smoothed Reeb graph338

thus retains β at a larger µ value.339

6 Reeb Spaces for Metric Measure Spaces340

The stability results in Section 5 extends to the setting of Reeb spaces for metric measure341

spaces. In this section, we use R(X, f) to denote the Reeb space of a multiparameter function342

f : X → Rd. We assume that the topological space X and the resulting Reeb space R(X, f)343

are compact and Hausdorff. The smoothing and hence the notion of interleaving distance of344

Reeb graph is extended to Reeb space in [44] through categorical language. In this section,345

we focus on a geometric approach for smoothing a Reeb space. All proofs in this section are346

given in the full version of the paper [58]. We first introduce the following notations. Let347

Iε := {t ∈ Rd | |t|∞ ≤ ε} be the ℓ∞ ball of radius ε centered at the origin, it serves as a348

higher-dimensional analogue of the 1-dimensional interval.349

▶ Definition 22 (Smoothing of Reeb space). Let (G, f) be a Reeb space. For any ε > 0, the350

ε-smoothing Sε(G, f) of (G, f) is a Reeb space R(G× Iε, fε) where fε : G× Iε → Rd is the351

continuous function defined by fε(x, t) = f(x) + t for any (x, t) ∈ G× Iε.352

We now define a geometric notion of interleaving distance between Reeb spaces.353
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Figure 3 Smoothed Reeb graphs based on distance to a measure (top) and kernel distance
to a measure Dµ,K (bottom) with Gaussian kernel function. From left to right: (a) the original
topological space X colored by a bounded positive function (e.g., dµ,m or Dµ,K) on X; (b) the
(locally) thickened spaces with a small µ value together with (c) the dµ,m-smoothed Reeb graph
(top) and the Dµ,K -smoothed Reeb graph (bottom); (d)-(e): similar to (b)-(c) with a large µ value.
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▶ Definition 23 (Interleaving distance between Reeb spaces). For any ε > 0, an ε-interleaving354

between two Reeb spaces (G, f) and (H,h) is a pair of maps, ϕ : (G, f) → Sε(H,h) and355

ψ : (H,h) → Sε(G, f) such that the diagram356

(G, f) Sε(G, f) S2ε(G, f)

(H,h) Sε(H,h) S2ε(H,h)

Sε[ϕ]ϕ

ψ Sε[ψ]
357

commutes, where Sε[ϕ] is the map induced by Φ : G × Iε → Sε(H,h) × Iε defined as358

Φ(x, t) = (ϕ(x), t). The interleaving distance dI((G, f), (H,h)) is defined as359

dI((G, f), (H,h)) = inf
ε

{there exists an ε-interleaving of (G, f) and (H,h)}.360

Suppose the Reeb space R(X, f) is induced by a continuous function f : X → Rd. Then361

the ε-smoothing Sε(R(X, f), f̃) is the same as the Reeb space induced by the continuous362

function fε : X × Iε → Rd on X × Iε defined by fε(x, t) = f(x) + t for any (x, t) ∈ X × Iε.363

Indeed, we have the following lemma.364
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▶ Lemma 24. Let R(X, f) be a Reeb space induced by a continuous function f : X → Rd. Let365

R(X×Iε, fε) be the Reeb space induced by the continuous function fε : X×Iε → Rd on X×Iε366

defined by fε(x, t) = f(x) + t for any (x, t) ∈ X × Iε. Then there exists a homeomorphism367

from Sε(R(X, f)) to R(X × Iε, fε) that preserves function values.368

As a direct consequence, we have the following extension of Proposition 5 to Reeb spaces.369

▶ Proposition 25. Let R(X, f) and R(Y, g) be two Reeb spaces induced by continuous370

functions f : X → Rd and g : Y → Rd respectively. Then R(X, f) and R(Y, g) are ε-371

interleaved if there are function preserving maps ϕ : X → Y × Iε and ψ : Y → X × Iε such372

that the following diagram commutes:373

R(X, f) R(X × Iε, fε) R(X × I2ε, f2ε)

R(Y, g) R(Y × Iε, gε) R(Y × I2ε, g2ε)

Tε[ϕ̃]ϕ̃

ψ̃ Tε[ψ̃]
374

where Tε[ϕ̃] is the map between Reeb graphs induced by Tε[ϕ] : X × Iε → Y × I2ε defined as

Tε[ϕ](x, t) = (Pr1(ϕ(x)),Pr2(ϕ(x)) + t).

Here, we use Pr1 and Pr2 to denote the projection maps from Y ×I2ε to Y and I2ε respectively.375

As in the case of Reeb graph, we have the following stability result for Reeb spaces built376

from the same space with multiparameter functions; see the full version of the paper [58] for377

the proof.378

▶ Theorem 26. Let f, g : X → Rd be two bounded continuous functions on X. Then the379

Reeb spaces R(X, f) and R(X, g) are (∥f − g∥∞)-interleaved.380

With the smoothing of Reeb space, we can also define the Reeb space with local smoothing381

which in turn allows us to define Reeb spaces for metric measure spaces.382

▶ Definition 27 (Reeb space with local smoothing). Let f : X → Rd be a continuous383

function on X. Additionally, let r : X → R be a bounded positive function on X with384

M := supx∈X r(x). The function r is viewed as a local smoothing factor. We use Xr to385

denote the space Xr = {(x, t) ∈ X × [−M,M ]d | |t| ≤ r(x)}. Then the function f naturally386

extends to a function fr on Xr by fr(x, t) = f(x) + t. We then defined the r-smoothed Reeb387

space of (X, f) to be the Reeb space R(Xr, fr).388

As in the case of Reeb graph, for a metric measure space (X, d, µ) with Rd-valued function389

f , we can define the distance to a measure smoothed Reeb graph R(Xdµ,m
, fdµ,m

) and the390

kernel distance smoothed Reeb graph R(XDµ,K
, fDµ,K

) by using dµ,m and Dµ,K as the local391

smoothing factor r in Definition 27.392

By considering the variable t belonging to Iε instead of t ∈ [−ε, ε], the exact same proof393

of Lemma 18 can be extended to the Reeb space with local smoothing. That is, the Reeb394

space with local smoothing is stable with respect to the local smoothing factor r. Therefore,395

we have the following stability result for Reeb space with local smoothing. The proof is396

identical to the proof of Lemma 18 by simply viewing the parameter t as an element in Rd397

instead of R.398
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▶ Lemma 28. Let (X, d, µ) be a metric measure space and f : X → Rd be a continuous399

function. Let r1, r2 : X → R be two bounded positive functions on X with ϵ := supx∈X |r1(x)−400

r2(x)|. Then the Reeb spaces R(Xr1 , fr1) and R(Xr2 , fr2) are ϵ-interleaved.401

Likewise, we have the following stability results for Reeb space with local smoothing with402

respect to functions dµ,m and Dµ,K .403

▶ Theorem 29. Let (X, dX , µ) and (X, dX , ν) be two metric measure spaces. Let f, g : X →404

Rd be two continuous functions. Let m ∈ (0, 1] be a mass parameter. Then we have405

dI(R(Xdµ,m
, fdµ,m

), R(Xdν,m
, gdν,m

)) ≤ ∥f − g∥∞ + 1√
m
W2(µ, ν).406

▶ Theorem 30. Let (X, dX , µ) and (X, dX , ν) be two metric measure spaces. Let K be an407

integrally strictly positive definite kernel function on X. Let f, g : X → Rd be two continuous408

functions. Let m ∈ (0, 1] be a mass parameter. Then we have409

dI(R(XDµ,K
, fDµ,K

), R(XDν,K
, gDν,K

)) ≤ ∥f − g∥∞ +DK(µ, ν).410

7 Range-Integrated Reeb Graphs411

Our extension of Reeb graphs to metric measure spaces needs not to be limited to measures412

defined on the domain of the function. We now extend the Reeb graph construction so413

that it respects a measure µ on the range of a function. For instance, µ may capture the414

importance of a feature and we would like to understand how µ transforms the shape of a415

Reeb graph. Let X be a topological space and f : X → R be a continuous function. Let µ be416

a probability measure on R. The cumulative distribution function (CDF) of µ is defined as417

Fµ(x) := µ((−∞, x]) =
∫ x

−∞
dµ.418

Therefore, a natural way to adapt the Reeb graph construction when its range comes with a419

measure µ is to consider the Reeb graph of the function Fµ ◦ f . We assume the function420

Fµ ◦ f is regular so that the Reeb graph R(X,Fµ ◦ f) is a finite graph.421

▶ Definition 31 (Range-integrated Reeb graph). Let X be a topological space and f : X → R422

be a continuous function. Let µ be a probability measure on R whose CDF Fµ is continuous.423

Then the range-integrated Reeb Graph of f with respect to µ is defined to be the Reeb graph424

of Fµ ◦ f , denoted as R(X,Fµ ◦ f).425

We provide in Figure 4 an example of the Reeb graph that respects a measure on the range426

of the function. The intuition behind a range-integrated Reeb graph is that a measure µ on427

the range enables the vertical scaling (stretching/shrinking) of a Reeb graph according to µ,428

which subsequently emphasizes certain topological features according to µ.429

In the following, we show that the above construction is stable. To this end, we utilize432

the Kolmogorov-Smirnov distance between two probability measures on R.433

▶ Definition 32 (Kolmogorov-Smirnov distance). Let µ and ν be two probability measures on434

R. Then the Kolmogorov-Smirnov (KS) distance dKS between µ and ν is defined as435

dKS(µ, ν) := sup
x∈R

|Fµ(x) − Fν(x)|.436

SoCG 2024



XX:14 Measure-Theoretic Reeb Graphs

Figure 4 Visualization of a Reeb graph R(X, f) (left) and a range-integrated Reeb Graph
R(X, Fµ ◦ f) (right) respectively.

430

431

Recall that the Lipschitz constant of a function f : R → R is defined as Lip(f) :=437

supx,y∈R
|f(x)−f(y)|

|x−y| . Then we have the following stability result whose proof, as well as438

other omitted proofs, can be found in the full version of the paper [58].439

▶ Proposition 33. Let X be a topological space and f, g : X → R two continuous functions.440

Let µ, ν be two probability measures on R with continuous CDF Fµ, Fν respectively. Then we441

have the following inequality:442

dI(R(X,Fµ ◦ f), R(X,Fν ◦ g)) ≤ min {dKS(µ, ν) + Lip(Fµ)||f − g||∞,443

dKS(µ, ν) + Lip(Fν)||f − g||∞, 1} .444

Specifically, when µ approaches ν and f approaches g, the above inequality implies that the445

interleaving distance between R(X,Fµ ◦ f) and R(X,Fν ◦ g) approaches to zero.446

Let X be a manifold with a Morse function f . Then the nodes of the Reeb graph R(X, f)447

are the critical points of f , i.e., the points x ∈ X such that the gradient ∇f(x) = 0. Under448

some mild conditions, the range-integrated Reeb graph R(X,Fµ ◦ f) rescales the Reeb graph449

R(X, f) according to the measure µ on the range of f as in the following proposition.450

▶ Proposition 34. Let X be a manifold and f : X → R be a Morse function. Let µ be a451

probability measure on R. If the following conditions hold:452

1. The measure µ admits a continuously differentiable density function pµ with respect to453

the Lebesgue measure λ on R, that is, µ(A) =
∫
A
pµdλ for any Borel set A ⊂ R;454

2. The image of f is contained in the interior of the support of µ, that is, for any x ∈ X,455

pµ(f(x)) > 0.456

Then the composition Fµ ◦ f is Morse and the critical points of Fµ ◦ f are the same as the457

critical points of f with corresponding critical values being pµ(f(x)) for each critical point x458

of f . Furthermore, for each critical point x of f , the Hessian of Fµ ◦ f at x has the same459

number of positive and negative eigenvalues as the Hessian of f at x.460

Since the topology of the Reeb graph R(X, f) is determined by the critical points of f and461

the index of the Hessian of f at each critical point, the above proposition implies that the462

range-integrated Reeb graph R(X,Fµ ◦ f) maintains the same topology as R(X, f) (under463

certain conditions) and only stretches/shrinks the Reeb graph R(X, f) according to the464

measure µ. In Figure 4, we present a visualization of a comparison between the Reeb graph465

R(X, f) and the range-integrated Reeb graph R(X,Fµ ◦ f) in the setting of Proposition 34.466
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8 Range-Integrated Reeb Spaces467

In this section, we extend the range-integrated Reeb Graph construction to Reeb spaces. Let468

µ be a probability measure on Rd. For 1 ≤ i ≤ d, denote by πi the projection from Rd to R469

along the i-th coordinate, where πi(x1, . . . , xd) = xi. The marginal distribution of µ along470

the i-th coordinate, µi, is given by µi(B) = µ(π−1
i (B)) for any Borel set B ⊂ R.471

▶ Definition 35 (Range-integrated Reeb space). Let X be a topological space and f : X → Rd472

be a continuous function. Let µ be a probability measure on Rd such that the CDF Fµi
of473

µi is continuous for each 1 ≤ i ≤ d. We define the coordinate-wise CDF Fµ of µ as follows:474

Fµ : Rd → Rd as Fµ(x1, . . . , xd) = (Fµ1(x1), . . . , Fµd
(xd)), where Fµi

is the CDF of µi.475

Then, the range-integrated Reeb space of f with respect to µ is defined to be the Reeb space476

of Fµ ◦ f , denoted as R(X,Fµ ◦ f).477

Following the same intuition as in the case of range-integrated Reeb graphs, the above478

construction enables stretching/shrinking of a Reeb space according to a measure µ on the479

range of a function f . We will show the stability of the range-integrated Reeb space in the480

following proposition whose proof can be found in the full version of the paper [58].481

▶ Proposition 36. Let X be a topological space and f, g : X → Rd two continuous functions.482

Let µ, ν be two probability measures on Rd such that their coordinate-wise CDFs Fµ, Fν are483

continuous. Then we have the following inequality:484

dI(R(X,Fµ ◦ f), R(X,Fν ◦ g)) ≤ min
{

Lip(Fµ)||f − g||∞ + max
1≤i≤d

{dKS(µi, νi)},485

Lip(Fν)||f − g||∞ + max
1≤i≤d

{dKS(µi, νi)}, 1
}
.486

where the Lipschitz constant of a vector valued fucntion f : Rd → Rd is defined with respect487

to the ℓ∞ norm, that is, Lip(f) := supx,y∈Rd
∥f(x)−f(y)∥∞

∥x−y∥∞
.488

9 Conclusion and Discussion489

In this work, we present a novel theoretical framework for Reeb graphs and Reeb spaces,490

utilizing metric measure spaces in either the domain or the range. Our findings demonstrate491

the stability of both Reeb graph and Reeb space constructions against perturbations of492

the function and the measure, thereby offering robust improvements for these topological493

descriptors. Additionally, as one key component of our framework, we define a geometric494

notion of interleaving distance between Reeb spaces that generalizes that of Reeb graphs and495

prove the stability of Reeb spaces with respect to this interleaving distance. Moving forward,496

we will explore the utility of our framework in topological data analysis and visualization. We497

will also study the stability of Reeb graphs using distances between their level set persistence498

diagrams, again in the context of metric measure spaces.499
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