
Identifying Myocardial Ischemia by Inversely
Computing Transmembrane Potentials from

Body-Surface Potential Maps
Dafang Wang, Robert M. Kirby, Rob S. MacLeod, Chris R. Johnson

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112
Email: {dfwang, kirby, macleod, crj}@sci.utah.edu

Abstract—We attempted to solve the inverse electrocardio-
graphic problem of computing the transmembrane potentials
(TMPs) throughout the myocardium from a body-surface po-
tential map, and then used the recovered potentials to estimate
the size and location of myocardial ischemia. We modeled the
bioelectric process by combining a static bidomain heart model
with a torso conduction model. Although the task of computing
myocardial TMPs at an arbitrary time instance is still an open
problem, we showed that it is possible to obtain TMPs with
moderate accuracy during the ST segment by assuming all
cardiac cells are at the plateau phase. Moreover, the inverse
solutions yielded a good estimate of ischemic regions, which
is of more clinical interest than merely reporting the voltage
values. We formulated the inverse problem as a minimization
problem constrained by a partial differential equation that
models the forward problem. This framework greatly reduces
the computational costs compared with the traditional approach
of building the lead-field matrix. It also enables one to flexibly set
different discretization resolutions for the source variables and
other state variables, a desirable feature for solving ill-posed
inverse problems. We conducted finite element simulations of
a phantom experiment over a 2D torso model with synthetic
ischemic data. Preliminary results indicated that our approach is
feasible and suitably accurate for the common case of transmural
myocardial ischemia.

Index Terms—Inverse Problem, Electrocardiography, Finite
Element Method, Myocardial Ischemia

I. INTRODUCTION

Myocardial ischemia, a precursor of myocardial infarction,
occurs when cardiac myocytes are damaged due to lack of
oxygen or nutrients, normally caused by occlusion of coronary
arteries. It is one of the most common diseases and a leading
cause of death in the western world. Myocardial ischemia is
clinically diagnosed in part by the elevation/depression of the
ST segment in electrocardiographic (ECG) signals, because
the ST-shift is caused by the injury currents resulting from
the different transmembrane potentials between healthy and
ischemic tissues. However, analyzing ECG morphologies has
limited ability to localize ischemic regions, and a computer-
ized method achieving that function would effectively assist
physicians in diagnosis and treatment. This paper presents a
mathematical approach for identifying ischemic regions by
solving an inverse source problem: to compute the transmem-
brane potentials (TMPs) throughout the myocardium from the
voltages measured at the body surface.

The goal of inverse ECG problems is to non-invasively es-
timate cardiac electrical activities from their induced voltages
measured at the body surface. While inverse ECG problems
traditionally seek cardiac sources such as epicardial potentials
[1], [2] or activation sequences [3], [4], studies of myocardial
ischemia typically consider the transmembrane potential as the
source model[5]–[9].

However, research has been limited on reconstructing the
TMPs within the heart from the body-surface potentials. It
still remains an open problem to accurately calculate the trans-
membrane potentials at an arbitrary time instance, because
this inverse problem is severely ill-posed and the solution
is not unique. Methods for localizing myocardial ischemia
have been proposed such as the model-based optimization [10]
or the level set method [11], but these methods avoid direct
calculation of TMPs by parameterizing the location and shape
of ischemic regions. Another study [12] localized myocardial
ischemia by calculating the integral of TMPs during the
ST-segment and reported very optimistic recoveries, as the
integration supposedly reduced the effect of measurement
noise. Finally, the aforementioned methods, before performing
the inverse calculation, form a so-called lead-field matrix that
maps the TMPs to the body-surface potentials. This process
has high computational cost because the associated bidomain
problem needs to be solved multiple times.

Our study is based on the hypothesis that despite the
ill-posed nature of the problem, one may obtain modestly
accurate TMPs at one time instant during the ST interval.
Although the reconstructed voltage values are not sufficiently
accurate for precise quantification of the potentials, their
qualitative “patterns” may enable a satisfying recovery of
the size and position of ischemic regions. We modeled the
ECG problem by combining a mono-domain torso model
with a static bidomain heart model, which represents the
cardiac source by the distribution of TMPs. We formulated
the inverse problem as a minimization problem constrained
by some partial differential equations (PDE) that models the
forward problem. The framework of constrained minimization
was introduced to the inverse TMP problem by Nielson et
al.[11], and we generalized it and included more constraints.
This approach differs from the traditional approach of forming
a lead-field matrix and “inverting” it by direct Tikhonov
regularization, and has two advantages: 1) less computational



cost, and 2) it allows a flexible setting of the discretization
resolution for the TMPs and other state variables. The latter
is desirable as the ill-posed inverse problem typically requires
different resolutions for the sought-for unknowns and other
state variables [13], [14].

II. METHOD

A. The Mathematical Model

Our bioelectric model consists of a static bidomain heart
model combined with a mono-domain torso model, as shown
in Fig 1. The whole mathematical model is given by the
following set of equations:

∇ · (σi + σe)∇ue(x) = −∇ · σi∇v(x), x ∈ H (1)
∇ · (σt∇u(x)) = 0, x ∈ Ω (2)
~nT · σt∇u(x) = 0, x ∈ ΓT (3)

ue(x) = u(x), x ∈ ΓH (4)
−~nH · σe∇u(x) = ~nT · σt∇u, x ∈ ΓH (5)

~nH · σi∇(v + ue) = 0, on ΓH . (6)

Eq (1) is the static bidomain equation. As we consider only
the plateau phase during which the transmembrane potentials
remain largely stable, the time-varying term in the standard
bidomain equation is removed, leading to Eq (1). H is the heart
volume, σi and σe are the intra/extra-cellular conductivity,
ue is the extracellular potential and v is the transmembrane
potential. Eq (2) describes the passive torso volume conductor
Ω, where u is the potential field within the torso and σt denotes
the tissue conductivity. Eq (3) implies zero electrical currents
leave the torso surface, ΓT . Eq (4) - (6) state the boundary

Fig. 1. The torso mesh. The red part is the myocardium. The cyan region
denotes the two ventricle cavities, which are treated as part of the torso volume
Ω in our model equations.

conditions at ΓH , the interface between the heart and the torso.
Eq (4) implies the extracellular potential is continuous. Eq (5)
states that the electrical currents flowing out of the heart is
equal to the currents flowing into the torso. Eq (6) means
that the cardiac intracellular space is insulated from the torso.

(v+ue gives the intracellular potential.) Details of this model
can be found in Chapter 5 of [15].

By combining the heart and torso models, we may express
the above equations in a simplified form of a Poisson equation:

∇ · σ∇u(x) =
{

0, x ∈ Ω,
−∇ · σi∇v(x), x ∈ H, (7)

~nT · σ∇u(x) = 0, x ∈ ΓT , (8)

u(x) =
{

torso potential, x ∈ Ω,
extracellular potential, x ∈ H, (9)

σ(x) =
{
σi + σe, x ∈ H,
σt, x ∈ Ω. (10)

Eq (7) dictates the relation between the transmembrane po-
tential field v(x) and its resulting extracellular potential field
u(x). The forward problem estimates the field u given an
characterization of v, whereas the inverse problem aims to
recover v given u(x) that resides on the body surface. In this
study, we solved Eq (7) by the finite element method, which
converts the equation into a matrix system as follows:

Au = Sv (11)

where A and S are the stiffness matrix corresponding to the
operators on both sides of Eq (7).

B. Ischemia Modeling

We adopted a synthetic ischemia model proposed in [16]
and used for inverse simulation in [17], in which healthy and
ischemic heart tissues are characterized by the transmembrane
potential at the plateau phase. The setting is given below:

v(x) =
{

0 mV, in healthy tissue;
−30 mV, in ischemic tissue. (12)

where plateau potentials between healthy and ischemic cells
differ by an assumed 30 mV, an approximation suggested by
previous studies and, more importantly, a value that is not
critical to the simulations because of the threshold operation
performed on the solution (see below). When implementing
Eq (12) by the finite element method, we assumed a linear
transition of v(x) in the border zone: when a node belongs to
the ischemic tissue and its adjacent node belongs to the healthy
tissue, v is a linear function within the element connecting the
two nodes.

With this model, we simulated the effect of myocardial is-
chemia of different locations and sizes. Our inverse calculation
did not incorporate any a priori information of the TMP field.
When estimating the ischemic regions based on the inverse
solution, we exploited the assumption that the TMP field at
the plateau phase is binary: any region where the TMP is
below a threshold value is regarded as an ischemic region.

C. Solve the Inverse Problem

The traditional way of solving our inverse ECG problem is
to numerical discretize the Poisson equation (7) and derive a
lead-field matrix K that relates the torso surface potential uT

and the TMP v: uT = Kv. Because K is ill-conditioned,



regularization such as the Tikhonov method is applied to
acquire v:

v = argmin
v

{‖Kv − uT ‖2 + λ‖Wv‖2} . (13)

Although this approach is feasible for the inverse problems
that recover epicardial potentials or activation sequences, its
computational cost is too high to make it feasible for the
inverse problem we consider. Suppose the discrete Poisson
equation (11) has a size of m and v has a size of n, deriving
the lead-field matrix requires one to solve a m by m linear
system for n times. For a bidomain model in three dimension,
m and n can easily reach hundreds of thousands.

We solved the inverse problem by formulating it as a
constrained minimization problem, given as follows:

v = argmin
v
‖W (v − vprior)‖2 (14)

subject to Au = Sv (15)
and ‖Qu− uT ‖2 ≤ ε‖uT ‖2 (16)

where W is a matrix describing which property of the inverse
solution is to be constrained. The matrix Q maps the entire
potential field u to the measurement locations at the body
surface. Eq (16) states that the misfit between the predicted
data and the measured data (uT ) should be within the noise
level ε, which is known in experiments. Eq (15) is the discrete
version of the forward problem Eq (7).

This constrained minimization problem is well-studied by
the optimization community. It is transformed into a quadratic
program or a second-order cone program, and then solved by a
primal-dual algorithm or a log-barrier algorithm [18]. Mature
optimization solvers are available for this task. We used the
CVX, a package for specifying and solving convex programs
[19].

It is worth mentioning that the constrained minimization
formulation is essentially equivalent to the Tikhonov regu-
larization given by Eq (13), but without needing to tune the
parameter λ. Instead ones need to search a trust region of
radius ε when solving the minimization, e.g., by interior-point
methods.

D. Simulation Setup

We conducted finite element simulation of a phantom ex-
periment based on a 2D thorax domain. As shown in Fig
1, the thorax domain consists of 1329 triangle elements in
the torso volume, 547 elements in the myocardium, and 299
elements in the ventricular cavities, with a total of 1141 nodes.
Both the extracellular and transmembrane potential fields were
defined over mesh nodes. As the goal of the current study
was to validate the feasibility of the optimization method,
we attempted to minimize the effect of the conductivities by
using simple phantom values. The conductivities are given as
σi = σe = [0.5, 0.5] and σt = [1.0, 1.0], along the longitudinal
and transverse directions, respectively.

We first specified an ischemic region in the myocardium,
and set the synthetic transmembrane potential data accord-
ing to the model of Eq (12). We then performed forward
simulation to obtain the torso-surface potentials, which, after
being contaminated with noise, served as the input for the
inverse calculation. Ischemic regions were estimated from the
calculated TMP field by the following criterion: if the TMP at
a node was below a threshold value, the node was an ischemic
site and all elements adjacent to this node were regarded as
ischemic regions. The threshold value for a given TMP field
v was determined by

threshold = mean(v)− 0.3(mean(v)−min(v)) (17)

based on the hypothesis that the TMP at an ischemic site
should be notably below the average TMP voltage because
ischemic regions were assumed to account for a minor part of
the myocardium.

III. RESULTS

Fig 2 shows a case of transmural ischemia at the anterior
right ventricle and its resulting extracellular potential field (the
forward solution). Recall that the transmembrane potentials at
the plateau phase were -30mV for ischemic region and 0mV
for health region.

Fig. 2. Left: the “true” ischemic region denoted by the green color. Right:
the resulting extracellular potential field.

We solved the inverse problem by applying the zero-order
(magnitude), first-order (gradient), and second-order (Lapla-
cian) constraints on the pursued transmembrane potentials,
respectively. This was achieved by choosing different operator
W in Eq (14). Because our optimization framework is math-
ematically equivalent to the Tikhonov method, we hereafter
use the term “the kth-order Tikhonov method” to describe
which quantity is being minimized. Readers are reminded
that the methods were implemented by the aforementioned
optimization framework.

The zero-order Tikhonov method yielded a nearly all-zero
solution and thus are not presented in this paper. In the first-
order Tikhonov (FOT), W was the variational-form gradient
operator we previously developed [20], for it is difficult to
formulate a discrete gradient operator over irregular meshes. In
the second-order Tikhonov (SOT), W was a discrete Laplacian
operator obtained by second-order Taylor expansion at each
node, as proposed in [21].



Fig. 3. Inverse solutions by the FOT given 30dB input noise. A: the
computed TMP field. B: the inferred ischemic region. C: the reconstructed
extracellular potential field.

Fig. 4. Inverse solutions by the SOT given 30dB input noise. A: the
computed TMP field. B: the inferred ischemic region. C: the reconstructed
extracellular potential field.

The inverse calculation was made with the input torso
potential being contaminated by a white noise of 30dB SNR
ratio. The results are shown in Fig 3 for the FOT method
and in Fig 4 for the SOT method. The results achieved by
both methods were similar and consistent. As anticipated, the
L2-norm-based Tikhonov regularization yielded a smoothed
inverse solution of transmembrane potentials. However, with
proper color rescaling one may see that the recovered fields
preserved the polarity of the original field, thereby enabling
a satisfactory estimate of the ischemic region after a simple
thresholding.

IV. DISCUSSION

The forward simulation in Fig 2 shows that transmural
ischemia results in an elevation of extracellular potentials at
the ischemic region and two regions of depression over op-
posite sides of the ischemic region. This elevation/depression
pattern is a characteristic of transmural ischemia according
to previous studies [5], [6]. The consistency of our results
with the literature demonstrates the efficacy of our method
of integrating the bidomain heart with the torso for ischemia
simulations.

The first-order and second-order Tikhonov methods pro-
duced results of similar quality. Both methods successfully
located the position of ischemia, and the SOT was slightly
better in estimating the shape of the ischemic region. The
calculated TMPs (by both methods) were not in the range
of -30-0 mV as given by our source model. The reason is
that we provided no a priori knowledge of the myocardial
transmembrane potentials, without which, there is insufficient
information for accurate absolute values. The goal of ischemia
detection is simply to identify the region affected rather than
the absolute values of TMPs.

We also observed that elevated values of TMP in some
healthy regions near the ischemic zone, even though these
regions are expected to have the same amplitude as the rest of
the heart. This artifact is due to the limitation of the ordinary
Tikhonov regularization, which applies a constraint globally to
the entire heart without considering local features. Additional
constraints may be included in the inverse optimization, such
as a condition that the normal regions should have uniform
amplitude. This is a possible direction for future research.

The constrained optimization framework for inverse calcu-
lation has several advantages. First, this framework allows
flexible integration of multiple constraints. One may apply
not only constraints on the transmembrane potentials but also
constraints on other state variables such as the extracellular
potentials or conductivities. The reason is that all the vari-
ables are intrinsically related by the forward model, which is
incorporated in the framework as a constraint.

A second advantage is that this framework allows one to
flexibly discretize different variables with different resolutions.
Our previous studies revealed that discretization choices heav-
ily impact the inverse ECG solutions in practical situations
[13], [14]. In the ischemia-estimation study, one may desire
to limit the resolution for the transmembrane potential field
in order to constrain both the numerical ill-conditioning and
computation cost. Conversely, a fine mesh for calculating the
bidomain model may be appropriate for obtaining accurate
extracellular potentials. The constrained minimization frame-
work enables such specific adjustments so as to make the
computation tractable while maintaining accuracy.

Another technical issue worth mentioning is that the inverse
solution is sensitive to the numerical accuracy of the operator
W that specifies the constraint. The myocardium geometry is
very irregular, so one needs to ensure the numerical values for
the operator is accurate over the geometry, especially at the



boundary. If the constraining operator is inaccurate or excludes
the boundary, the inverse solution may be poorly regularized
at the boundary. In this study, we constructed the Laplacian
and gradient operators based on the entire heart geometry
(including the cavities), and then extracted the submatrix that
corresponds to the myocardium.

V. CONCLUSION AND FUTURE WORK

This paper reports our initial investigation of estimating
myocardial ischemia by inversely solving the transmembrane
potentials within a heart from a body-surface potential map.
We integrated the bidomain heart model with the mono-
domain torso model, and solved the inverse problem within
a constrained minimization framework. Our motivation was
that although accurately reconstructing the transmembrane
potentials is highly difficult, if not unlikely, it may be possible
to reconstruct the “patterns” of the TMP field which enables
us to estimate the ischemic regions in the heart. Simulation
results based on a 2D torso anatomy with synthetic ischemic
data indicated that our approach is feasible.

Future work include extending this approach to three-
dimensional simulations and exploring advanced constraints
that yield more accurate inverse solutions. Total variation
method and L1-norm minimization are some methods worth
investigation. When it comes to realistic anatomical models
in three dimension, the problem size and computation cost
will become a major concern, and it is important to explore
discretization strategies that achieve a good balance between
model accuracy, ill-conditioning and computation cost.

Our ultimate goal is to validate the simulated results with
the experimental data from the the clinical ischemia research
conducted at the Cardiovascular Research and Training Insti-
tute at the University of Utah.
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