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Abstract— By combining a static bidomain heart model
with a torso conduction model, we studied the inverse elec-
trocardiographic problem of computing the transmembrane
potentials (TMPs) throughout the myocardium from a body-
surface potential map, and then used the recovered potentials
to localize myocardial ischemia. Our main contribution is
solving the inverse problem within a constrained optimization
framework, which is a generalization of previous methods for
calculating transmembrane potentials. The framework offers
ample flexibility for users to apply various physiologically-based
constraints, and is well supported by mature algorithms and
solvers developed by the optimization community. By avoiding
the traditional inverse ECG approach of building the lead-field
matrix, the framework greatly reduces computation cost and,
by setting the associated forward problem as a constraint, the
framework enables one to flexibly set individualized resolutions
for each physical variable, a desirable feature for balancing
model accuracy, ill-conditioning and computation tractability.
Although the task of computing myocardial TMPs at an
arbitrary time instance remains an open problem, we showed
that it is possible to obtain TMPs with moderate accuracy
during the ST segment by assuming all cardiac cells are at the
plateau phase. Moreover, the calculated TMPs yielded a good
estimate of ischemic regions, which was of more clinical interest
than the voltage values themselves. We conducted finite element
simulations of a phantom experiment over a 2D torso model
with synthetic ischemic data. Preliminary results indicated that
our approach is feasible and suitably accurate for the common
case of transmural myocardial ischemia.

Index Terms— Inverse Problem, Electrocardiography, Finite
Element Method, Myocardial Ischemia, Constrained Optimiza-
tion

I. INTRODUCTION

A leading cause of death in the western world, myocardial
ischemia (or more severely, infarction) occurs when cardiac
myocytes are damaged for lack of oxygen or nutrients, nor-
mally caused by occlusion of coronary arteries. Electrocar-
diographic (ECG) diagnosis of myocardial ischemia relies on
detecting the elevation/depression of the normally isoelectric
ST segment, which is caused by the injury currents resulting
from the transmembrane voltage difference between healthy
and ischemic tissues. However, ECG-morphology analysis
has limited ability to localize ischemic regions, and a com-
puterized method achieving that function would effectively
promote clinical diagnosis and treatment. We attempted to
localize ischemia by inversely computing the transmem-
brane potentials (TMPs) throughout the myocardium from
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the voltages measured at the body surface. We proposed a
constrained optimization framework for solving this inverse
source problem, which is the main contribution of this paper.

The TMP is typically the source model for myocardial
ischemia studies. While there are extensive studies on inverse
ECG problems recovering epicardial potentials or activation
sequences, research has been limited on reconstructing TMPs
within the heart from the body-surface potentials. Because
of its ill-posed nature, it still remains an open problem to
accurately calculate myocardial TMPs at an arbitrary time
instance. Methods for localizing myocardial ischemia have
been proposed such as the model-based optimization, the
level set method, or calculating the ST-segment integral of
TMPs [1], but they do not directly calculate TMPs.

Our study was based on the hypothesis that one may
obtain modestly accurate TMPs at one time instant in the
ST interval. Although the reconstructed voltage values are
not sufficiently accurate for precise quantification of the
TMPs, their qualitative “patterns” may enable a satisfying
recovery of the size and position of ischemic regions. We
modeled the ECG problem by combining a mono-domain
torso model with a static bidomain heart model, which
represents the cardiac source by the distribution of TMPs.
A framework for computing TMPs was proposed in [2],
in which the inverse problem was formulated as a min-
imization problem constrained by the associated forward
problem, and was solved by a one-shot adjoint method. This
framework is limited to quadratic objective functions with
equality constraints only. We generalized their constrained
optimization framework so as to enable broader types of
objective functions, both equality and inequality constraints,
and flexibility for applying various physiologically-based
constraints. It also has two advantages over the traditional
way of solving inverse ECG problems, which first forms
a lead-field matrix and then “inverts” it by regularization
techniques. First, our method does not compute the lead-
field matrix and thus has lower computational cost. Second,
it allows a flexible setting of the discretization resolution
for the TMPs and other state variables, a desirable feature
as the ill-posed inverse problem typically requires different
resolutions for the sought-for unknowns and other state
variables [3], [4].

II. METHODS

1) The Bioelectric Model: Our bioelectric model consists
of a static bidomain heart model combined with a mono-
domain torso model, as shown in Fig 1(B). The combined
model can be simply written as a Poisson equation as



follows:

∇ · σ∇u(x) =
{

0, x ∈ Ω,
−∇ · σi∇v(x), x ∈ H, (1)

~nT · σ∇u(x) = 0, x ∈ ∂Ω, (2)

u(x) =
{

torso potential, x ∈ Ω,
extracellular potential, x ∈ H, (3)

σ(x) =
{
σi + σe, x ∈ H,
σt, x ∈ Ω. (4)

The first row of (1) describes the passive torso volume con-
ductor Ω, and the second row describes the static bidomain
equation for the heart H . We only considered the static
bidomain because the TMP (denoted by v) remains largely
stable during the plateau phase. σi and σe are the intra/extra-
cellular conductivity, and σt is the conductivity of torso
tissues. Eq (2) implies no electrical currents leave the torso
surface, ΓT . This model implicitly assumes three boundary
conditions at the heart/torso interface: 1) the extracellular
potential is continuous; 2) the electrical current flowing out
of the heart is equal to that flowing into the torso; and 3) the
cardiac intracellular space is insulated from the torso. Details
of the model can be found in Chapter 5 of [5].

In this study, we solved (1) by the finite element method,
which converts the Poisson equation into a matrix system:

Au = Sv (5)

where A and S are the stiffness matrix corresponding to the
operator on each side of (1). Given v, the task of solving (5)
for u is referred to as the associated forward problem.

2) The Ischemia Model: We adopted a synthetic ischemia
model represented by the TMP at the plateau phase, given
as follows:

v(x) =
{

0 mV, in healthy tissue;
−30 mV, in ischemic tissue; (6)

where the assumed 30mV voltage difference is an approx-
imation suggested by previous studies [6]. The value is
not critical to the simulations because of the threshold
operation performed on the solution (see sections below).
Although very simplified, the binary assumption of the TMP
is not critical to the inverse simulation because our inverse
calculation incorporated no a priori information of the TMP
field. When implementing (6) by the finite element method,
we assumed a linear transition of v(x) at the border zone,
which comprises the first layer of elements surrounding the
ischemic region. With this model, we simulated the effect of
myocardial ischemia of different locations and sizes.

3) Traditional Methods for Inverse Problems: The tra-
ditional way of solving our inverse ECG problem is to
derive from (5) a lead-field matrix K that relates v and
the torso-surface potential uT : uT = Kv. Because K is
ill-conditioned, regularization such as the Tikhonov method
is applied to obtain v:

v = argmin {‖Kv − uT ‖2 + λ‖Wv‖2} , (7)

where W describes the property of v to be constrained.
Although this approach is popular among other inverse

ECG problems (e.g., recovering epicardial potentials), its
computational cost becomes prohibitive when applied to
the inverse problem considered in this paper. Suppose the
discrete Poisson equation (5) has a size of m and v has a
size of n, deriving the lead-field matrix requires one to solve
a m by m linear system for n times. For a bidomain model
in three dimension, m and n can easily reach hundreds of
thousands.

Nielson et al[2] avoided the lead-field matrix by forming
the inverse problem as a constrained optimization problem:

v = argmin
v

{
‖Qu− uT ‖22 + λ‖Wv‖22

}
, (8)

subject to Au = Sv, (9)

where Q maps the potential field u to the measurement loca-
tion. This formulation is equivalent to the Tikhonov method
(7) except that u and v are related by a constraint equation.
The minimization was repeated with a decreasing sequence
of λ until the misfit Qu−uT reached the noise level, which
was known. For each λ, the constrained minimization was
achieved by analytically solving its KKT conditions, which
happened to be a system of linear equations. This method,
however, is limited to quadratic objective functions and
equality constraints, for otherwise the KKT equations would
be non-linear. Another drawback is that the minimization
starts from scratch with each λ. Given that normally 100 λs
are to be tested, the minimization process may become slow
and inefficient.

4) Constrained Optimization Framework: We generalized
the above optimization framework, allowing both equality
and inequality constraints and lp-norms in the objective
function. The framework is presented below:

v = argmin
v
‖W(v − vprior)‖p, (10)

subject to Au = Sv, (11)
and ‖Qu− uT ‖2 ≤ ε‖uT ‖2, (12)
and v ≤ 0, (13)

where all terms have been defined before. Equation (12)
states that the misfit between the predicted data and the
measured data (uT ) should be within the noise level ε,
which is known. Equation (11) and (12) are the “necessary”
constraints, whereas (13), which assumes that TMPs should
be no greater than 0mV, exemplifies how one may flexibly
add physiologically-based constraints into the framework.
The framework also offers flexibility for one to choose an
objective function other than the l2 norm, e.g., l1-norm
minimization is often preferable.

Our proposed constrained optimization has been well-
studied by the optimization community. The simplest case
is l2-norm minimization with equality constraints, where
one may solve the KKT conditions analytically. The sec-
ond level is equality constraints with a convex objective
function, where the optimization problem can be reduced to
an unconstrained optimization problem and then solved by
Newton’s method. Inequality constraints form the next level
in the hierarchy, where the problem can be transformed into



a second-order cone program and solved by interior point
methods (e.g., log-barrier algorithm), with the philosophy
of reducing an inequality-constrained problem to a sequence
of equality-constrained problems. Mature methodologies and
solvers are available in this field [7]. We used CVX, a package
for specifying and solving convex programs [8].

It is worth mentioning that our framework is equivalent
to the previous methods (7) or (8), but without needing to
tune the parameter λ. Instead the tuning is fulfilled when exe-
cuting interior-point methods and is often more efficient. For
example, when the log-barrier method minimizes a sequence
of sub-problems, the solution of the previous sub-problem
becomes the initial guess of the next one. In contrast, when
λ is tuned in (7) and (8), calculation starts from scratch.

5) Simulation Setup: We conducted finite element simu-
lation based on a 2D thorax domain illustrated in Fig 1. All
potential fields were defined on mesh nodes. As the goal of
this study was to validate the feasibility of the optimization
method, we minimized the effect of the conductivities by
using simple phantom values. The conductivities are given
as σi = σe = [0.5, 0.5] and σt = [1.0, 1.0], along the
longitudinal and transverse directions, respectively.

In each simulation, we first specified an ischemic region
and set the synthetic TMP values according to (6). We then
performed forward simulation to obtain the torso-surface po-
tentials, which, after being contaminated with noise, served
as the input for the inverse calculation. Ischemic regions were
estimated from the calculated TMP field by the following
criterion: if the TMP at a node was below a threshold value,
the node was an ischemic site and all elements adjacent to
this node were regarded as ischemic regions. The threshold
value for a given TMP field v was determined by

threshold = mean(v)− 0.4(mean(v)−min(v)), (14)

based on the hypothesis that the TMP at an ischemic site
should be notably below the average TMP voltage because
ischemic regions were assumed to account for a minor part
of the myocardium.

6) Evaluating the Shape of Ischemia: Besides visual
comparison, we quantitatively evaluated how close the re-
constructed ischemic region is to the “true” region by two
metrics: the centroid distance, which measures the distance
between the centers of two shapes, and the Hausdorff dis-
tance, which is defined below for two shapes X and Y :

Hdist = max {max
x∈X

min
y∈Y

d(x, y), max
y∈Y

min
x∈X

d(x, y) }

where d(x, y) denotes the Euclidean distance between points
x and y. The Hausdorff distance means that, from any point
in either shape, one is guaranteed to reach a point in the other
shape within the Hausdorff distance. The Hausdorff distance
measures the proximity of “contour” of two shapes, whereas
the centroid distance measures the proximity of “position”.

III. RESULTS

1) Ischemia Setup: Fig 1 shows a case of left anterior
transmural ischemia and its resulting extracellular potential

Fig. 1. (A): the “true” ischemic region denoted by the green color. (B):
the resulting extracellular potential field. The mesh contains 9610, 1005
and 498 triangle elements in the torso volume, the myocardium and the
ventricular cavities, respectively. Only the myocardium mesh is shown.

Fig. 2. Inverse solutions obtained by applying a Laplacian constraint (LC)
on the TMPs, with and without the extra negative constraint (13). The input
body-surface potentials were corrupted with 30dB white noise. The top row
shows the calculated TMPs. The bottom row compares the true ischemic
region with the one inferred by thresholding. Red color: healthy tissue.
Green: the ischemic tissue that was correctly recovered. Blue: the ischemic
tissue that was not recovered. Yellow: healthy tissue but incorrectly judged
to be ischemic. The centroid distance (Cdist) and Hausdorff distance (Hdist)
are given for each detected ischemic region.

field (the forward solution). In following sections, recon-
structed values are to be compared with this “ground truth”.
Recall that the TMPs were -30mV for ischemic region and
0mV for health region.

2) Solution by Inequality Constraints: Here we present an
example of calculating the TMP using the general optimiza-
tion framework (10)-(12). We constrained the Laplacian of
the TMPs by letting W be a discrete Laplacian operator
obtained by second-order Taylor expansion at each node.
From recovered TMPs, ischemic regions were identified by
the thresholding (14). The results are shown in Fig 2. Since
the optimization here was equivalent to the second-order
Tikhonov regularization, the calculated TMPs were smoothed
compared to the true values. However, with proper color
rescaling one may see that the recovered TMPs preserved the
polarity of the original field, thereby enabling a satisfactory



Fig. 3. Inverse simulations with three heart models. Each row shows
the calculated TMPs (left) and the inferred ischemic regions (right). The
second-order constraint along with the negative constraint was used, and
30dB input noise was added on the body-surface potential. Heart A has
600 nodes and 1005 triangle elements. Heart B has 890 nodes and 1530
elements. Heart C has 1716 nodes and 3093 elements. The color code for the
right column is given as follows. Red: healthy tissue. Green: the ischemic
tissue that was correctly recovered. Blue: the ischemic tissue that was not
recovered. Yellow: healthy tissue but incorrectly judged to be ischemic. The
centroid distance (Cdist) and Hausdorff distance (Hdist) are given for each
detected ischemic region.

estimate of the ischemic region after a simple thresholding.
Fig 2 also shows how the inverse solution was notably

improved by adding even a simple negative constraint (13).
The regular Laplacian constraint yielded spurious elevations
of TMP in the regions near the ischemic zone where the TMP
there was expected to be the same as the rest of the heart.
Adding the negative constraint not only removed this artifact,
but also enhanced the TMP difference between the ischemic
and healthy regions, and thereby yielded better ischemia
recovery by both visual and quantitative assessments (see
the centroid and Hausdorff distances). In real situations, the
upper bound of TMPs may not be 0mV. A good substitute
estimate would be the average of a fast-obtained inverse
solution.

3) Multi-Resolution Study: The multi-resolution study has
two goals: 1) to examine the robustness and scalability
of our optimization framework, and 2) to explore how
resolution will impact the numerical ill-conditioning of the
inverse problem. This study helps researchers to discretize
the bioelectric model with proper fidelity so as to achieve

a good balance between model accuracy and numerical
difficulty. We conducted a preliminary multi-resolution study
by testing the optimization framework on three heart models,
as shown in Fig 3. When increasing the model fidelities, the
inverse solutions remained largely consistent but were not
significantly improved, indicating that a well-refined model
may not be cost-effective for inverse simulations.

IV. DISCUSSION AND CONCLUSION

This paper reports our initial investigation of estimating
myocardial ischemia by inversely computing the myocardial
TMPs from body-surface potentials. Our main contribution
was a constrained optimization framework for solving the
inverse ECG problem. The framework was a generalization
of previous methods and provided ample flexibility for users
to apply various physiologically-based constraints so as to
improve the inverse solutions. By avoiding deriving the lead-
field matrix as in traditional approaches, the framework
greatly reduced computation. Moreover, because the frame-
work incorporated as a constraint the associated forward
problem, which dictates the relationship of all physical
variables, it enabled one to flexibly adjust individualized
resolutions for each physical variable during the inverse
calculation. Such adjustment is often necessary when solving
inverse problems, in order to balance the model accuracy, ill-
conditioning, and computation cost. In contrast, in tradition
methods each resolution adjustment requires the lead-field
matrix be completely recalculated. Finally, the framework
was also well supported by mature, reliable algorithms and
packages.

Our future work includes extending this framework to
simulations in 3D and exploring advanced constraints. With
realistic anatomical models in 3D, the problem size and com-
putation cost will become a major concern, so an important
study would be to identify the model resolution that balances
accuracy, ill-conditioning and computation cost.
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