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Abstract—Morse decomposition provides a numerically stable topological representation of vector fields that is crucial for their rigorous

interpretation. However, Morse decomposition is not unique, and its granularity directly impacts its computational cost. In this paper,

we propose an automatic refinement scheme to construct the Morse Connection Graph (MCG) of a given vector field in a hierarchical

fashion. Our framework allows a Morse set to be refined through a local update of the flow combinatorialization graph, as well as the

connection regions between Morse sets. The computation is fast because the most expensive computation is concentrated on a small

portion of the domain. Furthermore, the present work allows the generation of a topologically consistent hierarchy of MCGs, which

cannot be obtained using a global method.

The classification of the extracted Morse sets is a crucial step for the construction of the MCG, for which the Poincaré index is

inadequate. We make use of an upper bound for the Conley index, provided by the Betti numbers of an index pair for a translation

along the flow, to classify the Morse sets. This upper bound is sufficiently accurate for Morse set classification and provides supportive

information for the automatic refinement process. An improved visualization technique for MCG is developed to incorporate the Conley

indices. Finally, we apply the proposed techniques to a number of synthetic and real-world simulation data to demonstrate their utility.

Index Terms—Morse decomposition, vector field topology, upper bound of Conley index, topology refinement, hierarchical refinement.
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1 INTRODUCTION

N UMERICALLY stable topology of vector fields is required

for the rigorous interpretation of the dynamics of the

flow data stemming from a wide variety of engineering

applications such as Computational Fluid Dynamics (CFD),

aerodynamics, tsunami modeling, and automobile and aircraft

design. Conventional (or differential) topology of vector fields

consists of special trajectories which are either points (i.e.

fixed points), loops (i.e. periodic orbits), or curves (i.e. sep-

aratrices). Chen et al. [2] have shown that trajectory-based

topology is sensitive to noise and error introduced during data

acquisition and processing. To overcome this, they advocate

Morse decomposition as a more reliable representation of

vector field topology. The result of the Morse decomposition

of a vector field is an acyclic directed graph called a Morse

Connection Graph (MCG). The nodes of this graph are Morse

sets and the edges show the connectivity (direct flow paths)

between the nodes. The Morse sets in an MCG enclose all

regions of flow recurrence, in particular all periodic orbits

and fixed points of the flow. The connection regions between
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Morse sets envelop separatrices. An MCG may provide a

seemingly coarser topological structure of a vector field than

the trajectory-based topology, such as a vector field skeleton

[14] and Entity Connection Graph (ECG) which consists

of fixed points, periodic orbits and their connectivity [1].

However, the detailed topological structure obtained in the

trajectory-based topology [1], [14] could be the artifact of

the numerical error or noise in the original data. Showing

such detailed but unreliable topology may provide misleading

information (Figure 3, left). On the other hand, the MCG

tends to be more numerically stable than the trajectory-based

topology. This is because both the Morse sets and connection

regions of the MCG are less sensitive to noise and error

than their respective counterparts in trajectory-based topology.

Figure 3 shows the comparison of the stability of MCGs versus

ECGs under different integration schemes in the analysis of a

slice from the diesel engine simulation. We refer the readers

to [1] for a more thorough discussion.

To compute an MCG, we first encode the flow dynamics

into a directed graph. We refer to the graph as FG (Flow

combinatorialization Graph). The nodes of an FG are the

polygonal primitives of the space discretization (e.g., trian-

gles), and the edges indicate the mapping between polygons

with respect to the flow (Figure 5). The Morse sets are the

strongly connected components of the FG. To capture the

accurate dynamics of the flow in FG, Chen et al. introduce

the idea of a τ−map by tracking the image of each polygonal

primitive under the translation by τ along the flow to compute

the mapping between polygons (reviewed in Section 3.1). This

construction is computationally expensive.

The MCG of a vector field is not unique, and the granularity
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Fig. 1: The MCGs of an analytic vector field using the geometry-based method (a), the global computation ((b):τ = 0.1 and (c) τ = 0.2)
and our hierarchical refinement framework ((d): τmax = 0.1 and (e) τmax = 0.2). Our refinement method takes 10.11 seconds for τmax = 0.2,
while the global method uses 22.88 seconds with the same τ value. Note that our refinement method obtains comparable results to the global
method but with a more coherent representation of the topology. This is because the global method re-labels all the Morse sets after each
computation, while our hierarchical refinement modifies only one Morse set (one node of the graph) after each iteration starting from the
MCG shown in (a). In particular, in (d) R3 is obtained from the refinement of A1 in (a), S2 and R2 are from A2 in (a). In (e), R4 and A3 are
the results of refining S2 in (d). In addition, we point out that the MCG in the left visualization (a)-(c) lacks the ability to distinguish between
a source-like Morse set and a periodic orbit-like source Morse set (e.g., R1 and R4). The new Morse set classification and visualization
based on the Conley index provides such information.

of the MCG directly relates to its computational cost, most of

which is spent on computing the image of every polygon in

the domain under the induced flow for a certain time τ using

the τ−map approach. The larger the τ , the finer the MCG

is, but also the more computationally expensive it becomes.

Since an optimal τ value is typically unknown for a given flow,

obtaining a high quality MCG requires several experiments

using increasingly larger τ values which can make such a

procedure computationally intractable in practice. Also, the

results obtained by using different τ values are often hard

to relate to each other because of inconsistent labeling and

an unclear relationship between the respective Morse sets.

Figure 1 (b) and (c) illustrate these challenges.

To address this issue, we propose an efficient Morse de-

composition framework based on a hierarchical refinement

process. In this framework, we first compute an MCG using

the geometry-based method [1] which is fast but coarse.

Next, we enter an iterative process in which a Morse set

in the current MCG is identified and refined through a local

update with increasing τ values. The Morse sets in the refined

region are then incorporated into the original MCG, and the

connection regions between these Morse sets and neighboring

Morse sets are also refined using larger τ values. See Figure 2

for an example. This not only yields substantial acceleration

of performance but also preserves topological consistency

between two successive MCGs (Figure 2). Note that our

refinement process does not increase the resolution of the

mesh.

Another limitation of the existing Morse decomposition

procedure [2] is that it does not provide adequate classification

of the extracted Morse sets. This classification method uses the

flow directions at the boundary of each Morse set to charac-

terize them into source-like, sink-like, and saddle-like regions.

Compared to the ECG [1] (Figure 3, left), this classification

cannot distinguish a Morse set containing a repelling periodic

orbit from that containing a source (e.g. R1 (a source) and R4

(a repelling periodic orbit) in Figure 1(c)).

We use the Conley index, a measure of flow complexity

inside a Morse set, to obtain a more complete classification

of Morse sets (Section 3.2). To reduce expensive computation

associated with the Conley index [15], we propose a simple

and efficient technique to compute an upper bound of the

Conley index given a Morse set. Our experiments show that

this upper bound coincides with the Conley index for most

Morse sets in the example datasets shown in Section 6. The

MCGs augmented with the Conley index information for each

Morse set are shown in Figures 1 (d)(e) and 3 (right). This

visualization allows the user to distinguish between Morse sets

containing different flow features (e.g., R1 and R4 in Figure 1

(e)). Beside Morse set classification, the Conley index can

also be used to guide the aforementioned refinement process

(Section 7) by giving higher priority to Morse sets that contain

complicated dynamics.

Note that during the initial stage of our framework, some

Morse sets from the geometry-based method may contain

multiple flow features but with a trivial Conley index since the

flow features cancel each other and cause the whole Morse set

to behave like a regular flow (i.e. featureless). To overcome the

possible loss of features, we retain all the Morse sets consisting

of more than one triangle even though they may have a trivial

index. This guarantees no loss of features at the beginning of

the refinement because a single triangle with the trivial Conley

index does not contain any flow recurrent feature (due to the

linear constraints of our problem), and thus, can be ignored.

In what follows, we first review the related work on

vector field topology in Section 2. Section 3 provides the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 3

A5

S1

A1

A3

S3

A4
R2

S2

A2

R1

S1

A2

R2
A1

S3

A4

A3

S2

R1

S2

A2

R1

A1

S1

S3

A3
R1

S1

S2

S3

A2

A1

(a) (b) (c) (d)

Fig. 2: An example of hierarchical Morse decomposition of a vector field: (a) MCG obtained from the geometry-based method [1], (b) local
refinement of R1 in (a) with τ = 0.05, (c) local refinement of S1 in (b) with τ = 0.1, and (d) local refinement of S3 in (c) with τ = 0.1. The
meaning of the color coding is provided in Figures 1 and 3. Note that the connection regions (dotted regions) are also refined during the
process. The corresponding MCGs are provided in the bottom row. The information of the Conley index of each Morse set is also visualized
(a)-(d). This provides the user with the detailed classification of the extracted Morse sets (see the important Conley indices in Section 3.2).
Morse set S1 in (a) has trivial Conley index (0,0,0), but further decomposition reveals more features of interest (a saddle, a source, and a
periodic orbit). Therefore, we include it in the constructed MCG (Section 7) for further refinement.

background on Morse decomposition and the Conley index.

In Section 4, we introduce our pipeline of hierarchical Morse

decomposition. Section 5 provides the detail of local updates

needed by the Morse set and connection region refinements.

In Section 6 we describe an efficient algorithm to compute an

upper bound on the Conley index of a Morse set. In Section 7,

this upper bound is used (together with the areas of Morse sets)

to control the Morse decomposition refinement process. The

proposed framework has been applied to a number of synthetic

and engine simulation datasets from industry. The results are

shown and discussed in Section 8, followed by a summary of

the presented work in Section 9.

2 RELATED WORK

This section reviews the related work from vector field visu-

alization and mathematical topology.

2.1 Vector Field Topology

Topological analysis of 2D vector fields has received much

attention since its introduction to the visualization community

by Helman and Hesselink [14]. In terms of fixed point extrac-

tion, Tricoche et al. [35] and Polthier and Preuß [23] present

efficient algorithms to locate fixed points in a vector field.

Scheuermann et al. extend the work on first-order fixed points

to higher-order fixed point analysis using Clifford algebra and

present solutions to higher-order fixed point visualization [26],

[27]. Later, it is shown that more complicated recurrent flow

patterns can be detected, such as periodic orbits. Wischgoll

and Scheuermann are the first to present an algorithm for

detecting periodic orbits in planar flows [37]. This technique

has also been extended to 3D vector fields [38] and time-

dependent flows [39]. Theisel et al. [32] present a mesh

independent approach to compute periodic orbits. Recently,

Chen et al. [1] present efficient algorithms to construct a

more complete topological skeleton of vector fields, the Entity

Connection Graph (ECG) by incorporating periodic orbits.

Later, Chen et al. [2] study the instability of trajectory-based

vector field topology and, for the first time, propose Morse

decomposition for vector field topology computation which

leads to more reliable interpretation of vector field topology.

Reininghaus et al. [25] apply the combinatorial theory of

Forman [10] to study the topology of 2D flows. The combina-

torial topology is defined as the extrema nodes and the paths

that connect them in a simplicial graph (i.e. a combinatorial

vector field) converted from the original flow. In contrast,

Morse decomposition studies a directed graph encoding the

flow mapping between polygonal elements, which is the outer

approximation of the original flow. This guarantees that the

MCG not only contains the more accurate topology but also

tolerates a certain amount of error and uncertainty of the data.

While the present work is closely related to Chen et al.’s

work on Morse decomposition, it is distinct in its hierarchical

refinement framework for Morse decomposition using local

computation that enables faster computation and consistent

topology refinement. Furthermore, we provide an efficient

algorithm to estimate the Conley index for Morse sets, which

is not discussed in [2].

A different approach to Morse decomposition is presented

in [29]. In their method, the input vector field is first ap-

proximated by a piecewise constant (PC) one, i.e. constant

in the interior of every triangle. The Morse decomposition

is computed from the transition graph that represents the

trajectories of the PC vector field. While the PC-based analysis

is more efficient and produces Morse sets of sub-triangle

precision, trajectories of the PC approximation represent a

relatively poor approximation of the true trajectories of the

original system, roughly corresponding to Euler’s method with

step sizes proportional to the grid size. In contrast, the method
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Fig. 3: This figure provides the ECGs [1] (left) and MCGs [2] (right) of a cross section of a diesel engine simulation. This cross section
is cut at the 25% of the length of the cylinder from the top where the intake ports meet the chamber. The images to the left show two
ECGs computed using the Runge-Kutta integration scheme [24] of the second order (RK2) and of the fourth order (RK4), respectively.
The two inlets show the detected periodic orbits under different integration schemes. As can be observed, ECGs are numerically unstable
and can provide misleading information. As a comparison, the MCGs of the same field are computed using RK2 (middle-right) and RK4
(right-most), respectively. Despite the different sizes of the Morse sets in the two MCGs, their topological graphs are identical, indicating
the stable extraction of these features. We refer the readers to [2] for a more detailed discussion.

presented in this paper can work with any integration method

and any step size. Therefore, the results can be expected to be

closer to the true Morse sets for the input vector field.

2.2 Morse-Smale Complex

Morse theory has been introduced by Edelsbrunner et al. [9],

[8] for scalar field topology. In their work, the analysis of

a scalar field is converted to the analysis of the gradient of

the scalar field, which gives rise to a curl-free vector field.

The Morse-Smale complex then decomposes the manifold into

cells (usually quadrilateral) of uniform flow according to the

gradient vector field. Note that this decomposition is equivalent

to the segmentation of the flow domain using the topological

skeleton of vector fields [14] where the obtained cells are

known as a basin. Recent work on the Morse-Smale complex

for the analysis of scalar fields can be found in [12], [13].

Our work on the Morse decompositions of vector fields is

concerned with the extraction of the regions of flow recurrence

containing fixed points and periodic orbits, as well as their

connectivity information (Figure 3). The focus is the reliable

identification of flow recurrence. In contrast to a Morse-Smale

complex which addresses scalar fields (curl-free fields), Morse

decomposition handles general vector fields.

2.3 Multi-scale Processing of Vector Fields

The presented work can be considered as a means of multi-

scale processing of vector fields, an active research topic.

There are two directions in multi-scale processing: refinement

and simplification. While this paper focuses on the refinement

aspect, it is worth reviewing some simplification work on

this topic. One of the earliest investigations on the subject

of topological simplification in visualization was done by De

Leeuw and Van Liere [4]. They make use of a distance metric

to determine the pair of fixed points to be cancelled. In follow-

up work, they perform topological simplification based on an

area metric [6]. These techniques are applied to two important

applications from vector field simulation [5]. Tricoche et

al. [34] present a simplification method that also provides

a piecewise analytic description for the simplified field. In

this way, complementary visualizations such as texture-based

methods [19] may be combined with the visualization result.

This method is later extended to time-dependent 2D flows [36].

Tricoche et al. [35] also present a topological simplification

method very similar to De Leeuw and Van Liere [6]. However,

simplifications are achieved by actually modifying the vectors

of the original underlying data field. Theisel et al. [31] present

an algorithm for compressing vector fields while preserving

their topology. Later, they combine both topological simplifi-

cation and topology preserving compression techniques [30].

Tong et al. [33] propose multi-scale decomposition of a vector

field using Hodge decomposition and then smooth each com-

ponent independently before summing them. Zhang et al. [40]

introduce a framework for fixed point pair cancellation based

on Conley index theory for vector field editing. Chen et al. [1]

extend this idea to include periodic orbits into this framework

and present a more complete pair cancellation scenario. For an

overview of related work on vector field topology, see Laramee

et al. [17].

3 BACKGROUND

In this section, we review the relevant concepts related to

Morse decomposition for completeness.

3.1 Morse Decomposition and Morse Connection

Graph (MCG)

Consider a vector field V on a manifold M whose solution

defines a map ϕ : R×M → M . A trajectory through a point

x0 ∈M is a curve on M that is obtained by solving the initial

value problem ẋ = V (x), x(0) = x0. A Morse decomposition

is a collection of disjoint closed sets (called Morse sets) that



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 5

Flow combina-

torialization

Vector Field V

Surface X, τ 

Morse set

identification
Morse set 

classification

Increase τ  
Need

refinement ?

FALSETRUE E
Done

F MCGM(X, V)
Conley

indices M
MCG

construction

Fig. 4: The MCG computation pipeline using Morse decomposition.
Note that the modules colored in black are the focus in this paper.
More specifically, we introduce the idea of local flow combinatorial-
ization and provide an efficient algorithm for the computation of an
upper bound of the Conley index.

together contain all the recurrent dynamics of the flow induced

by the vector field. More precisely, sets Mi, i ∈ {1,2, . . . ,N}
form a Morse decomposition if and only if the trajectory of

any point is either (i) entirely contained in one of the Morse

sets or (ii) contained in some Morse set Mi for large enough

negative times and in some other Morse set M j, with j > i,

for large enough positive times. Intuitively, (ii) means that

the trajectory of any point outside the Morse sets can only

move from a set with lower subscript to a set with a higher

subscript. (ii) excludes any recurrent dynamics outside the

Morse sets, making it gradient-like [3]. In practice, the partial

order between Morse sets can be represented as an acyclic

directed graph called a Morse connection graph, or MCG.

An indexing of Morse sets consistent with the above defini-

tion can be obtained from the MCG by means of topological

sort. For the example shown in Figure 2 (a), the Morse sets

forming a Morse decomposition can be M1 = R1, M2 = S1,

M3 = S2, M4 = S3, M5 = A2, M6 = A1. Clearly, the MCG

contains more restrictions on connecting trajectories than

the resulting sequence (linear ordering) of Morse sets and

therefore carries more information about the structure of the

flow.

We now turn to a review of the computation of Morse

decompositions. In this work, the underlying domain is rep-

resented by a triangular mesh. Vector values are defined at

the vertices only, and interpolation is used to obtain values

on the edges and inside triangles. For the planar case, we

use the piecewise linear interpolation method [35]. On curved

surfaces, we borrow the interpolation scheme of Zhang et

al. [40], which guarantees vector field continuity across the

vertices and edges of the mesh. These interpolation schemes

support efficient flow analysis operations on both planes and

surfaces.

Chen et al. [2] describe a pipeline for the computation

of Morse decompositions of the given vector fields. In this

pipeline, the input vector field is first converted into a directed

graph (i.e. FG), denoted by F , through flow combinatori-

alization. The nodes of F are the individual triangles of

the mesh where the vector field is defined. The directed

edges of F indicate the flow mapping relations between

triangles. For instance, if there is a directed edge T1 → T2,

some particles inside triangle T1 can reach T2 following

the flow. In other words, F encodes the dynamics of the

flow at a combinatorial level. There are two approaches to

compute F : the geometry-based approach [1] and the τ−map

approach [2]. The geometry-based method computes the flow
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Fig. 5: Two approaches to flow combinatorialization: a geometry-
based approach (left) and the τ-map (middle and right). Each node
in the directed graphs corresponds to a triangle of the mesh. The
images of triangle T1 in the right two figures are shown as the red
closures. The set of triangles that intersect with each image of T1 is
referred to as the outer approximation of this image [2]. Note that
the geometry-based method produces an FG which is a super set of
an FG using the τ−map approach. As such, the FG from a τ−map
approach is finer and more accurate than the FG of the geometry-
based method. For instance, the path, colored in green, from T1 to
T21 in the left FG does not reflect the accurate flow map (the right
FG’s). The right two figures also illustrate how an increasing τ value
will make a better approximation of the flow map. The brown dots
(middle figure) are particles enclosed in T1 and advected by the flow.
The gray dots are particles inside the outer approximation (union
of the triangles T2,T3,T4,T8,T9,T10) of the image of T1 over τ1 but
outside of the true image of T1 (the red closure). They represent the
error between the outer approximation and the true image. To obtain
the outer approximation of the image of T1 over τ2 = 2τ1, we can use
the middle FG computed using τ1. This is equivalent to advect the
particles inside the previous approximation (all the gray and brown
dots) over τ1. This leads to the dark gray closure in the right figure.
However, directly tracking the image of T1 over τ2 produces a smaller
set of triangles containing the real image of it (the red closure in the
right), which has smaller error than the one containing the dark gray
closure.

mapping (directed edges) between neighboring triangles by

considering the flow behavior across each triangle edge. In

contrast, the τ−map approach keeps track of the image of each

triangle over a constant time τ to obtain the flow mapping.

Figure 5 illustrates these two approaches. The red curved

closure (Figure 5 right) illustrates the real image IT of T .

The set of triangles that intersect with IT is referred to as the

outer approximation of this image.

Second, the strongly connected components are extracted

from the directed graph F . These strongly connected com-

ponents correspond to the regions enclosing flow recurrence.

The Conley index of each region is computed. Those regions

with non-trivial Conley indices contain the Morse sets of

interest [16]. The strongly connected components consisting

of more than two triangles are also considered, since they

may contain multiple features that cancel each other such that

the flow at the boundary acts like a regular flow. For instance,

in Figure 2 (a), the Conley index of Morse set S1 is trivial.

However, it contains a saddle and a source whose total indices

sum to zero.

Third, each strongly connected component corresponding

to the region with either a non-trivial Conley index or more

than one triangle is collapsed into a single node. This reduces
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the original graph into a quotient graph. From the quotient

graph, the final MCG can be computed through path searching

between these strongly connected components using standard

graph search algorithms.

The complete algorithm of this pipeline is provided in [2].

We point out that Chen et al. do not provide the algorithm

for Conley index computation which will be addressed in this

work. In addition, they do not show the relation between the

connections (dotted regions) of Morse sets and the separatrices

in the differential topology of vector fields. We will provide

such discussion in Section 5.2.

The computation of the Morse decomposition of a vector

field typically requires repeating experiments with different

τ’s according to the user’s requirements before a satisfying

MCG is returned. Figure 4 illustrates such an iterative process.

This manual process can be labor intensive and inconsistent

in the sense that each trial relabels the MCG such that

there is no correspondence of Morse sets between any two

computations. We address this challenge by introducing an

automatic local update scheme for flow combinatorialization

and MCG computation.

3.2 Conley Index

The computation and visualization of MCGs requires the

ability to classify the extracted Morse sets. Chen et al. simply

resort to the direction of the directed edges emanating from

the Morse sets to classify them [2]. The more accurate clas-

sification requires the introduction of a topological descriptor

called the Conley index. In our approach the Conley index

is used to classify Morse sets and identify which Morse sets

need further refinement (Section 7).

(a) (b) (c)

M
M M

L
L

L=Φ

Fig. 6: A number of simple examples of isolating blocks M (shaded
regions) containing (a) a sink (1,0,0), (b) a saddle (0,1,0), and (c)
a repelling periodic orbit (0,1,1). Red lines represent the exit sets L.

Computing the Conley index of a set M is particularly

simple if M is an isolating block, i.e. if every point x on

the boundary of M is an exit point or an entry point. An

entry point is a point x whose trajectory for sufficiently small

negative times (traced in the reversed direction) is outside M.

Similarly, x is an exit point if its trajectory is outside M for all

sufficiently small positive times (traced in the flow direction).

The Conley index of M can be defined as the homology

of the quotient space M/L, where L is the exit set consisting

of all exit points [15]. Intuitively, the quotient space can be

obtained from M by collapsing all points in L into a single

point (e.g. collapsing the two red segments of Figure 6 (b) into

a point). (M,L) is an index pair in the sense of [3]. In what

follows, we represent the Conley index of M as a sequence of

Betti numbers of M/L [7]. Let βk be the k-dimensional Betti

number. We assume that M is a subset of a two-dimensional

manifold surface, a triangulation of M is available, and that L

is a union of boundary edges of M, called exit edges. Thus,

the Conley index has the form of CH∗(M) = (β0,β1,β2) since

other Betti numbers are all zero based on the assumption of

two-dimensional manifolds. More detailed explanation of how

the Betti numbers of a quotient space are computed is provided

in Section 6.

Note that for a 2D flow, β0 and β2 cannot be both positive.

Further, β0,β2 ≤ 1 for an isolated block with one connected

component (e.g., one Morse set). To that end, given the three

Betti numbers of the Conley index, a Morse set can be

classified as follows. If β0 = 1, it is a sink-like Morse set

(colored in red); if β2 = 1, it is a source-like Morse set (colored

in green); otherwise, it is a saddle-like Morse set (colored

in blue) (see Figures 1, 2 and 3). In addition, a number of

fundamental Conley indices in 2D flow analysis are as follows

[1]:

x0 an attracting fixed point (e.g.sink) ⇒ CH∗(x0) = (1,0,0)

x0 a saddle fixed point ⇒ CH∗(x0) = (0,1,0)

x0 a repelling fixed point (e.g.source) ⇒ CH∗(x0) = (0,0,1)

Γ an attracting periodic orbit ⇒ CH∗(Γ) = (1,1,0)

Γ a repelling periodic orbit ⇒ CH∗(Γ) = (0,1,1)

M = /0 ⇒ CH∗(M) = (0,0,0)

From this, we see that the Conley index is a more general

topological descriptor for the characterization of different flow

features than the Poincaré index [35]. Particularly, the Poincaré

index of M is β0 −β1 +β2 [21].

To visualize the Conley index of each detected Morse set

in the MCG, we make the following modification compared

to the MCG visualization used by Chen et al. [2]. Since

β0,β2 can only be either 0 or 1 and have been used to

classify Morse sets, we describe how we visualize the first

Betti number β1. Particularly, we visualize it using concentric

circles. For instance, if β1 = 1, the corresponding Morse set

is visualized as a solid disk with a circle around it (see the

inlet image for an example). Similarly, if β1 = N, there will

be N concentric circles around the solid disk. The color of
(0,1,1)

(1,1,0)

(0,0,1)

(0,2,0)

(1,0,0)

the additional circles is determined by

the type of the Morse set: green for

source-like Morse sets, red for sink-like,

and blue for saddle-like. This improved

visualization of MCG enables the user to

distinguish the periodic orbit like Morse

sets from the source or sink like Morse sets (e.g. the MCG

in Figure 1(e) versus the one in 1(c)). The resulting MCGs

have similar appearance as ECG with one difference being

the visualization of saddles. Specifically, in an ECG saddles

are displayed as blue disks, while in an MCG they are drawn

as blue disks surrounded by a few circles (see the ECGs and

MCGs in Figure 3).

4 PIPELINE OF THE HIERARCHICAL MORSE

DECOMPOSITION

Theory of dynamical systems shows that an isolating neigh-

borhood (a polygonal region under a discrete setting) exists for
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F, MCGM(X, V),
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MCGMM((XX VV))

Geometry-based
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TRUEEND

FALSE

Mi(X, V)

Compute the upper bounds on Conley 

indices and priority values of M(X,V)

Update local FG (Fi) 

of Mi with τ

τ=2τ  

Add Morse sets in M(X,V)  

to priority queue Q

Q is empty ?

Mi

Number of Morse sets

in Mi (X,V)>1 ?

Incorporate MCGi to MCG

TRUE

FALSE

Compute local MCGi of Mi

τmin,τmax (optional)

TTTRUE

τ>τmax

or T(Mi(X,V)) = T(Mi)?

TRUE

FALSE

Compute the upper bounds on Conley 

indices and extract Mi(X,V)

Add Morse sets in Mi(X,V) 

to priority queue Q
Remove Mi 

from Q

τ=max(τmin,  2∗pre_used_τ) for Mi 

Extract strongly connected

components of Fi

Fig. 7: The pipeline of the proposed locally hierarchical refinement
of Morse decompositions of vector fields. Note that the highlighted
modules are the focus in this paper (Section 5 for local refinement,
Section 6 for Conley index computation, and Section 7 for the
computation of the priority values).

each Morse set [16]. In addition, Chen et al. [2] demonstrate

that computing the flow combinatorialization does not require

a constant τ value everywhere in the domain. This leads us

to a local refinement scheme with spatially varying τ values.

Next we describe our pipeline.

First, an MCG is computed from the FG using a geometry-

based flow combinatorialization. We denote the Morse sets in

this MCG as M(X ,V ). Second, we compute an upper bound

of the Conley index of each detected Morse set (Section 6)

as well as a priority value based on this upper bound and the

area of the Morse set (Section 7). Third, all Morse sets are

placed in a priority queue Q. If Q is not empty, we enter an

iterative process.

We remove the top element Mi from Q and set τ = τmin

(τmin can be provided by the user) or 2 × pre used τ , a

previously used value if Mi has been refined before. We then

update the local FG, Fi by conducting a τ−map based flow

combinatorialization with τ within Mi. Next, we extract the

strongly connected components of Fi and identify the Morse

sets Mi(X ,V ) by computing the upper bounds of the Conley

indices of these components. If the number of Morse sets in

Mi(X ,V ) is larger than 1, which means the selected Morse set

is refined, we construct a local MCGi and incorporate MCGi

into MCG and add Mi(X ,V ) into Q . If the number of Morse

sets in Mi(X ,V ) equals 1 and 2τ ≤ τmax (where τmax is a user

specified maximum τ), we set τ = 2τ and proceed as before.

Otherwise, Mi can not be further refined for the given τmax

and will be removed from Q. This refinement process repeats

until Q is empty. Note that in order to allow the refinement

to exhaustively apply the values of τ up to τmax, τmin can be

computed as τmax/2k (k ∈ N).

Figure 7 illustrates this pipeline. The modules colored in

black are the focus of this paper, with the implementation

of local flow combinatorialization provided in Section 5, the

computation of the Conley index discussed in Section 6, and

the computation of the priority value introduced in Section 7.

This pipeline proceeds in a hierarchical fashion and is expected

to produce an MCG (Figure 1 (e)) similar to the one produced

by the previous manual τ-map approach [2] with respect to

a globally applied τ (Figure 1 (c)). More importantly, the

intermediate and final MCGs produced using this pipeline

are guaranteed to be topologically consistent. In contrast,

the MCGs generated with different τ values using a global

computation scheme lack such consistency (Figure 1 (b)(c)).

After refining Morse sets (i.e. regions with flow recurrence),

the connection regions that connect them are similarly refined

(Section 5.2).

5 LOCAL FLOW COMBINATORIALIZATION

The key to our hierarchical Morse decomposition approach

is the ability to locally modify the flow combinatorialization.

In this section, we show that locally updating the FG in

a particular fashion will not affect the flow structure with

respect to MCG outside of the bounded Morse neighborhood

of interest. In addition, the local update scheme can be adapted

to refine the connection regions (the dotted regions in Figures 1

and 2).

5.1 Refine Morse Sets

In this section, we discuss how to refine a Morse set Mi

locally. First, we update the flow combinatorialization graph

F . The update procedure replaces all edges out of every

triangle in Mi by edges computed using a larger τ value.

The new edges are obtained using a function identical to

construct multivaluemap in [2], but only edges out of tri-

angles in Mi are constructed.

Having updated the flow combinatorialization graph, we

are set to refine the Morse decomposition. This is done

by replacing Mi with strongly connected components of the

restriction Fi of the refined flow combinatorialization graph

F to Mi. The set of vertices of Fi consists of triangles in Mi

and the set of edges contains edges of F that start and end

at a triangle in Mi. Clearly, the resulting strongly connected

components are subsets of Mi.

The refinement process works by increasing the accuracy of

the flow combinatorialization graph. To illustrate this, assume

that F1 and F2 are flow combinatorializations for τ and 2τ
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(respectively). For a given triangle ∆, both graphs provide an

upper bound (i.e. the outer approximation) on the image D

of the triangle under translation by time 2τ along the flow.

To obtain an upper bound on D from F1, one can follow

two-edge paths from ∆ in F1 and union the triangles at the

endpoints of these paths. The upper bound provided by F2 is

the union of all endpoints of edges in F2 starting at ∆. The

later bound is generally better (i.e. smaller) than the former

(see Figure 5, middle and right, for an illustration).

Figure 2 provides an example of the MCG refinement using

our local updating scheme. We start from an MCG (left)

which is computed from a flow combinatorialization using

the geometry-based method. Next, we perform a local update

inside the extracted Morse sets with larger τ values. Note that

in addition to the refined Morse sets, the connection regions [2]

between two Morse sets are refined due to the refinement of

the underlying F which we use to compute the connection

region.

5.2 Refine Connection Regions

After refining the Morse sets, we refine the connection regions

between the newly created Morse sets and their original

neighbors in the MCG before refinement. We first review the

computation of connection regions given an FG.

5.2.1 Compute Connection Regions

We are interested in the connections starting from saddle-like

Morse sets. Consider an FG and its Morse sets M(X ,V ). If

M j ∈M(X ,V ) is a saddle-like Morse set, we grow a region R+

from it following the outgoing edges of FG until it reaches

another Morse set Mk(k 6= j). Next, we grow a region R− from

Mk following the outgoing edges of −FG (the inverse graph

of FG). R = R+∩R− is a connection region containing all the

paths connecting M j and Mk. This process continues until we

have identified all the connection regions starting from M j. A

similar process is conducted to take care of the other (both

outgoing and incoming) connection regions from M j.

5.2.2 Connection Region Refinement

While the connection regions can be shown to contain all

connecting trajectories between two Morse sets (Section 10.2),

they tend to be large if computed using the geometry-based

method or a small value of τ , similar to a Morse set gen-

erated using the geometry-based method or a small τ value.

Therefore, we present a refinement technique to improve the

precision of these regions.

Let R be a connection region for two Morse sets M j and

Mk. Recall that R consists of all paths from M j to Mk in a

flow combinatorialization graph FG. The edges of the FG are

obtained using either the geometry-based method or the τ-

map with some positive value of τ . The refinement procedure

removes all edges out of nodes in A := R∪M j ∪Mk and into

nodes in R from FG. These edges are replaced with edges

out of nodes in A into R computed using a larger value of

τ (ideally, larger than the maximum τ used to compute a

removed edge, but this is not required for the containment

property proved in Section 10.2). Let FG′ be the updated

Fig. 8: This figure shows the connection regions before (left) and
after refinement (right).

graph. The region connecting M j and Mk is recomputed

locally, by growing regions out of M j and Mk within R. The

refined connection region R′ is the union of all paths in R

connecting the two Morse sets M j and Mk in the updated graph

FG′.

This connection region refinement can be performed either

during the refinement of Morse sets or after all the Morse

sets have been refined. We elect to do the latter in our

pipeline because of the simplicity of implementation and faster

computation. Figure 8 provides an example comparing the

connection regions before and after refinement.

6 CONLEY INDEX COMPUTATION

As described in Section 3.2, the Conley index is easy to

compute for an isolating block M. Morse sets computed using

the geometry method are isolating blocks [1], but this is not

true for Morse sets computed using the τ-map approach.

However, an upper bound on the Conley index (called an

estimate of the index later on), that tends to be the same as

the index itself, is easy to obtain for such Morse sets.

The construction described here is based on [28]. Let L′ be

a union of edges of M obtained as follows. In order to decide

if an edge e on the boundary of M is contained in L′, take a

triangle T incident upon e (i.e. e is an edge of T ) and outside

M. Edge e is in L′ if and only if there is an edge of FG that

starts at a triangle in M and ends at T . Note that (M,L′) is

not an index pair for the flow, in the sense of Section 3.2.

In particular, one cannot claim that the Conley index is the

same as the Betti numbers of M/L′. However, in Section 10.1

we give a proof that the Betti numbers of M/L′ are an upper

bound for the Betti numbers of the Conley index of the flow

on Morse set M.

An example is shown in Figure 9. Consider a boundary

edge e1 shared by triangles T1 ∈ M and T9 /∈ M. There is no

directed edge pointing from a triangle in M into T9. Edge

e1 is not contained in L′. Now consider edge e3 and triangle

T11 /∈ M. There is a directed edge from T4 ∈ M to T11. Hence,

e3 ⊂ L′.

We now turn to the description of the computation of the

Betti numbers for M/L′. The zero-dimensional Betti number

β ′
0 is equal to the number of connected components in M

that are disjoint with L′. If M is connected, then β ′
0 is zero if

L′ 6= /0 and 1 otherwise. β ′
2 is equal to the number of connected

components of M whose entire boundary is contained in L′.
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Fig. 9: This illustrates the classification of boundary edges. The
image to the left provides a portion of the mesh with a Morse set
M inside the shadow region. The image to the right provides the
configuration of a discrete map (i.e. a flow combinatorialization) Fτ .
Note that we ignore the inner configuration of the graph inside the
Morse set M because it does not affect the classification.
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Fig. 10: The computed upper bounds of the Conley indices of all
Morse sets extracted from two analytical vector fields. The image to
the left shows the results using a geometry-based method, while the
image to the right provides the results of an MCG derived from a
τ-map with τ = 0.2. Note that the upper bounds for the Morse sets
in the left example are their actual Conley indices. In addition, in our
experience the obtained upper bounds for the Morse sets computed
from a τ-map approach are typically equal to the ideal Conley indices,
such as, in the example to the right.

By [7], χ(M/L′) = β ′
0 −β ′

1 +β ′
2 = χ(M)− χ(L′), whereby

χ(X) we mean the Euler characteristic of X . χ(M) (χ(L′))
is equal to the number of triangles minus number of edges

plus number of vertices in M (respectively, L′) and therefore

is easy to compute. Since β ′
0 and β ′

2 are already known, β ′
1 can

be determined from the equation β ′
0−β ′

1+β ′
2 = χ(M)−χ(L′).

Examples of upper bounds for the synthetic vector fields are

shown in Figures 10 and 11. Note that for both datasets, the

upper bound is the same as the Conley index for each Morse

set.
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A2

χ(M): Euler characteristic of M

χ(L’): Euler characteristic of boundary exit set L’

β0(L’),  β1(L’), and β2(L’) are the Betti numbers for L’

β0, β1, β2 are the Betti numbers of the upper bound

MCG
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Fig. 11: This figure illustrates an example on how the upper bound of
the Conley index can help identify Morse set with complex flow. Note
that Morse set R1 has an upper bound on its Conley index as (0,2,1).
In the meantime, the flow in this Morse set contains two repelling
periodic orbits (green loops) and a saddle (blue dot). Therefore, based
on its upper bound, we determine that R1 should be refined further.

7 MORSE SET IDENTIFICATION FOR FURTHER

REFINEMENT

In this section, we introduce two metrics used to identify

Morse sets for refinement in the automatic framework.

On the finest level of the hierarchy, one would like to

obtain Morse sets that correspond to hyperbolic fixed points

or periodic orbits (whenever possible). Thus, our first metric is

defined as the distance of the Conley index of the Morse set to

the closest Conley index of a hyperbolic fixed point or periodic

orbit. More precisely, let E be the set of all possible indices of

hyperbolic fixed points and periodic orbits, i.e. (Section 3.2)

E = {(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1)}.

The topology metric of a Morse set M is defined by

tm(M) = min(β0,β1,β2)∈E

{

2

∑
k=0

|βk(M)−βk|

}

.

A motivation for this metric is that the more complex indices

typically indicate complex flow characteristics which require

further refinement (e.g., Figure 11, R1).

The topology metric alone is not a sufficient refinement

criterion. For instance, the Morse set S3 in Figure 10 (left)

has the same Conley index (0,1,0) as a region containing

a saddle. However, a finer MCG reveals that it contains a

saddle and an attracting periodic orbit and therefore should

be refined. To handle such cases, we make use of a geometry

metric, defined as the number of triangles in the Morse set

M and denoted by gm(M). It is intuitive that a Morse set

containing a large number of triangles (therefore larger area)

may contain more detailed dynamics. For instance, Figure 12

(leftmost) shows the result of the Morse decomposition of the

gas engine simulation using a geometry-based approach. Note

that there is a Morse set at the back of the cylinder of the

engine which covers a large portion of the engine surface.

Further refining this Morse set reveals more detailed structure.

Combining the above topology and geometry metrics, we

define the priority P(M) of a Morse set M by

P(M) = (1+ tm(M))gm(M). (1)
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Fig. 12: This figure illustrates the refinement process of the MCG from a gas engine simulation. Left-most shows the MCG of a geometry-
based approach. From (1)-(3) we refine the circulated Morse set with τ = 0.2, 0.4, and 0.4, respectively. The MCG obtained using a global
τ = 0.4 shows the similar result (right-most). The color coding is provided in Figure 1.

This priority value is used to determine the order of the

refinement of Morse sets in the current MCG. The larger the

value, the earlier the Morse set will be refined. Morse sets

containing one triangle are not considered for refinement.

Ring-like regions containing a periodic orbit have larger P

value since they contain many triangles (for example, Morse

sets R3 and R4 in Figure 10 (right)). In this case, further

refinement will discover that no more Morse sets can be

extracted. The system then removes these Morse sets from the

priority queue Q (Figure 7). Note that once local refinement

has been applied to a Morse set without success (until τmax

or a user specified maximum number of trials), it will not

be processed again. This rule ensures the refinement process

terminates even if τmax = ∞ (see Section 8.3).

Figure 12 provides the result of the consecutive refinement

for a gas engine simulation. Note that the combination of the

topology and geometry metrics in Eq. 1 may not be intuitive.

However, it works well for all the examples we have examined.

Exploring a better combination is a possible direction for

future work.

8 APPLICATIONS

We have applied our automatic hierarchical refinement frame-

work to a number of analytic and real-world simulation

datasets. In what follows, we provide and discuss the results.

8.1 Results

Figures 1 (d) and (e) provide the results of an analytic dataset.

This planar dataset consists of 6,144 triangles. Our experiment

takes 10.11 seconds to return the result given τmax = 0.2. The

global method with τ = 0.2 takes 22.88 seconds to compute.

Note that both methods return the same MCG and similar

Morse sets with the difference of a few featureless triangles

(i.e. triangles with gradient-like flow).

Although the performance gain on planar data is about

a factor of 3, we have observed better performance in the

analysis of the simulation data (see Table 1). Figures 13, 14,

and 15 provide the analysis results of the present method

and the global method as the comparison for a gas engine,

diesel engine, and cooling jacket simulations, respectively. All

these data are the extrapolated boundary velocity fields that

are obtained through a 3D simulation inside the respective

models [18], [20]. In particular, the gas engine simulation

Fig. 13: This figure shows the results of the Morse decompositions of
a gas engine simulation dataset using a global method (left column),
and the present automatic refinement (right column). Both methods
employ τmax = 0.4. Note that both methods produce comparable
decomposition with a slight difference of the shapes and sizes of
the obtained Morse sets. The color coding is provided in Figure 1.

dataset consists of 26,298 triangles. Our hierarchical refine-

ment process takes 65.97 seconds to analyze, while the global

method takes 273.2 seconds. They both use τmax = 0.4. Note

that both analyses successfully extract the circular pattern at

the back of the cylinder of the engine. However, more detailed

information will need a larger τ value. For illustration, we

decompose the refinement in steps as shown in Figure 12.

From (1)-(3) we refine the circulated Morse set with τ = 0.2,

0.4, and 0.4, respectively.

The diesel engine simulation looks for patterns of the
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Fig. 14: This figure compares the results of the Morse decompositions of a diesel engine simulation dataset using the present automatic
refinement (top) with the global method (bottom). Both analysis uses τmax = 0.4. The color coding is provided in Figure 1.

Fig. 15: The results on a cooling jacket simulation using the hierarchical refinement framework (top) and the global method (bottom). Both
computations use τmax = 0.4. The color coding is provided in Figure 1.
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TABLE 1: The complexity and timing results for two CFD data simulating in-cylinder flow through a combustion engine. Times (in seconds)
are measured on a PC with Intel(R) Xeon(R) 2.33GHz dual processors and 8GB RAM. Note that we compare only the performance of the
automatic refinement framework with the global τ approach with the τ = τmax. Note that the timing does not include the time for connection
region refinement.

Dataset # Fig. Global Update Local Update Speed-Up

name polygons τ #Morse sets time(s) τmax #Morse sets time(s) Factor

gas engine 26,298 13 0.4 51 273.2 0.4 51 65.97 4.14

diesel engine 221,574 14 0.4 193 991.1 0.4 192 96.30 10.29

cooling jacket 227,868 15 0.4 246 1551.3 0.4 244 435.2 3.56

planar data I 6,144 1 0.2 7 22.88 0.2 7 10.11 2.26

planar data II 6,144 2 0.2 10 17.61 0.2 10 5.52 3.19

combustion flow rotating around the axis of the cylinder [1],

[20]. Both our hierarchical analysis and the global method

can correctly identify this pattern at the bottom of the engine

(middle column of Figure 14). However, our method takes

only 96.30 seconds for this dataset with 221,574 triangles,

compared to the 991.1 seconds using a global method (τ = 0.4
for both methods).

The cooling jacket simulation dataset possesses 227,868

triangles and a complex geometry. Figure 15 provides the

results using our hierarchical refinement framework and a

global τ-map approach. We can see that most of the extracted

features (the colored regions) are regions of the geometry

above and below the cooling jacket gasket (between the

cylinder block and head). This is where the flow exhibits the

most complex behavior [18]. These regions exhibit a number

of swirling flow patterns which are detrimental to effective

heat transfer away from the engine block. Both the hierarchical

refinement and the global computation return similar results.

However, the former takes 435.2 seconds while the latter takes

1551.3 seconds.

Table 1 provides the timing information of the automatic

refinement of the MCGs (connection region refinement is not

included) of the data used in this paper. Note that we compare

the performance of the automatic refinement framework only

with the global τ approach with τ = τmax. Additional time

spent on smaller τ values and the user interactions for the

global τ scheme is not considered. Regardless, our automatic

refinement framework exhibits better performance time. Note

that all times are measured on a PC with Intel(R) Xeon(R)

2.33GHz dual processors and 8GB RAM. To achieve fast com-

putation, the first-order Euler integrator has been employed for

all FG computations in Table 1. In addition, for all tests in

Table 1 τmin = 0.1 is used to start the refinement. From these

results, we see that our method improves the analysis with up

to one order of magnitude speed-up for the real simulation

data.

8.2 Discussion

Global Method vs. Adaptive Framework

We have observed some discrepancy between the global

method and the presented adaptive refinement in some of

the results, although they are generally comparable. This

small discrepancy between the global τ MCG and hierarchical

MCG is caused by the difference of the computed FG’s. The

hierarchical refinement uses adaptive τ values over the domain,

while the global method uses a uniform τ . Also, the numerical

inaccuracy incurred during the computation of the samples

along edges for estimating the outer approximation, especially

in a flow with high divergence or stretching, contributes to this

difference [2]. Addressing this issue is one of our future work

directions.

Despite this small discrepancy, the adaptive refinement is

better. It is faster, more versatile, and more supportive of

the resulting Morse decomposition’s complexity. Therefore, it

is fully capable of performing topologically consistent multi-

scale visualization.

Performance Analysis

From the experiments, we have observed different perfor-

mance gains for different data (see Table 1), due to the varying

complexity of the flows. For instance, if the flow contains

highly rotational (swirling) behavior, the obtained Morse sets

with a smaller τ value can correspond to relatively large

regions in terms of area (e.g., the back of the cylinder of

the gas engine simulation in Figure 12). It is likely that more

computation is needed in order to refine them. On the other

hand, if the flow is mostly gradient-like (curl-free) (e.g., the

cylinder body of the diesel engine simulation in Figure 14),

the computation is typically much faster.

Comparison between MCGs and ECGs

Figures 3 and 16 respectively provide the comparison of

the MCGs and ECGs of the diesel engine and gas engine

simulations. To evaluate the stability of both methods, different

integration schemes were employed to compute the ECGs and

MCGs. From the results, we see that the ECG computation

returns different topological structures of the same field,

highlighted by the different extractions of periodic orbits in

both examples. On the other hand, MCGs provide relatively

stable structures under different integration schemes. This

demonstrates that MCGs are a more reliable tool than ECGs

in the analysis of flow structure.

Although MCGs need not extract as detailed information

as the trajectory-based topology, we point out that in some

engineering applications, identifying the regions with certain

flow behavior is more important than computing the exact

detailed structure. For instance, in engine design, determin-

ing whether the simulated combustion forms the ideal flow

patterns is crucial for the evaluation of the design quality of
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Fig. 16: This figure provides the ECGs and MCGs of the gas engine simulation computed using first-order Euler (left), RK2 (middle), and
RK4 (right) integrators (respectively) [24]. Note that the ECGs show different structures in terms of the number of periodic orbits: 20 (Euler),
21 (RK2), and 19 (RK4). Whereas, MCGs computed with τ = 0.3 show relatively stable results.

Fig. 17: This figure provides the Morse decompositions of the gas and diesel engine simulations, and cooling jacket simulation using the
refinement framework without setting τmax. The analysis takes about 213s, 1012s, and 4524s for these datasets, and returns MCGs with 63,
210, and 265 Morse sets, respectively.

the engine blocks. This can be achieved by identifying the

desired flow behavior at the boundary geometry of the engine

[1]. The Morse set at the back of the cylinder of the gas engine

(Figure 12) indicates such an ideal behavior. In this case, it

is more useful to know there is certain swirling flow at the

back of the cylinder than to detail the number or types of
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Fig. 18: The hierarchical representation of MCG on a portion of the cooling jacket. The arrows indicate the parent-children relations between
the obtained Morse sets. The first MCG is computed using the geometry-based method. Then, τ = 0.2, 0.4, and 0.8 are chosen to refine the
corresponding Morse sets.

the periodic orbits. The same reasoning can be applied to the

cooling jacket simulation where the regions of stagnant coolant

flow are highlighted by the extracted Morse sets (Figure 15).

We also note that if a more detailed structure is needed, the

trajectory-based (differential) topology [1], [11], [20] can be

extracted from the MCG with more certainty [1], [2].

8.3 Extensions

As indicated in Section 3.1, the global method requires the

user to conduct a number of experiments with different τ
values to obtain the optimal result. Although our previous

discussion uses a τmax to terminate the refinement process,

this constraint is not necessary. For the further experiments,

we have removed this constraint and let the refinement process

continue until it converges. To guarantee convergence, we also

set a threshold k for each selected Morse set. If the Morse set

cannot be refined within k trials (with k increasing values of τ),

it will be removed from the queue Q. In the results provided

in Figure 17, we use k = 4. Parameter k can be increased

for the extraction of more detailed structure. The maximum

values of τ used for these CFD data are 3.2 (Figure 17,

left), 12.8 (Figure 17, middle), and 6.4 (Figure 17, right)

respectively. Such large values (compared to the previously

used 0.4) are apparently difficult for the global method to

predict and not necessary for the whole domain. Note that the

cumulative integration errors with a large τ could compromise

the accuracy of the obtained FG. Therefore, the obtained FG

is no longer an outer approximation of the true dynamics,

and the upper bound of the Conley index computation is no

longer guaranteed, which leads to incorrect classification of

Morse sets (e.g. the big blue ring-like Morse set in Figure 17,

left). This is a limitation of the current Morse decomposition

computation which we would like to investigate more in the

future.

MCGs also provide a way to achieve hierarchical topology

representation of vector fields. This hierarchy can be obtained

by systematically increasing τ to compute the individual

MCGs. However, the hierarchy obtained using a global method

lacks a consistent topological relation between two successive

levels, because each computation relabels all the Morse sets

(see Figure 1, (b) and (c)). In contrast, the present framework

updates the MCG locally and retains the consistent labeling,

which provides the consistent hierarchy (see Figures 2 and 18).

This consistent hierarchy of a vector field can assist multi-scale

visualization of the flow, which we plan to investigate in future

work.

9 CONCLUSION

In this paper, we have identified a major drawback of the previ-

ous τ-map based Morse decomposition method and proposed

a hierarchical refinement framework for the Morse decomposi-

tions of vector fields. More specifically, our re-computation is

restricted to Morse sets identified through a hybrid metric that

includes the Conley index. The Conley index is a more general

topological descriptor than the Poincaré index. In this work,

we make use of the Conley index to classify the extracted

Morse sets and present a combinatorial approach to compute

this index. In addition, we present an algorithm to compute

the upper bound on the Conley index of a given Morse set

based on a flow combinatorialization graph (a discrete map).

This upper bound has been shown to be a good estimation to

the true Conley index for all the examples used in the paper.

We have proven the soundness of our hierarchical framework

and provided examples of applications to the real simulation

data which demonstrates the effectiveness of the framework.

The proposed framework improves the performance of

Morse decompositions by up to one order of magnitude for

the real simulation data. It also conducts the analysis in a

topologically consistent fashion. In addition, the hierarchical

framework and the computation algorithm for the upper bound

of the Conley index raises a future direction in vector field

simplification and multi-scale processing and visualization. We

plan to investigate this in the future.

Extension to 3D and Unsteady Flow: The theory behind

Morse decomposition and the Conley index is dimensionless,

i.e., it is possible to extend our work to 3D steady vector

fields. The implementation in 3D, however, is unlikely to be a

trivial extension of 2D and will need more investigation. On

the other hand, as a more rigorous form than a vector field

skeleton, Morse decomposition is defined for steady vector

fields. Extending it to unsteady fluid mechanics will require

new findings from researchers in dynamical systems and fluid

mechanics.
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10 THEORETICAL RESULTS

10.1 Result 1

The k-dimensional Betti number of the Conley index of a Morse

set M obtained using the τ-map approach cannot be larger

than the k-dimensional Betti number of M/L′, where L′ is

determined as described in Section 6.

Proof: By the results of [28], the pair (M,L′) is a valid index

pair for the continuous map ϕτ = ϕ(τ , .) (note that it is not

necessarily a correct index pair for the flow). In [22], it is

shown that the k-dimensional Betti number of the Conley index

of the flow on M is equal to

lim
n→∞

rankϕn
τ ,k

where ϕτ ,k is the automorphism induced by ϕτ on the k-

dimensional homology (with rational coefficients) of the quo-

tient space M/L′. The rank of an automorphism cannot be

higher than the dimension of the vector space it acts on.

In particular, the rank of ϕn
τ ,k is less or equal than the k-

dimensional Betti number of M/L′ for any n. Q.E.D.

10.2 Result 2

Connecting trajectories between Morse sets M j and Mk are

contained in M j ∪Mk ∪R, where R is the connection region

Proof: The α− and ω− limit sets of x∈M are closed subsets

of M which can be defined as

α(x) := ∩t<0cl(ϕ((−∞, t),x)), ω(x) := ∩t>0cl(ϕ((t,∞),x))

respectively. Let M j and Mk be Morse sets and R be their

connecting region (before refinement). R is the union of all

paths in the FG that start in M j and end in Mk. Take a

point x0 on the connecting trajectory between M j and Mk,

i.e. such that α(x0) ⊂ M j and ω(x0) ⊂ Mk. The trajectory of

x0 eventually enters Mk when followed forward in time. More

precisely, there is a time T0 such that ϕ(x0, t) ∈ Mk for all

t ≥ T0. Let ∆0,∆1, . . . ,∆k be consecutive triangles intersected

by the section S of the trajectory ϕ(x0, t), with t ∈ [0,T0].
By definition of the FG, there is an edge out of each of the

triangles ∆l to a triangle ∆l′ with l′ > l or to a triangle in Mk.

To see this, assume there are no edges from ∆l to a triangle

in Mk. If the edges in FG out of ∆l are geometry edges, one

can take l′ = l + 1. Otherwise, edges out of ∆l are obtained

using the τ-map and l′ is the index larger than l such that

the corresponding triangle contains ϕ(x̄,τ), where x̄ is the last

point on the section S of the trajectory of x0 and in ∆l .

By the above reasoning, there is a path in FG from a triangle

∆ containing x0 to Mk. Similarly, by traversing the trajectory

backward in time, one can argue that there is a path from M j

to ∆. This proves that R∪M j∪Mk (before refinement) contains

all trajectories connecting M j and Mk.

The statement above can be proved for regions resulting

from refinement by induction on the number of refinement

steps. Assume all connecting trajectories are contained in M j∪
Mk ∪R. Now, update FG as described in Section 5.2. Let τ
be the τ-value used in the update. Take x0 on a connecting

trajectory between M j and Mk. Then, by following triangles

containing points ϕ(x0,kτ), k = 0,1, . . . until the first one in

Mk, we obtain a path from a triangle ∆ containing x0 to Mk.

Again, by reversing time, one can obtain a path from M j to ∆.

Hence ∆ is in the region R′ resulting from refinement of R. This

proves that M j ∪Mk ∪R′ contains all connecting trajectories

between the two Morse sets.
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