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ABSTRACT

Successful employment of numerical techniques for the for-
ward and inverse electrocardiographic (ECG) problems re-
quires the ability to both quantify and minimize approxi-
mation errors introduced as part of the discretization pro-
cess. Conventional finite element discretization and refine-
ment strategies effective for the forward problem may be-
come inappropriate for the inverse problem because of its
ill-posed nature. This conjecture leads us to develop dis-
cretization strategies specifically for the inverse ECG prob-
lem. By quantitatively analyzing the connection between the
ill-posedness of the continuum inverse problem and the ill-
conditioning of its discretized version, we propose strategies
involving hybrid-shaped finite elements to discretize the in-
verse ECG problem effectively and efficiently. We also pro-
pose the criteria for evaluating the quality of the resultant dis-
crete system. The efficacy of the strategies are demonstrated
on a realistic torso model in both two and three dimensions.

Index Terms— electrocardiography; inverse problem; fi-
nite element method; adaptive refinement; resolution studies

1. INTRODUCTION

Computer modeling of the bioelectric fields in Electrocar-
diography (ECG) has received considerable interest in recent
years because it provides potential clinical tools for nonin-
vasive diagnosis of cardiac diseases (e.g. ischemia and ar-
rhythmia), guidance of intervention (e.g. ablation and drug
delivery), and evaluation of treatments (e.g. defibrillation).
Both the forward and inverse ECG simulations normally con-
sist of mathematical modeling of the biophysical process as
well as geometric approximation of the anatomical human
body structures. The modeling equations are then discretized
into a numerical system to provide practical solutions. It is
vital to assess how accurately numerical techniques solve the
mathematical models, the so-called verification process. In
order to reduce discretization errors, computational scientists
generally use refinement strategies targeted mostly towards
well-posed forward problems. However, inverse problems
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may require different discretization considerations than their
corresponding forward problem counterparts. This paper is
devoted to the numerical discretization of inverse ECG prob-
lems with the finite element method (FEM).

We consider one common formulation of the inverse ECG
problem in which one seeks to reconstruct the electric poten-
tials on the heart surface from the body-surface ECG mea-
surements. The mathematical model is given as follows:

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω (1)
u(x) = u0(x), x ∈ ΓD (2)

~n · σ(x)∇u(x) = 0, x ∈ ΓN , (3)
u(x) = g(x), x ∈ ΓN (4)

where Ω denotes the human torso which is bounded by ΓD,
the epicardial (Dirichlet) boundary, and ΓN , the torso (Neu-
mann) boundary. The function u(x) is the potential field on
the domain Ω, u0(x) represents the epicardial potential, and
g(x) represents the measured body surface potential. σ(x)
is the symmetric positive definite conductivity tensor, and ~n
denotes the outward facing vector normal to the torso surface.
The forward problem calculates the potential field u(x) given
the epicardial source u0(x). The inverse problem attempts to
recover u0(x) from the measurement g(x).

Discretization strategies for the FEM typically either uti-
lize adaptive refinements based on certain element-wise error
estimators, or refine regions where the potential field has high
spatial gradients [1]. Refinement stategies effective for for-
ward problems may not, however, be appropriate in inverse
problems–for example, increasing the numerical resolution
beyond a certain level may continue to improve the accuracy
of the forward problem, but meanwhile worsens the condi-
tioning of the inverse problem and reduces the solution accu-
racy.

In contrast to the well-posed forward problem, the inverse
problem is often severely ill-conditioned, requiring regular-
ization techniques to guarantee a stable solution. For exam-
ple, one form of regularization is the discretization itself [2].
We aim to develop discretization strategies that optimally al-
leviate the ill-conditioning of the inverse ECG problem. The
strategies can be used in combination with other classical reg-
ularization methods so as to achieve additional improvement
of the inverse solution accuracy.



2. INVERSE PROBLEM, DISCRETIZATION AND
ILL-POSEDNESS

2.1. Finite Element Discretization

The potential field u(x) can be decomposed into a homoge-
neous partw(x) which satisfies both boundary conditions and
a homogeneous part v(x) characterized by:

∇ · (σ(x)∇v(x)) = −∇ · (σ(x)∇w(x)), x ∈ Ω (5)
v(x) = 0, x ∈ ΓD (6)

~n · σ(x)∇v(x) = 0, x ∈ ΓN . (7)

The new formulation implies that one first performs a “lift-
ing” operation of the epicardial boundary conditions onto the
function space defined over the entire domain and then solves
a homogeneous problem whose forcing function includes the
heterogeneous term. There are three approximation issues
involved in this process: (1) how accurately the epicardial
boundary condition u0(x) is represented; (2) the choice of
the lifting operator and the accuracy of its projection from the
epicardial boundary to the volume; and (3) the accuracy of
solving the homogeneous problem v(x).

The FEM tessellates the torso volume Ω and constructs a
set of basis functions, each of which associated with one ver-
tex. The potential field u(x) is represented by the linear com-
bination of basis functions weighted by the potential value on
corresponding vertices. Substituting this expansion into the
differential equation (1) and applying the Galerkin method
yields a linear system of the form:(
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where uH , uT , and uI denote the vector of potential values
on the discretized heart surface (H), the torso surface (T), and
inside the torso volume(I). The stiffness matrix A is parti-
tioned into six submatrices according to the interaction among
the three divisions.

Equation 8 describes the impacts of aforementioned three
approximation issues. Once uH determines the resolution of
the epicardial potentials, the accuracy of the FEM approxima-
tion is dictated by the discretization of the heart/volume inter-
action (AIH ) as well as the volume conductor (the left-side
matrix). We will address the resolution choice in combina-
tion with the concern of ill-posedness in the later section.

Equation 8 is then solved to derive the relationship between
the epicardial potentials and the resulting body-surface poten-
tials in the form of:

uT = KuH (9)

where K = M−1N is termed as the transfer matrix. The
inverse ECG problem attempts to recover uH given uT ; how-
ever, K is severely ill-conditioned.

2.2. Ill-Conditioning of the Numerical System

Since the primary challenge of solving the inverse ECG prob-
lem is to overcome its physical ill-posedness, we evaluate
the quality of different FEM discretizations by assessing the
ill-conditioning of their resultant transfer matrix K. This is
achieved by examining the singular values of K and utilizing
the concept of valid and null spaces of K.

Assuming σi are the singular values of K ∈ <m×n(m >
n), and ui, vi are the left and right eigenvectors of K, then we
have:

uT = K · uH =
n∑

i=1

uiσi(vT
i uH) =

n∑
i=1

αiui (10)

where αi = σi · (vT
i uH) is a scalar value representing the

product of the σi and the projection of uH on the ith eigenvec-
tor of the discretized epicardial function space. As σi rapidly
drops to zero, the epicardial space can be decomposed into
a valid subspace spanned by low indexed eigenvectors and a
null subspace spanned by high indexed eigenvectors. Only
the fraction of uH that falls in the valid space contributes to
the observable uT and can thereby be recovered.

Accordingly, a slowly-descending singular value spectrum
with more non-trivial singular values indicates a better condi-
tioning of a discrete inverse problem. The fraction of uH in
the valid subspace estimates the best solution recoverable, re-
gardless of regularization methods, regularization parameters,
error measurements, or input noise.

2.3. Regularization Methods and Parameter Selection

Since K is severely ill-conditioned and the measured data uT

is inevitably contaminated with noise, solving 9 requires reg-
ularization. Regularization introduces extra constraints so as
to yield a well-posed problem, the solution to which is stable
and not too far from the desired one.

We solve the inverse problem by adopting the classic
Tikhonov regularization expressed as

uH(λ) = argmin{‖KuH − uT ‖22 + λ2‖LuH‖2} (11)

where L is the discrete operator of the second order derivative,
and λ is a regularization parameter that controls the weight
placed on the regularization relative to that placed on solving
the original problem. The value of λ is determined by an
exhaustive search.

The “optimal” value of λ (however it is selected) re-
flects the ill-condition severity of the inverse problem being
solved. A small λ means that the problem is not severely ill-
conditioned and therefore does not require much regulariza-
tion, whereas a large λ offers the opposite implication. In the
extreme case of solving a well-conditioned problem, the solu-
tion is obtained by minimizing the residual error only and no
regularization is needed (λ = 0). The parameter λ provides
another means to assess the ill-conditioning during the regu-
larization process, in addition to evaluating singular values.



2.4. Ill-Posedness Considerations

Since the human body is known to respond differently to elec-
tric signals of different spatial frequencies, Fourier analysis
aids us in quantifying how ill-conditioned the system is, and
thus helps provide a means of forming guidelines for dis-
cretization. We discover that the ill-posedness is an expo-
nential function of the spatial frequency (w.r.t.the azimuthal
variable in 2D or any closed surfaces in 3D). Reconstructing
epicardial potentials in higher fidelity therefore implies worse
conditioning of the discrete inverse problem. This discretiza-
tion concern differs from that in the forward problem.

Moreover, the heart-surface resolution gives the band-limit
of the epicardial potentials one seeks to recover, whereas the
volume discretization determines the band-limit of the actu-
ally solvable potential. Practitioners should ensure the former
not exceeding the latter, so as to avoid extra ill-conditioning
not due to the physical nature but to inadequate discretization.

3. RESULTS OF DIFFERENT MESH REFINEMENTS

3.1. Uniform Refinement in 2D

Although uniform refinements effectively reduce errors in the
forward problem solution (Figure 1 (top)), they worsen the
singular values and hence the ill-conditioning of the transfer
matrix K in the inverse problem (Figure 1 (bottom)). This
example shows discretization strategies for forward problems
should be cautiously carried over to inverse problems.

3.2. Volume Refinement in 2D

Figure 2 (A–C) displays three discretization levels of the
torso, with both the heart and torso boundary resolutions be-
ing fixed. Such volume refinement improves the singular
value spectrum of K (Panel D), leading to more accurate re-
construction of epicardial potentials (Panel E). This obser-
vation is also supported by Table 1. In the noise-free case,
volume refinement reduces the regularization amount λ from
0.0077 to 0.0005, indicating the improvement of the condi-
tioning of K; the relative error (RE) in the inverse solution
is correspondingly reduced from 8.81% to 4.19%. The im-
provement is also observed in the case of 30dB noise. Note
that the proportion of non-trivial singular values in the overall
eigenspace of K is determined by the resolution of the poly-
gon that encloses the interior boundary with the least number
of nodes. The gap between the singular value spectrum of
A and that of C indicates the ill-conditioning caused by in-
sufficient discretization but not associated with the ill-posed
nature of the continuum problem, as discussed in section 2.4.

3.3. Volume Refinement and Hybrid Meshing in 3D

Given that the epicardial surface resolution determines the ill-
conditioning while the normal direction resolution captures

Fig. 1. (top): Forward solution error convergence with increasingly refined
meshes labeled asA-D. Only MeshA and C are displayed. |uH | represents
the epicardial resolution, |ūT − uT | means the solution error on the torso
surface. (Bottom): Singular value spectra of K resulting from meshes A-D,
normalized for visual comparison.

the high gradient field around the heart, it is natural to de-
couple both resolutions by placing prism elements which do
not have as restrictive aspect-ratio issues as typical in tetra-
hedral elements (or substituting quadrilaterals for triangles in
2D), as illustrated in Figure 3(top). Figure 3(bottom) com-
pares such hybrid meshes with ordinary tetrahedral meshes in
terms of their resultant transfer matrices’ singular values. Un-
der similar discretization levels, the hybrid mesh yields better
conditioned transfer matrices. In both types of meshes, vol-
ume refinements preserving boundary resolutions extend the
valid singular value spectrum, which is consistent with the 2D
situation discussed in Section 3.2.

4. CONCLUSIONS

This study investigates how the FEM discretization of the in-
verse ECG problem influences the numerical conditioning of
the resulting discrete system. We summarize the refinement
guidelines for inverse problems as follows:

First, refining the heart surface increases the ill-
conditioning the discretized inverse system. One should re-
alistically assess the heart-surface resolution sufficient for the
specific problem of interest but be cautious to refine beyond
the minimum resolution needed.



Fig. 2. (A)-(C): torso meshes in ascending volume resolutions and with
the same boundary resolutions. (D): singular values of K and AIH . (E):
reconstructed epicardial potentials.

Table 1. Relative errors (RE) of the inverse solutions and the correspond-
ing optimal regularization parameter λ, resulting from the simulations on
torso meshes shown in Figure 2. RE measures the ratio of the error to the
exact solution in the L2 norm.

Input Noise Noise Free 30dB 20dB
RE λ RE λ RE λ

Mesh A 8.81% 0.0077 9.02% 0.0080 14.33% 0.0205
Mesh B 5.85% 0.0016 7.90% 0.0042 15.45% 0.0207
Mesh C 4.19% 0.0005 7.17% 0.0035 15.26% 0.0215

Note: the random input noise is in normal distribution. Each data
presented above is the arithmetic average of 50 repeated simulations.

Second, refining the body surface improves the inverse sys-
tem to some extent, but only when the body-surface ECG
measurements is also increased.

With the above two items in place, the volume conductor
should be refined sufficiently to capture both the features of
the torso data and the features implied by the discretization of
the heart surface. For computational efficiency, beyond that
level is unnecessary.

Fig. 3. (Top): a hybrid torso mesh example with one layer of prisms around
the heart approximated by a cylinder. The blue dots represent vertices of the
tetrahedral volume mesh. (Bottom):singular values of K resulted from two
types of mesh. Each mesh type has two meshes in the same boundary surface
discretizations but different discretization levels for the volume.

Last, increasing the resolution normal to the heart surface
improves the approximation of the boundary-to-volume lift-
ing operator. This requires decoupling tangential and normal
resolutions, for which we advocate hybrid discretization –
quadrilateral elements in 2D and prism elements in 3D. These
geometries also connect well with tetrahedral or hexahedral
elements filling the volume.

Future work includes properly defining the patterns and
spatial frequencies of epicardial potentials on a 3D surface,
and understanding the impact of anisotropic conductivity.
Another direction is optimizing resource distributions given
limited computational resources.
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