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Abstract— We study how finite element discretizations can be
selected to achieve optimal numerical approximation of the in-
verse electrocardiographic (ECG) problem. Due to its ill-posed
nature, the inverse ECG problem poses a different discretization
requirement from its corresponding forward problem coun-
terpart. Conventional refinement strategies effective for the
forward problem may become ineffective when applied to the
inverse problem. We propose refinement strategies specifically
tackling the ill-posedness of the inverse problem. The strategies
lead to two numerical methods. One is hybrid-shaped finite
elements, involving quadrilateral/triangular elements in 2D and
prismatic/tetrahedral elements in 3D. Another method uses
high-order finite elements, extracts from the resulting system
the linear component, and solves the linear part only. The
hybrid element method was conducted on a realistic 3D torso
model whereas the high-order truncation method was tested
on a 2D segmented torso slice. Results demonstrate that both
methods improve both the discrete problem’s conditioning and
the inverse solution, indicating our strategies might provide
guidelines for 3D mesh generation from segmented images in
practical biomedical simulations.

Index Terms— electrocardiography; inverse problem; high-
order finite element method; refinement

I. INTRODUCTION

The inverse electrocardiographic (ECG) problem of recov-
ering epicardial potentials from body-surface measurements
has wide applications from noninvasive diagnosis of cardiac
diseases (e.g. ischemia) to guidance of intervention (e.g.
ablation and defibrillation). ECG simulations include math-
ematical modeling of the biophysical process and geometric
approximation of the anatomical structure of human bodies.
We consider a model that characterizes the cardiac source
by epicardial potential distribution, given as follows:

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω (1)
u(x) = u0(x), x ∈ ΓH (2)

~n · σ(x)∇u(x) = 0, x ∈ ΓT , (3)
u(x) = g(x), x ∈ ΓT , (4)

where Ω denotes the torso volume bounded by the epi-
cardium ΓH and the torso surface ΓT . u(x) is the potential
field on Ω, u0 is the epicardial potential, and g represents
the measured body-surface potential. σ(x) is a symmetric,
positive-definite conductivity tensor, and ~n denotes the out-
ward facing vector normal to ΓT . The forward problem
seeks the potential field u(x) given the cardiac source
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u0. The inverse problem attempts to recover u0 from the
measurement g.

The governing equations are typically discretized with the
finite element methods (FEM) or boundary element methods
(BEM), both of which improve numerical accuracy by var-
ious refinement strategies. This paper studies discretization
strategies when the FEM is used. While most refinement
methods are able to achieve satisfactory accuracy for a
forward problem, the ill-posedness of an inverse problem
requires different refinement considerations than its corre-
sponding forward problem [1].

The ill-posedness usually leads to an ill-conditioned nu-
merical system. Conventional approaches for obtaining a
stable solution involves imposing additional constraints, a
technique called regularization. We show that the condi-
tioning property is subject to how the FEM is applied
and refined; therefore discretization itself forms one type
of regularization. We propose two methods that specifically
tackle the concerns of the inverse problem: (1) hybrid finite
elements and (2) linear component truncation from high-
order elements. Both methods alleviate the ill-conditioning
of the resulting numerical system to be solved, and both can
be combined with other classical regularization methods to
further improve the inverse solution accuracy.

II. FEM, HYBRID ELEMENTS AND LINEAR TRUNCATION

A. Finite Element Discretization

In a theoretical FEM approach, the potential field u(x)
can be decomposed into u(x) = v(x) + w(x) where w(x)
satisfies boundary conditions (2) and (3) and v(x) is a
homogeneous term characterized by:

∇ · (σ(x)∇v(x)) = −∇ · (σ(x)∇w(x)), x ∈ Ω (5)
v(x) = 0, x ∈ ΓD (6)

~n · σ(x)∇v(x) = 0, x ∈ ΓN (7)

Here, one first projects the source term from the epicardium
onto the function space over the entire domain (by setting
w), then solves a homogeneous problem whose forcing
function is the source after projection. This formulation
reveals three approximation issues: 1) the accuracy of the
epicardial potential u0(x), 2) the accuracy of the projection
operator w, and 3) the accuracy of solving the homogeneous
problem v(x).

A practical finite element application tessellates Ω and
constructs a set of basis functions {φi}, each of which is
associated with one node. The potential field u(x) is ap-
proximated by the linear combination of the basis functions.



The coefficient of each basis function is the potential value
at its associated node. Substituting this expansion into (1)
and applying the Galerkin method yield a linear system of
the form:(
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where uH , uT , and uI denote the vector of potentials
on the discretized heart surface(H), torso surface(T ), and
interior volume(I). The stiffness matrix A is given by
Ai,j =

∫
Ω
∇φi∇φj . A is partitioned based on the three

divisions H ,I , and T . Its capitalized subscript in (8) shows
the interaction between each two divisions.

From (8) we derive the relation between uH and uT :

uT = KuH (9)

where K is named the transfer matrix and severely ill-
conditioned. The inverse ECG problem attempts to solve
(9). Note that (8) is a special case of the general approach
given by (5): the projection w is set piecewise-linear in the
first layer of elements adjacent to the heart surface and zero
elsewhere. (8) therefore exemplifies the aforementioned three
issues. Once uH determines the resolution of the epicardial
potentials, the accuracy of the FEM approximation is dictated
by the discretization of the heart/volume projection (AIH )
and the volume conductor (the left-side matrix).

B. Inadequacy of Uniform Refinement for Inverse ECG

Most adaptive refinement strategies designed for forward
problems are essentially equivalent to uniform refinement
if not considering cost and efficiency. Although uniform
refinement indeed improves the three approximation issues
aforementioned, it worsens the conditioning property of K.
Fig 1 compares the forward solution error and the singular
values of K resulting from uniformly refining a 2D torso
mesh. Singular value decomposition is an effective means for
evaluating the numerical quality of K, because it constructs
a spatial frequency spectrum for uH and reveals how each
frequency component contributes to the measurement uT

[2]. Evidently, a well-conditioned system is characterized
by a slowly-descending singular value spectrum and a large
proportion of nontrivial singular values.

Fig 1 shows that while uniform refinement reduces error
in the forward problem, it simply extends the number of
trivial singular values of K, thereby lowering the proportion
of the recoverable components of uH , which are associated
with non-trivial singular values. This is because the ill-
conditioning of K is an exponential function of the spatial
frequency determined by the fidelity of epicardium [3].
Practitioners should assess this fidelity based on satisfying
the clinical needs, but be cautious to solve beyond the
limit. While the epicardium discretization gives the band-
limit of the inverse solution one seeks to recover, the volume
discretization determines the band-limit actually solvable.

For inverse problems, the aforementioned approximation
principles should be stated as follows: (1) determine a rea-
sonable resolution on epicardium and (2) refine the volume

Fig. 1. (Top): forward solution error convergence with four increasingly
refined meshes labeled as A-D. Only Mesh A and C are displayed. |uH |
is the epicardial resolution, |ūT − uT | means the forward solution error.
(Bottom): singular value spectra of the resulting transfer matrix K. Curves
A-D are singular values in their original length; Curves B-D are normalized
to the length of A, shown as B′-D′.

and heart/volume projection while fixing the heart boundary.
Such requirement leads to our advocacy of hybrid finite ele-
ments and linear truncation from high-order finite elements.

C. Hybrid Finite Elements

The discretization of the inverse problem requires increas-
ing the resolution normal to the epicardium while keeping
the resolution on the epicardium. For triangular or tetrahedral
elements, which are typically available in commodity mesh
generators, such requirement leads to ill-shaped elements
that by themselves cause extra numerical challenges. We
place quadrilateral elements (2D) and prismatic elements
(3D) around the epicardium, as illustrated by Fig 2. The
quads/prisms can be refined along their normal direction to
capture the high potential gradient near the heart, without
affecting the resolution on the epicardium. Hybrid elements
is simple to implement: we first built quads/prisms from
the triangulated bounding surfaces before calling tetrahedral
mesh-generating routines. This paper will present some re-
sults in 3D. We refer to [3] for detailed investigation of
hybrid elements in 2D.

D. Linear Truncation from High-Order Elements

The finite element community has long been approximat-
ing continuous equations with high-order basis polynomials,



which achieve higher accuracy and faster convergence rate
than linear finite elements. High-order interpolation in an
element can be made hierarchical, composed by linear,
quadratic, cubic basis functions, etc. The coefficients of
linear components have a physical meaning of being the
electrical potential value on the nodes of the element,
whereas all high-order components are made zero on mesh
nodes. It can be seen that a high-order FEM is built from
a linear FEM, but adding approximation by higher-order
polynomials. Accordingly, (9) can be rewritten as follows
(for simplicity, we present a quadratic expansion here):(
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where the superscript indicates the order of each component
of uT or uH . Our truncation scheme solves only the linear
part of this high-order expansion:

u1
T = K1,1

T,Hu1
H . (11)

Such truncation is based on two concerns: (1) to preserve the
pre-determined epicardium resolution, (2) uT is piecewise
linear because measurements are made only on mesh nodes.
Note that (11) differs from (9) in that it contains high-order
expansion of AII and AIH given in (8).

This truncation scheme provides a seamless approach of
refining the heart/torso projection and the volume conductor
(by high-order FEM) while preserving the epicardial reso-
lution (by truncation). As the truncation is conducted in a
hierarchical polynomial space, it keeps the smoothness of
the solution and avoids aspect-ratio problems that obstruct
spatial refinement methods. Our experiments indicated third-
order FEM was sufficient for the inverse ECG problem.

E. Regularization Methods

We solve the inverse problem (9) or (11) by the Tikhonov
method applying both the 0-order and 1st-order constraints:

uH(λ) = argmin {‖KuH − uT ‖2

+ λ2(‖uH‖2 + α2‖∇uH‖2)} (12)

Fig. 2. (Left): a segmented 2D torso slice with two layers of quadrilaterals
around the heart. (Right): the torso/cage geometry with one layer of prisms
around the cage. The rest torso volume is filled by tetrahedra. For simplicity,
volume mesh is not shown completely. The dark dots represent vertices of
the tetrahedral volume mesh.

where ‖ · ‖ is the Euclidean norm. The values of λ and α
are determined by exhaustive search. Our goal is to compare
inverse solutions resulting from various refinements under an
identical regularization framework.

III. RESULTS AND DISCUSSIONS

A. Hybrid Finite Elements

We present a hybrid elements model consisting of an
isotropic torso tank and a canine heart surrounded by a
cylinder cage on which potentials are measured. The model
is illustrated by Fig 2. Using cage potentials rather than real
epicardial potentials eliminates geometric variation incurred
by heart contraction. The torso surface consists of 771 nodes
and 1538 triangular elements whereas the cage has 602 nodes
and 1200 triangles. This boundary discretization was kept
intact during this test. We ran the forward simulation to
obtain torso potentials, which, after being added with noise,
served as the input for the inverse calculation. Fig 3 compares
an ordinary tetrahedral mesh with a hybrid-element mesh
having one layer of 10mm-thick prisms around the cage. The
comparison is made in a coarse level and a refined level.

Fig 3 (top) shows that the hybrid mesh yields better
singular values of K than does the pure tetrahedral mesh
under both discretization levels. The hybrid mesh achieves
this numerical superiority with less elements, implying its
advantage in efficiency. It can be seen that refining volume
while keeping boundary resolutions extends non-trivial sin-
gular values of K. This holds for both mesh types. In the
tetrahedral meshes or hybrid meshes, the gap between the
singular value spectrum of the coarse mesh and the spectrum
of the refined mesh indicates the increased ill-conditioning
caused by insufficient discretization but not associated with
ill-posedness of the continuum problem. Any finite element
discretization should consciously avoid such numerically-
induced ill-conditioning.

Fig 3 (bottom) shows the cage potentials calculated under
1% input noise. The displayed potential map describes the
instant when it had the largest spatial variances (thus the
most difficult to recover). The current activation wavefront
is captured well, although Tikhonov regularization tends to
over-smooth the inverse solution. Hybrid meshes outperform
pure tetrahedral meshes in recovering the magnitude of local
extrema. Volume refinement leads to better recovery of the
secondary local extrema (Panel C and D).

B. Linear Truncation from High-Order FEM

Our truncation method was conducted on a 2D torso
mesh analogous to the one shown in Fig 2 but without
quadrilaterals. The mesh, segmented to conform to interfaces
between various tissues, contains 1071 triangles, including
60 nodes on the epicardium and 105 nodes on the torso
surface. We tested isoparametric finite elements of first-,
second-, and third-order, and the results are summarized in
Fig 4. Fig 4(A) shows high-order refinement consistently
improves the singular values of K, a similar effect to spatial
refinement of the volume. The convergence of singular values
from the second-order FEM to the third-order FEM implies



Fig. 3. (Top): singular values of K resulting from pure tetrehedral meshes
and hybrid meshes with one layer of prisms around the cage. Each mesh
type includes two meshes that share identical boundary discretization but
have different volume discretizations. (Bottom): cage potentials calculated
from different meshes. (A) exact cage potentials; (B) potentials computed
from pure tetrahedral mesh with 16940 elements; (C) potentials computed
from hybrid mesh with coarse volume (15443 elements); and (D) potentials
computed from hybrid mesh with refined volume (27037 elements).

the discretized problem has reached the same quality as
the original continuous problem. In other words, refinement
“saturates” to its asymptotic performance.

Fig 4(B) assesses the inverse solution by its relative error
(the ratio of the error to the exact solution, in Euclidean
norm) and its correlation coefficient with the exact solution.
The inverse solution was calculated with zero-mean Gaussian
noise of 30dB and 20dB being added to the torso measure-
ments. With the truncation method, high-order refinement
reduces the error from 8.3% to 6.7% under 30dB noise
and from 17.5% to 9.7% under 20dB noise. It improves the
correlation coefficient accordingly. Fig 4(C) demonstrates an
example of reconstructed epicardial potentials under 20dB
noise. It can be seen the linear truncation from third-order
FEM yields the closest solution to the exact solution.

Fig. 4. Linear truncation from first-, second- and third-order finite elements,
marked by P = 1, 2, 3. (A) singular values of the respective resulting
K; (B) relative error (RE) and correlation coefficient (CC) of the inverse
solution calculated under two levels of input noise; (C) reconstructed
epicardial potentials under 20dB input noise.

IV. CONCLUSIONS

This paper explores the finite element refinement strategies
for the inverse ECG problem. The strategies include pre-
serving boundary resolution, refining the volume conductor
and capturing the high potential gradient near the heart. To
satisfy such requirements we propose hybrid-shaped finite
elements and truncating linear components from high-order
finite elements. Both methods effectively alleviate the ill-
conditioning and improve the inverse solution.
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