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Progressive Tree-Based Compression of
Large-Scale Particle Data

Duong Hoang, Harsh Bhatia, Peter Lindstrom, and Valerio Pascucci

Abstract—Scientific simulations and observations using particles have been creating large datasets that require effective and efficient
data reduction to store, transfer, and analyze. However, current approaches either compress only small data well while being inefficient
for large data, or handle large data but with insufficient compression. Toward effective and scalable compression/decompression of
particle positions, we introduce new kinds of particle hierarchies and corresponding traversal orders that quickly reduce reconstruction
error while being fast and low in memory footprint. Our solution to compression of large-scale particle data is a flexible block-based
hierarchy that supports progressive, random-access, and error-driven decoding, where error estimation heuristics can be supplied by
the user. For low-level node encoding, we introduce new schemes that effectively compress both uniform and densely structured
particle distributions. Our proposed methods thus target all three phases of a tree-based particle compression pipeline, namely tree
construction, tree traversal, and node encoding. The improved efficacy and flexibility of these methods over existing compressors are
demonstrated through extensive experimentation, using a wide range of scientific particle datasets.

Index Terms—particle datasets, compression (coding), data compaction and compression, hierarchical, progressive decompression,
coarse approximation, tree traversal, multiresolution, visualization
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1 INTRODUCTION

A S a common discrete representation beside grids, par-
ticles — moving points in space that carry attributes

— are frequently used in scientific applications, including
molecular dynamics [1], [2], [3], fluid dynamics [4], [5], [6],
computational cosmology [7], [8], [9], imaging of objects and
environments [10], [11], [12], and plasma physics [13]. With
rapid advances in computational capabilities, simulations
and equipment can generate datasets with trillions of parti-
cles [8], [13], [14], posing serious challenges to studying such
datasets for scientific insights. Compression is a promising
solution to the problem of ever-expanding data. However,
no widely accepted compressors for particle data currently
exist, and attempts to adapt grid-based compressors for
particles [15], [16] have seen limited success. Outside of
HPC, techniques designed to compress point clouds rep-
resenting scans of objects [17], [18], [19] focus largely on
improving compression ratios at the expense of scalability
in performance, making them unsuitable for large datasets.
On the other hand, multiresolution rendering systems [7],
[8], [20], [21], [22] can handle large data but do not aim for
effective compression.

Toward bridging the gap between high compression ra-
tios and low-memory-footprint compression, we introduce
novel methods for hierarchy construction, traversal, and en-
coding that improve on the state-of-the-art tree-based com-
pression methods. We introduce novel tree-based particle
compression methods that enable high-quality progressive
reconstructions without requiring excessive computational
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or memory costs. We focus on compressing particle positions,
since they are needed in almost all applications and, in
many applications, are the only attributes needed. Particle
positions in scientific applications are difficult to compress
losslessly, since they are often specified to such precision
that many lower order bits are essentially random. Never-
theless, valuable trade-offs can be made in the space of lossy
and progressive (de)compression, in which a decompressor
produces approximations that can be progressively refined
by decoding more bits that are streamed from the disk or
over the network. Progressive decompression allows the
user to immediately work with data approximations that
improve over time without having to wait for the full
data to load or decompress, which can greatly enhance
the user experience and accelerate the rate of at which
insights are obtained. A progressive decoder can also adapt
to the computational resources and time available since
decompression can stop as soon as a certain time or data
size threshold is reached.

In a progressive setting, reconstruction quality depends
greatly on the order in which the particle position bits are
decoded, which also affects the costs of keeping a state
in memory for resuming the decompression. Achieving a
balance between decoding costs and reconstruction quality
often manifests as a choice between (1) spatially limited
but complete representation of particles and (2) quantized
but uniform coverage of space — or, in a way, between a
depth-first (DT) and a breadth-first traversal (BT) of a particle
hierarchy. We explore this trade-off from the perspectives of
both tree traversal and tree construction. At the center of our
contributions is a node splitting scheme called odd-even split,
which we utilize to construct novel hierarchies that can be
traversed with asymptotically constant memory footprints
to produce high-quality progressive approximations.
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Contributions. Specifically, we propose:

• A new mechanism to partition space, the odd-even split
(subsection 4.1), which can be used in conjunction with
the standard k-d splits (i.e., splits that create a k-d tree)
to selectively convert a DT of a subtree into a BT of the
corresponding space.

• A particular way of combining odd-even and k-d splits
to create hybrid trees (subsection 4.2) that allows a low-
memory-footprint DT to also have the power of BT (high-
quality reconstruction), while being conducive to com-
pression.

• An adaptive traversal scheme (AT) (subsection 5.1) that
allows dynamic guiding of tree refinement, with respect
to a given error metric; we propose two such metrics by
heuristics.

• Block-hybrid trees (subsection 4.3), which combine the
strengths of both k-d trees and hybrid trees, to be tra-
versed with block-adaptive traversal (BAT, subsection 5.2),
for improved memory-quality trade-off and error-guided,
progressive refinement with random access.

• A binomial coding scheme (subsection 6.1) that improves
the compression of uniformly distributed particles by
modeling the distribution of child node values using the
Binomial distribution.

• An odd-even context coding scheme (subsection 6.2) that
improves the compression of dense surface data by lever-
aging the similarity between the two subtrees under an
odd-even split.

A preliminary discussion on tree construction and
traversal was presented in our previous work [23]. Here, we
further analyze and expand upon those ideas by combining
them with novel node encoding schemes. Together with tree
construction and traversal, these coding schemes complete
the tree-based particle compression pipeline (Fig. 1). Our
contributions are flexible – they can be utilized either in con-
junction with each other or independently, where suitable
with existing frameworks. We discuss and compare many
such cases through experimentation on a wide range of
particle datasets. Finally, note that our work focuses purely
on the tasks of particle encoding and decoding, which serve
as foundations for followed-up tasks such as rendering.
The full source code to our implementation is available
online [24].

2 RELATED WORK

In this section we give an overview of the literature on
particle (point cloud) data management and compression.
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Fig. 1: Our contributions (in color-filled boxes) cover all three main
stages of the generic tree-based particle compression pipeline.

Particle hierarchies. One of the most common ways to
introduce structure to a particle dataset – to facilitate com-
pression – is to impose a spatial hierarchy (a tree) on
the particles. Many state-of-the-art compressors follow this
approach, where the tree can be one of many types, e.g.,
binary trees [25], quadtrees [26], octrees [17], [19], [27], [28],
[29], [30], [31], [32], [33], [34], [35], k-d trees [36], [37], and
bounding-volume hierarchies [20]. An octree where each
node stores the occupancy of its children is by far the most
common approach. A hierarchy helps compression in two
ways. First, the higher position bits are “distributed” into
coarser tree levels and shared among particles in the form
of coarse tree nodes. Thus, in finer nodes, one needs to store
only the lower order bits for the particles within, possibly
with truncation [38], [39]. Second, regions with no particles
(empty space) are quickly identified and carved away, fur-
ther reducing the number of bits needed to accurately locate
particles — a key property that helps both compression and
rendering [8], [40], [41].

Level-of-detail. Although a tree naturally provides a pro-
gressive coarse-to-fine structure, from which representative
particles can be decoded and viewed [7], [20], some tech-
niques generate levels of detail through subsampling [21],
[22], [25], [30], [42], [43], which requires no data duplication
at coarse levels, and is often faster to compute. Random
subsampling [21], [25], [42] may seem a reasonable choice,
but leads to suboptimal compression because the bounding
volumes for coarse particle subsets are not easily bounded.
This is not the case with our lazy wavelet inspired odd-even
subsampling, which exactly halves the bounding volume
at each level. Wavelet-based downsampling is common for
compressing mesh vertices [44], [45], [46]. When a mesh
is not readily available, connectivity can be introduced by
building a graph [47], local graphs [48], [49], or a resampled
signed distance field [50] from the particles. Instead, we use
a regular grid, which is simple and fast to compute.

Error-guided tree construction and traversal. Minimizing
approximation error can be cast as a (hierarchical) clustering
problem, where, at each level, particles are clustered and
represented with points chosen to minimize some error met-
ric [30], [38], [51], [52], [53], [54], [55]. More data-adaptive
hierarchies reorder child nodes based on their predicted
occupancy [32], or make planes of k-d divisions adaptive
to local variations [37]. The trade-off between quantization
(imprecise particles) error and discretization (low particle
count) error has been studied both in theory [56] and
practice [57], [58] for triangle meshes, where refinement
heuristics are given based on geometric distortion measures,
including a progressive reconstruction that ranks octree
nodes by a priority value [59].

Our adaptive traversal instead assumes no connectivity
information and works on generic particle data. For recon-
structing point-sampled geometry, DT has been shown to
be memory efficient whereas BT gives better progressive
reconstruction [60]. In fact, BT is by far the more preferred
traversal order in the literature. However, we show that
the reconstruction quality of DT can be vastly improved
through our odd-even decomposition of space. Finally, some
studies have focused on task-based error metrics for point
clouds beyond PSNR [33], [61]. Our block-adaptive traversal
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also facilitates a user-specified error heuristic at decoding
time independently of how the data are encoded.
Large-scale and out-of-core techniques. Techniques that
handle large data usually organize the data into blocks, so
that each block can be randomly accessed and decoded in-
dependently as needed [8], [21]. Multilevel hierarchies that
treat subtrees as blocks are also not uncommon [7], [62], [63],
[64], but previous approaches traverse both the coarse-level
tree and the fine-level subtrees (blocks) using BT, which
restricts the traversal to a single progressive order, where
blocks are traversed one by one with potential memory
reuse in between. In contrast, by using DT within the blocks,
our block-hybrid trees allow for simultaneous, independent, and
progressive decoding of all blocks, not one at a time. This
approach provides excellent computational gains because
thanks to DT’s low memory footprint.
Modeling for compression. For effective compression, tech-
niques often assume some model for the particle data. The
model can be prescribed, using e.g., local planes [31], [34],
[49], [53], [65], [66], [67], higher order surfaces [26], [68], self-
similarity of patches [69], [70], grid-based or graph-based
transforms [71], [72], [73], or learned from training data [61],
[74], [75], [76], [77]. The model can also be statistical [18],
[19], [28], which often means using a frequency histogram
to drive an arithmetic coder [78]. It is also common to
sort particles to introduce coherency, either with a graph-
based traversal [79], [80] or by directly using particle co-
ordinates [15], [16], [81], [82]. Our odd-even context coding
assumes a statistical model but is unique in that it relies on
similarity between subsampled versions of the same point
set, which is an idea not previously explored.

3 BACKGROUND

Here we discuss the method of Devillers and Gandoin [36]
(DG), which serves as a base upon which our technical
contributions are built. The DG k-d-tree-based coder (im-
plemented in Google’s Draco [83]) has competitive com-
pression ratios while being very fast and general, partly
due to the coding scheme being nonstatistical (i.e., it does
not rely on knowing the distribution of the particles). This
method constructs a k-d tree where each node stores the
number of particles, n, encapsulated by a bounding box,
B. A given node (B, n) is split into two children (B1, n1)
and (B2, n2), with B1 and B2 formed by splitting B exactly
in the middle along one of the dimensions, and n1 and n2

being the numbers of particles bound by B1 and B2.
By construction, only n1 needs to be encoded at each

node, since n2, B1, and B2 can be inferred. Furthermore, n1

can be encoded using approximately log2 (n+ 1) bits (since
0 ≤ n1 ≤ n). As n decreases toward the leaf level, the
number of bits needed for encoding each node gets smaller,
resulting in compression. The tree can be implicitly built,
traversed, and encoded at the same time, by having the
encoder partition an array of particles inplace, following
a certain traversal order, which the decoder also follows.
In this paper, the term k-d tree always refers to a tree
constructed with this method.

Fig. 2 gives an example for the DG coder. In their paper,
the authors give a theoretical analysis on the number of
bits required to separate the particles. Assuming the tree
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Fig. 2: A k-d tree built for 7 particles in 2D (bottom right). For simplicity,
the subdivision stops when the particles are all separated. Each node
contains the number of particles in its bounding box. Numbers on the
edges specify the number of bits required to encode the corresponding
left children nodes (right children are inferred). The numbers written to
the bit stream are (in BT order): 7, 5, 3, 1, 1, 1, 1, using a total of 14 bits.

is balanced and every split divides the number of particles
in half, on tree depth k, the total number of bits needed is
approximately 2k log2 (

N
2k

+ 1), with N being the total num-
ber of particles. The total number of bits needed to separate
the particles is therefore

∑log2 N−1
k=0 2k log2 (

N
2k

+ 1) ≤ 2.4N .
Using this result, the paper also gives a lower bound on the
number of bits saved using the k-d tree coder compared
to verbatim encoding of the particle positions, which is
N log2 N . Since O(N log2 N) is also the number of bits
needed to encode the relative ordering of the particles (of
which there are N !), the k-d tree compresses by discard-
ing the original order of particles, on top of compression
achieved by quickly separating particles from empty space.

4 TREE CONSTRUCTION

Most tree-based compression techniques work by encoding
(and decoding) nodes that implicitly give quantized parti-
cle positions. A general template for a tree-based decoder
is given in Algorithm 1 in the Appendix. Encoding the
number of particles may at first seem wasteful: it has been
noted [29], [84] that at coarse levels, occupancy-based oc-
trees are better than the k-d tree used by DG [36], since en-
coding the number of particles in child nodes often requires
several bits compared to at most one bit for occupancy.
However, occupancy encoding requires both children of a
node to be coded instead of just the left child. Toward the
leaf level, past the particle separation stage, encoding n1

requires a single bit, whereas encoding the occupancy for
both children requires 2 bits. Since there are approximately
as many leaf nodes as there are internal nodes, encoding
occupancy for both children ends up not providing a saving
overall compared to encoding the number of particles in
only the left child for each internal node.

Furthermore, as seen in subsection 5.1, encoding the
number of particles also allows us to perform adaptive tree
traversal to minimize reconstruction error, which is esti-
mated using the number of particles and the spatial extent
of a node. Finally, by knowing the number of particles, we
can employ a grid-based approach and switch to encoding
the number of empty grid cells when the grid has more
particles than empty cells, which significantly saves coding
cost (as discussed in subsection 4.1).

4.1 Odd-Even Splits and Odd-Even Trees

When decoding is run to completion, all tree nodes are
visited, in an order that depends on the traversal strategy.
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Fig. 3: An example with 11 particles (a to k) on a 42 grid, from which we build a k-d tree (left) and an odd-even tree (right). Our odd-even splits
partition space by interleaving odd-indexed and even-indexed grid cells at each tree level. For simplicity, the trees are built only until every particle
is located to its own cell. The numbers encoded in the bit stream (using DT) are {11, 6, 3, 1, 1(a), 1(f), 1, 0, 1(i), 3, 2, 1(b), 1(h), 1, 1(c), 0} for the
k-d tree, and {11, 5, 3, 1, 1(a), 1(b), 1, 0, 1(e), 3, 2, 1(f), 1(h), 2, 1(i), 0} for the odd-even tree.

In practice, however, it is often desirable to traverse and
decode large trees only partially to save I/O bandwidth,
memory, and decoding time, reconstructing particles whose
positions only approximate the original particles’ positions.
In this context, the shape of the tree and the traversal order
can profoundly affect the accuracy of the approximation.

Trade-offs between depth-first and breadth-first traversals.
On a traditional k-d tree constructed with the typical k-d
split, a node’s bounding box B is split along a certain dimen-
sion (one of x, y, z in 3D) to give children boxes B1 and B2.
BT visits B2 after B1 on each tree level, whereas DT only
visits B2 after B1 has been fully visited. Therefore, when
stopped midway, BT often gives coarse representations of
the whole space whereas DT reconstructs a spatial region
perfectly but completely misses the rest. In most cases, the
former behavior is preferred.

DT however is significantly less resource intensive, since
it requires only a small stack whose size is at most the height
of the tree (O(log2 n)), whereas BT requires a queue large
enough to keep all nodes at the current depth, which can
grow as large as the total number of particles (O(n)). A k-
d split thus offers two contrasting choices: high-cost and
coarse reconstructions for both children (with BT), or low-
cost and perfect reconstruction for one child but none of the
other (with DT). Here, cost mostly means memory footprint,
but a high memory footprint often also translates to lower
cache utilization and accordingly lower speed.

Odd-even splits. To alleviate the main drawback of DT
while retaining its main benefit, we introduce the notion of
an odd-even split, which spatially “interleaves” the children
boxes B1 and B2 by having each contain many disjoint
slices instead of being a whole contiguous region. This
scheme is inspired by the hierarchical indexing scheme [85]
and the lazy wavelet transform [86], multiresolution tech-
niques invented for data sampled on regular grids.

We first impose (but do not build) a regular grid on top
of the particles such that each cell contains at most k particle.
One way to build such a grid is to recursively subdivide the
particles’ bounding box into equal halves along the longest
dimension, stopping when the target k is met. For the odd-
even splitting scheme to work best, k should ideally be 1.
However, when particle coordinates are given in floating
point, k = 1 may produce a grid that is too large if any two
particles have almost exactly the same coordinates. In this
paper we use k = 1 in all experiments, but in general k is a
parameter that can be set by the user. In addition, to avoid
potential rounding errors when multiplying and dividing

floating point numbers, we work with quantized particle
positions in deciding which grid cell a particle belongs to,
but note that the original particles’ positions can still be
encoded losslessly if needed.

After the full grid is defined, we associate the root of the
tree with the full grid, and associate every other node with
a different subgrid G and the particles contained in G. If
G is of dimensions Gx × Gy × Gz , we index its cells from
(0, 0, 0) to (Gx−1, Gy−1, Gz−1), along three fixed axes. An
odd-even split decomposes a node (G, n) into (Ge, ne) and
(Go, no), such that (Ge, ne) contains the even-indexed cells
in G (along the dimension of splitting) and the ne particles
occupying those cells, while (Go, no) contains the rest of the
(odd-indexed) cells and particles.

Odd-even trees. A tree constructed exclusively from odd-
even splits is called an odd-even tree, illustrated in Fig. 3 in
contrast to a k-d tree. The idea of the odd-even split is that
either the odd or the even child node represents a coarse
approximation of the particle set associated with the parent
node, so that a DT can never miss an entire region as with k-
d splits. Odd-even trees carry this idea to an extreme where
every node is split in the odd-even scheme, and therefore
DT on an odd-even tree provides the best coarse-to-fine
refinement of the full data with respect to the number of
particles reconstructed, but not in terms of coding cost (or
compression ratio) which will be discussed later.

Odd-even subsampling. Picking either the odd or the even
subgrid to traverse can be viewed as a subsampling method.
It may at first seem that random subsampling (e.g., as done
in [87]) achieves the same effects as odd-even subsampling
while being simpler. However, unlike random sampling,
odd-even sampling produce subgrids (Go and Ge) that
are half the size of the parent grid G in number of cells,
which is important for locating the particles using fewer
bits. Unfortunately, an odd-even tree is still not conducive
to compression. This is due to the fact that for most datasets,
particles do not scatter randomly in space but form clusters
and structures that can be well separated from empty cells.
With odd-even splits, the empty cells are “distributed” into
the odd and even subtrees, effectively increasing the number
of tree nodes to be coded. Instead, k-d splits could be used
to quickly cull away entire empty subtrees (as can be seen
in Fig. 4).

Coding costs. For a more quantitative analysis, we cal-
culate the number of bits required to locate, using a k-
d tree, n particles in a grid G with G cells, of which n
contain particles and G − n are empty. Denote the answer
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(b) The particles encoded as a k-d tree. The
total number of nodes is 11.
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(c) The particles encoded as an odd-even
tree. The total number of nodes is 15.
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(d) The particles encoded as a hybrid tree.
The total number of nodes is 13.

Fig. 4: An example that demonstrates how odd-even trees (c) can compress not as well as k-d trees (b), and how hybrid trees (d) alleviate this
problem. The odd-even tree uses odd-even splits exclusively, whereas the hybrid tree only uses odd-even splits on the path connecting the root to
the left-most leaf node. Odd-even trees do not compress well since they create too many nodes to fully locate the particles among all cells.

as T (n,G). In the best case, a k-d split will put most
particles in one child and empty space in the other, leading
to T (n,G) = (log2 n) + T (n,G/2), i.e., n stays the same but
G is reduced by half. After i = log2 (G/n) such iterations,
G/2i and n are approximately equal, i.e., G/2i < 2n.
The k-d tree now requires ≈ 2.4n bits to separate the n
particles (see section 3), and an additional n bits to finally
locate the particles (assuming at the leaf level, each particle
needs to be separated from one empty cell). In contrast,
an odd-even split implies a different recurrence relation:
T ′(n,G) = (log2 n) + 2T ′(n/2, G/2) (i.e., both n and G are
halved but two substrees are created instead of one). After
the particles are separated from one another (after ≈ 2.4n
bits), each particle needs to be further located among G/n
cells, for a cost of n log2 (G/n) additional bits. Therefore, the
difference between T (n,G) and T ′(n,G) is that between
n + log2 n log2 (G/n) (for the k-d tree) and n log2 (G/n)
(for the odd-even tree). The two are similar if G is close
to n (the grid is dense in particles), but in most cases, G is
significantly larger than n, making the odd-even tree worse.
In experiments, we have seen odd-even trees that are almost
twice as large as a k-d tree for the same input. We later
discuss a solution in subsection 4.2.

Encoding dense particle distributions. Besides facilitating
the odd-even splits, an underlying grid allows us to effec-
tively encode sparse as well as dense particle sets (relative
to the size of the grid). This situation happens when the
majority of grid cells contain a particle, instead of being
empty. Whenever the number of particles, n, is greater than
half the number of cells in G, we can switch from encoding
the number of particles in the left child (n1) to encoding
the number of empty cells in the left child, i.e., G/2 − n1,
and thus more quickly bound the values to be encoded
further down the tree. Note that n1 is always at most G/2
since there can only be at most one particle per grid cell.
In the extreme case where every cell contains a particle, our
method simply stops after encoding the number of particles

0 1 0 1 1 0 0 0 0
0 1 0 1 1 0 0 0 0

0 1 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0 0

0 1 0 1 1 0 0 0 0
0 0 1 0 1 0 1 0 0

0 1 0 1 1 0 0 0 0

coarse fine
0 1 0 0 1 1 0 0 0

medium

k-d tree (forward Morton)

odd-even tree (backward Morton)

hybrid tree (HZ indexing)

block-hybrid tree

Fig. 5: A tree implies an ordering of particles following their transformed
Morton codes. Input Morton bits are shown the top and arrows indicate
directions of the output bits at the bottom. K-d trees and odd-even trees
use forward and backward Morton codes. Hybrid trees use HZ index-
ing [85]. Block-hybrid trees use HZ indexing for the medium portion.
In-cell refinement bits are shown in gray.

at the root node, since the number of empty cells is now
0, whereas other methods, such as DG [36] or MPEG [17]
which encodes node’s occupancy, will keep refining this
grid until the individual cells.
Tree traversal as particle indexing. To decode particles’
positions by traversing a tree is to reconstruct the bits
of their quantized integer coordinates, or, equivalently, to
index (order) the particles using their coordinate bits. It is
well known that a k-d tree sorts the particles using their
Morton codes, which interleave particle coordinate bits in
x, y, z, with an interleaving pattern that depends on the
order of the dimensions along which nodes are split. In other
words, a k-d tree reconstructs the interleaved coordinate
bits from left to right (MSB to LSB) if traversed using DT,
whereas an odd-even tree reconstructs them from right to
left (LSB to MSB) (see Fig. 5), since the LSB determines
whether a particle is “odd” or “even”.

4.2 Hybrid Trees
As seen in 4.1, odd-even trees create too many nodes be-
cause every odd-even split distributes both the particles
and the empty cells into two children, instead of (mostly)
particles in one and empty cells in the other. To reduce
this adverse impact on compression while retaining most of
their benefits, we need to reduce the use of odd-even splits.
Here, we borrow a technique from the wavelet literature,
where multiresolution decomposition is done by recursively
transforming only the low-pass filtered subband in every
iteration. Similarly, we restrict the use of odd-even splits
to only left child nodes, with k-d splits used everywhere
else. Furthermore, once a k-d split is used, subsequent
descendant splits will all be k-d splits. We also use the
convention that the left child node is (Ge, ne), i.e., it contains
the even-indexed cells. The dimension of splitting is the
largest dimension of the parent’s grid G, as is also the case
for all the other trees discussed in this paper. Constructed
this way, the impact of our hybrid trees on compression
is minimal; in the worst case, we have noticed only a 5%
increase in compressed size compared to k-d trees.
Resolution levels. From top to bottom, every odd-even split
creates a new, coarser resolution level, which consists of nodes
in the even-indexed subtree. A hybrid tree with L resolution
levels contains a sequence of exactly L − 1 odd-even splits,
at nodes found by traversing down the left child L−2 times
from the root (see Fig. 6a for an example with L = 3). L
can be automatically set so that the chain of odd-even splits
ends when no particles or cells are left to split. Assuming
that left children are always visited first, DT on hybrid trees
visits the resolution levels from coarse to fine, producing a
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Fig. 6: (a) A hybrid tree created using a particular combination of odd-even splits (with different colored child nodes) and the standard k-d splits
(same colored child nodes). (b) A block-hybrid tree created by exclusive uses of k-d splits at shallow depths and hybrid trees further down. Both
trees are constructed for the same 11-particle in Fig. 3, with additional (conceptual) tree nodes for in-cell refinement bits, shown in gray.

“breadth-first” walk of space similar to BT on k-d trees but
with much a smaller memory footprint.

Although hybrid trees are designed with DT in mind,
they also support BT (see Fig. 12 for an example), noting
that BT is best used only within each resolution level and
not across resolution levels (note that nodes at the same
depth level may belong to different resolution levels, see, e.g.,
Fig. 6a). Our proposed hybrid tree is also only one of the
many possible combinations of k-d and odd-even splits,
which may be useful for different purposes.
Particle indexing. From the perspective of particle index-
ing using their interleaved quantized coordinates, hybrid
trees correspond to the hierarchical Z (HZ) ordering [85]
of particles. An HZ ordering sorts the particles first by
their resolution level, then by their index within the level.
This is done by swappping the least significant one bit
in a particle’s Morton code (whose position from the LSB
determines the particle’s resolution level) and the bits to its
left (which constitute the particle’s intra-level index). Fig. 5
gives an example of this scheme. The HZ indexing scheme
was first proposed by Pascucci and Frank [85] and general-
ized by Hoang et al. [88] for multiresolution decomposition
of regular grids. Here, we adapt the scheme to construct a
multiresolution particle tree.
Refinement bits. Refinement bits are bits that further locate
each particle in its corresponding cell (see Fig. 6, gray nodes
at the bottom). All refinement bits at the same tree depth
form a bit plane. Once each particle is located to its cell,
further refinement bit planes recursively half the cell in one
dimension at a time, and the bit values indicate which half
the particle belongs to. The number of refinement bit planes
vary across datasets. For some, there are no refinement bits,
i.e., particles are specified with precision low enough that
the particles are exactly located just by the grid that sepa-
rates them. In the other spectrum, scientific simulation data
are often dominated by refinement bits due to the particles
being specified with relatively high precision compared to
their density. For hybrid trees, the refinement bits are stored
in depth-first order: particles are completely refined one
by one, in the (depth-first) order that they appear in the
tree. For example, in Fig. 6a, the refinement bit stream is
10(a)11(b)00(c)10(d)01(e)11(f)00(g)00(h)10(i)10(j)11(k).
Coding costs. As in subsection 4.1, let T (n,G) denote the
number of bits needed to locate n particles in G grid cells
using a k-d tree. For a hybrid tree, the number of bits to code

a subtree under node (G, n) is (log2 n) + Tl(n/2, G/2) +
Tr(n/2, G/2). The term Tr(n/2, G/2) (for the right subtree)
is just T (n/2, G/2) since the right subtree is always a k-d
tree. The term Tl(n/2, G/2) (for the left subtree) can again be
decomposed into log2 (n/2) + Tl(n/4, G/4) + T (n/4, G/4).
Following the recurrence to the end and ignoring the vari-
ous log2 (n/2

i) terms that are insignificant, we see that the
cost of encoding the whole hybrid tree is approximately∑

i T (n/2
i, G/2i). Since T (n,G) is approximately linear in

n (see subsection 4.1), T (n,G) = 2T (n/2, G/2). The sum∑
i T (n/2

i, G/2i) therefore is approximately just T (n,G),
meaning the coding cost of a hybrid tree is approximately
the same as that of a k-d tree for the same input (the
difference is of order O(log2 n log2 (G/n)) bits which is
essentially the number of resolution levels multiplied by
the cost to cull the empty cells on each level). This analysis
also shows that if a hybrid tree is traversed with DT, so
that the resolution levels are visited from coarse to fine, the
(partial) coding cost doubles after each resolution level as
the number of particles, n, presumably also doubles.

Reconstruction error. To quantify the reconstruction error
for each original particle, we find the nearest particle to it
among the reconstructed particles. We give an upper bound
for the reconstruction error in both cases: BT on a k-d tree
(BT-kd) and DT on a hybrid tree (DT-hybrid). Suppose the
two particles form two opposite corners of a box of dimen-
sions dx × dy × dz , we can bound the values of dx, dy, dz
using k, understood to be either the number of tree depths
not yet traversed (for BT-kd), or the number of resolution
levels not yet traversed (for DT-hybrid). For both cases, it
is guaranteed that dxdydz ≤ wxwywz2

k, with wx, wy, wz

being the dimensions of each cell at the leaf level. From
the analysis in the Coding costs paragraph, we know that
the total coding cost for the k-d tree is approximately the
same as that for the hybrid tree. Moreover, this cost doubles
after each tree depth level (for the k-d tree) and after each
resolution level (for the hybrid tree). Therefore, BT-kd and
DT-hybrid tree have similar coding costs as well as similar
reconstruction error bounds. Note that when all particles
are located to their respective cells, the reconstruction error
is bounded by the dimensions of a cell i.e., wx × wy × wz ,
and each refinement bit plane reduces this bound by half.

In terms of reconstruction error, the main difference
between the two schemes is that DT-hybrid puts the recon-
structed particles exactly where the corresponding original
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particles are, whereas BT-kd puts them in the middle of
the bounding boxes at the traversal front. Depending on
the dataset, one choice may be preferred over another
(section 7). Because both schemes have approximately the
same total coding costs but DT-hybrid partially reconstructs
particles to a higher precision, it also tends to generate
significantly fewer particles compared to BT-kd when both
are stopped midway at the same decoding bit budget.
Memory footprint with DT. We do not explicitly construct
the tree in memory, as node values are simply encoded to
and decoded from a bit stream, following a certain traversal
order. Therefore, only the size of the data structures used
for traversal, and not that of the tree itself, counts toward
our memory footprint. Let G denote the total number of
grid cells and N the total number of particles. Using DT, a
hybrid tree can be traversed using a stack whose size is the
bounded by the height of the tree, which is log2 G + 1. For
each element in the stack, log2 (N + 1) bits are needed to
keep track of the number of particles. The other information
required for traversal, namely a node’s associated grid, its
resolution level, the dimension of splitting, and the type of
split can all be deduced from the path connecting the node
to the tree’s root, encoded with log2 G+ 1 bits. The encoder
(but not decoder) would also need to keep track of the
range of particles that each node encompasses, for a total of
log2 (G+ 1) additional bits per node. In short, the memory
footprint of the encoder is (log2 G+1)2 + log2 (N + 1) bits,
while that of the decoder is (log2 G + 1)2 bits. Even when
N = G = 264− 1, both the encoder and the decoder require
trivial amounts of memory (less than 600 bytes).

4.3 Block-Hybrid Trees
A problem wit hybrid trees is that each resolution level is
still traversed region-by-region, resulting in uneven error
distribution (see Fig. 14, a5 for an example). To mitigate this
problem, we split the whole tree into multiple blocks (sub-
trees) and interleave their traversals to reduce error more
uniformly. The resulting block-hybrid tree contains multiple
blocks that can be decoded independently. By adaptively
allocating bits across blocks, we can lower the overall re-
construction error, or prioritize certain blocks for the task
at hand. Furthermore, blocks can be randomly accessed or
decoded in parallel.

To construct a block-hybrid tree, we first use k-d splits
to form a coarse portion (a k-d subtree at the top), then
combine k-d splits with odd-even splits to form a medium
portion (several hybrid subtrees), and finally use the in-
cell refinement bits to form a fine portion. Each leaf of the
coarse-portion k-d subtree creates a hybrid sub-tree, or block.
The coarse and medium portions together refine the full
grid until at least the cell level (i.e., no leaf node contains
more than one particle). The fine portion further locates
individual particles within the respective cells. Fig. 6b shows
an example of a block-hybrid built for our running example
with 11 particles in 2D. From a particle indexing perspec-
tive, block-hybrid trees use hierarchical-Z indexing for the
middle portion, and forward Morton for the rest (see Fig. 5).
Refinement bits. Since one main goal of block-hybrid trees
is to distribute reconstruction error more uniformly in space,
we store the in-cell refinement bits verbatim in bit plane

order, i.e., in breadth-first instead of depth-first order as
done for hybrid trees. In particular, each bit plane contains
one refinement bit for each particle in the block, in the
order that a medium-phase DT visits the particle. To decode
each refinement bit, we need to subdivide a bounding box
that encompasses the current particle. To avoid buffering
such bounding boxes for later refinement in typical breadth-
first manner, we compute them on-the-fly from the current
position of each particle and the dimensions of grid cells
at the current tree depth. Therefore, no extra memory is
needed in addition to an array storing the positions of the
decoded particles, which is presumably always present.
Flexible decoding. A block-hybrid tree, once encoded, can
be decoded in different ways; in particular, the blocks can be
decoded independently and to different extents. To support
independent decoding, the compressed bit streams for in-
dividual blocks are stored separately (see Fig. 7). Decoding
of higher resolution particles can also be skipped in favor
of more refinement bits for lower resolution ones. Such
a strategy, which trades resolution for precision, may be
desired if the number of output particles needs to be limited
due to resource constraints. Since blocks are encoded in
independent bit streams, a decoder can freely jump to any
block to continue decoding/traversal if needed. The user
can also supply a scoring function to rank blocks during
traversal. In subsection 5.2, we introduce one such function,
which interleaves traversal of blocks to lower the average
reconstruction error. Other criteria are possible, for example,
during rendering, certain blocks may be prioritized if they
are closer to the camera, or since they are known to contain
features of interest.

5 TREE TRAVERSAL

To achieve better progressive reconstruction than BT and
DT, the traversal should be more adaptive, i.e., nodes with a
potentially low cost of traversal (in terms of number of bits
to decode) and high gains (in terms of reduction of error)
ought to be prioritized. We introduce two such adaptive
orders: adaptive traversal (AT) for k-d/hybrid trees and block-
adaptive traversal (BAT) for block-hybrid trees.

5.1 Adaptive Traversal
For k-d trees, we generalize the container C in Algorithm 1
from either a stack or a queue to a priority queue, which
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Fig. 7: Left: a block-hybrid tree with subtrees colored by resolution level.
Right: the blocks’ bit streams are stored separately, so that blocks can
be decoded independently, indicated by the arrows. In a block, medium-
portion bits are in depth-first order (by resolution level), whereas in-
cell refinement bits (gray) are in breadth-first order (by bit plane). At
decoding time, any of the resolution levels (colored triangles) can be
skipped in favor of more refinement bits for the coarser resolution levels.
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allows us to perform rate-distortion optimization during
traversal, i.e., prioritizing nodes that are more important
with respect to some error metric and coding cost. Con-
cretely, the importance score of a given node (B, n) is

n(d/2)2

log2 (n+ 1)
, (1)

where d is the length of B along the current axis of splitting.
The denominator captures the cost of decoding the current
node, while the (d/2)2 term captures the (squared) error
reduction per-particle obtained by decoding this node, as-
suming the extreme case where all n particles fall into either
the left or the right child. Intuitively, spatially larger and
denser nodes are prioritized so that reconstruction errors
are reduced for more particles. We expect AT with this
heuristic to work best (compared to BT) when the particles
are highly nonuniformly distributed, and therefore the im-
portance scores of same-depth nodes are notably different.
Alternative score function. Our importance score is simple
yet works well in practice to improve the rate-distortion
trade-off over BT for a wide range of datasets (see section 7).
Regardless, this score is still a heuristic and thus is not
guaranteed to work for all datasets. We also demonstrate
modifications (see Fig. 12) to the importance function by
reducing the emphasis on node density (i.e., by removing
n from the numerator), which we have observed to work
better for particles representing a surface. We anticipate,
that in future work, many more importance functions can
be devised depending on the data and task at hand, but all
should be supported by AT.

5.2 Block-Adaptive Traversal
Although AT improves on BT in reconstruction quality, it
has a similarly high memory footprint in practice (see sub-
section 7.3). Furthermore, AT works with individual nodes
and not blocks, so it cannot be used as is to efficiently
traverse a block-hybrid tree. Here, we generalize AT to
block-adaptive traversal (BAT), which is also data-adaptive but
works with entire blocks of nodes, and has asymptotically
constant memory footprint similarly to that of DT.

With BAT, the coarse portion of a block-hybrid tree is
traversed with either BT or AT. Traversal of the medium
portion only begins after traversal of the coarse portion
completes. The medium portion is traversed in iterations
in a data-dependent round-robin manner. Each iteration
consists of two steps: first, we pick a block to traverse using
a priority queue that ranks blocks based on some criterion,
then, we traverse the chosen block using DT. The block at
the top of the priority queue is traversed for either a certain
number of decoded bytes or a certain number of particles,
then its priority is updated in the queue, and the process
repeats with the next iteration.
Heuristic for ranking blocks. The ranking of blocks is
handled by a user-supplied scoring function; here we pro-
pose one. Between two partially decoded blocks, we always
prioritize the one at a coarser resolution level. If the two
blocks are at the same resolution level, we prioritize the
one with a smaller value of n∗

l /nl, where nl is the total
number of particles in the block on resolution level l, and n∗

l

is the number of those already visited by the per-block DT.

The idea behind this heuristic is to distribute reconstruction
error across blocks as uniformly as possible, so that the
average error is reduced.
Reconstruction error. By construction, nodes on the same
resolution level are associated with subgrids with the same
internal spacing (i.e., spatial distances in x, y, z between
neighboring cells). This spacing gives an upper bound on
the reconstruction error, since particles that fall in between
neighboring cells in the current subgrid have not been
reconstructed (they belong to finer resolution levels). For
example, when all particles in the even subtree under an
odd-even split have been reconstructed, but particles in the
odd subtree have not (because the odd subtree belongs to
the next finer resolution level), the spacing between cells
of the grid corresponding to the even subtree is an error
upper bound. Therefore, forcing the blocks to be refined to
the same resolution level effectively forces approximately
the same upper bound for reconstruction error everywhere.
Once the blocks are at the same resolution level, the ratio
n∗
l /nl indicates how much of the given level has been

traversed.
Memory footprint. Given a tree of height H , the memory
footprint of BAT is controlled by Hc, the height of the coarse
k-d subtree. Since there are at most 2Hc−1 blocks and each
block contains a stack of size at most H − Hc, the total
number of elements in the different containers is bound by
2Hc−1 (queue) +2Hc−1(H − Hc) (stacks) + 2Hc−1 (priority
queue). In contrast, the size of the queue for BT, if used
exclusively for the whole hierarchy, is bounded above by
2H−1, which is often several orders of magnitude larger than
2Hc−1, since a typical Hc is only half of H . In practice, the
Hc chosen should be large enough so that the error is more
uniformly distributed and that random access to the blocks
is more fine-grained, but also small enough to not turn BAT
into BT and also to not create too many blocks.

6 ENCODING NODE VALUES

During decompression, at a node (G, n), a decoder needs
to decode n1 with the knowledge of n and the fact that
0 ≤ n1 ≤ n. The state-of-the-art method [36] uses arithmetic
coding [78] or truncated binary coding [89], [90], assuming
that n1 is uniformly distributed in {0, . . . , n}. However,
this assumption is often not true in practice, and thus
better encoding methods are possible. We present two such
methods here that better predict n1, namely a nonstatistical
binomial coding scheme and a statistical odd-even context
coding scheme, targeting two extreme particle distributions:
uniform and highly structured.

6.1 Binomial Coding
For data that exhibit approximately uniformly spatial dis-
tribution of particles, n1 is not uniformly distributed in
{0, . . . , n} but is more likely to be close to n

2 — a property
that we will exploit to improve the encoding. Given a node
with n particles, there are 2n possible configurations (each
of the n particles can fall in either of the two child nodes
with probability 1

2 ), and there are
( n
n1

)
ways for the left child

node under consideration to contain exactly n1 particles out
of the n particles of the parent. Therefore, n1 follows the
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binomial distribution with parameters n and 1
2 (see Fig. 8),

i.e., P (n1|n) =
( n
n1

)
2−n = B(n, 1

2 ).

Arithmetic coding for small n. For small values of n,
this binomial distribution can be effectively coded using
arithmetic coding [78] with a precomputed binomial table.
Our arithmetic coder supports integer probabilities whose
sum is at most 231, which means the distribution B(n, 1

2 )
is exactly modeled for n ≤ 30. For every n ∈ {1, . . . , 30},
we precompute a table where the entries are

( n
n1

)
for every

n1 ∈ {0, . . . , n} (we scale P (n1|n) by 2n to represent the
probabilities with integers). We then compute a prefix sum
on each table to obtain a (scaled) cumulative distribution
function (CDF) ready to be used by our arithmetic coder.

Binary-search coding for large n. When n > 30, arithmetic
coding with exact probabilities fail because our arithmetic
coder uses 32-bit values for its internal states, which have
insufficient precision to distinguish all possible values of
P (n1|n), since the scaled CDF grows exponentially with n,
i.e.,

∑n
n1=0

( n
n1

)
= 2n. Note that simply using 64-bit internal

states would not solve the problem, due to potential integer
overflows under multiplications. Instead, we leverage the
de Moivre-Laplace theorem [91] to approximate the binomial
distribution with a Normal distribution for large n, i.e.,
B(n, p) ≃ N(np, np(1 − p)), where N is the Normal distri-
bution with mean µ = np and variance σ2 = np(1 − p)).
When p ≈ 1

2 , i.e., assuming an approximately uniform
distribution of particles, the theorem states that P (n1|n)
follows N(n2 ,

n
4 ).

Denoting the CDF of N(n2 ,
n
4 ) as F , we use a binary

search that locates n1 by halving F in the search range
[ai, bi] for each iteration i, outputting a bit to indicate which
half contains n1. The point of division can be computed us-
ing the inverse of F , namely F−1(x) = n

2 +
√

n
2 erf−1(2x−

1), where erf is the error function. Initially, [a0, b0] = [0, n],
and our search stops when either the value is found (i.e.,
n1 ≤ ai < bi < n1 + 1 for some i) or the range stops
converging, indicating that we run out of numerical preci-
sion. In the latter case, we assume equal probabilities for all
values in [ai, bi] and encode n1 − ai using truncated binary
coding. We use a mid-short (or centered-minimal) code [90]
that assigns shorter codewords for values near the middle
of [0, . . . , bi−ai]. The pseudocode for our binomial encoder
is given by Algorithm 4 in the Appendix.

Code size gain over truncated binary coding. The theoret-
ical gain achievable with binomial coding can be assessed
using the entropy of the binomial distribution, i.e., H ≃
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Fig. 8: (Normalized) frequencies of n1 (number of particles in the left
child), given n = 16, for both the molecule dataset and a true binomial
distribution i.e., B(16, 1

2
). The empirical distribution tracks the theoreti-

cal distribution well, showing that n1 is clearly not uniformly distributed.
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can have similar particle distributions, and one can be used to predict
the other. Here, n1 can be inferred from n, s, and s1 (e.g., n1 ≈ ns1/s).

1
2 log2 (2πenp(1− p)) (the full derivation is in Appendix D).
For p = 1

2 , we get H ≃ 1
2 log2 (2πe

n
4 ) ≈ 1 + 1

2 log2 n. The
normalized entropy (dividing H by log2 n) thus approaches
1
2 as n tends to infinity and 1 as n tends to 1. In contrast, the
normalized entropy of the uniform distribution is always 1,
which means that in the best case (when n is very large)
binomial coding reduces the code length by half compared
to uniform arithmetic coding or truncated binary coding.
This gain makes binomial coding attractive for large data.
Finally, binomial coding also works well with odd-even
splits, because such splits tend to produce approximately
equal numbers of particles on the two sides, regardless of
the actual particle distribution.

6.2 Odd-Even Context Coding
For datasets where the particles are not approximately uni-
formly distributed – and thus binomial coding does not
apply – we propose a prediction scheme based on DT
on a hybrid tree to improve compression. Since the even
(left) and odd (right) subtrees under an odd-even split
interleave spatially, they can have very similar distributions
of particles (Fig. 9). We can therefore leverage their spatial
correlations and use one to predict the other. An odd-even
split creates an odd and an even subtree, denoted as To and
T̄e, respectively. We use different notations to indicate that
To is always a k-d tree, while T̄e is almost always a hybrid
tree by definition. Using DT, we traverse and code T̄e first,
and then use it as a reference to predict To.
Lock-step traversal. Since T̄e and To are different kinds of
tree, we first need to transform T̄e to a k-d tree Te. We
do so by invoking a k-d tree building routine on the cells
to which the particles of T̄e have been located. The k-d
trees Te and To can now be traversed in lockstep using DT
to maintain spatial correlations between respective nodes
at the traversal front. After To is fully coded, the hybrid
subtree combining Te and To is converted to a k-d tree to
serve as the reference for the next resolution level (Fig. 10).
Algorithm 5 in the Appendix gives the full pseudocode for
our odd-even context encoder. Note that we never explicitly
create and store any of T̄e, Te and To in memory. The
conceptual transformation of T̄e from an odd-even to a
k-d subtree can be performed inplace (by partitioning the
array storing the input particles) and inline (computing
node values for Te on-the-fly as we traverse To).
Context coding. During the lockstep DT, the traversal front
typically contains two nodes: (Gs, s) on Te and (G, n) on
To (see Fig. 10). If the number of particles in the left child
of (Gs, s) and (G, n) are s1 and n1, respectively, then n, s,
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and s1 are known, while n1 needs to be coded. To predict n1

using n, s and s1, we leverage context-based arithmetic cod-
ing [92], in which the knowledge of a vector c1 (the context)
helps narrow down the possible values for n1. We do not
use c1 = [n, s, s1] to encode n1 directly, since any of these
numbers can be so large that keeping track of all possible
contexts is impractical. Instead, we work with the log val-
ues, namely m = ⌊log2 (n+ 1)⌋ ,m1 = ⌊log2 (n1 + 1)⌋ , r =
⌊log2 (s+ 1)⌋, and r1 = ⌊log2 (s1 + 1)⌋. The use of log val-
ues also make all contexts more reliable, since each context
now appears enough times to be statistically significant.
However, in place of n1, we now must encode both m1 and
m2 = ⌊log2 (n2 + 1)⌋, with n2 being the number of particles
in the right child of the current node (i.e., n2 = n− n1). The
reason is that in general m2 in general cannot be inferred
from m and m1, except in a few special cases, namely when
m = m1 = 1, m2 = 0, and when m1 = 0, m2 = m.
Context update. To encode m1, our context vector c1 con-
tains more information than just [m, r, r1]. In particular,
c1 = [m, r, r1, r2, l, h], with r2 being the log of the number
of particles in the right child of the reference node (i.e.,
r2 = ⌊log2 (s− s1 + 1)⌋), l being the current node’s res-
olution level and h being its current tree depth. We use
a context table H to maintain and update the conditional
probabilities P (m1|c1) on the fly for all combinations of
m1 and c1 encountered during traversal. H is a hashtable,
that, when indexed with a key c1, return a frequency array
that gives the conditional distribution of m1 given c1, i.e.,
P (m1|c1) = H[c1][m1] /

∑
i H[c1][i].

During traversal and coding, we increment H[c1][m1]
whenever the (c1,m1) pair occurs. However, since Te and
To in general have different shapes, a full context may
not exist, in which case we fall back to the shorter context
[m, l, h] for m1. When a (c1, m1) pair occurs for the first
time, H[c1][m1] = 0 and thus m1 cannot be coded using
c1. We instead encode an empty symbol at index −1 with
frequency 1 (i.e., H[c1][−1] = 1) to signify to the decoder
that c1 cannot be used, then encode m1 with uniform prob-
ability i.e., 1/(m+ 1). At the same time, we still increment
H[c1][m1] to avoid this zero-probability problem the next
time the same (c1,m1) pair occurs. Finally, m2 is also
encoded with a context, which combines c1 and m1, since
m1 is already known before m2 is decoded.

7 EVALUATION AND RESULTS

We evaluate the efficacy of our proposed solutions through
various experiments. In the discussion that follows, both

Hybrid → k-d

ഥ𝐓𝑒 → 𝐓𝑒

ഥ𝐓𝑒 𝐓𝑒 𝐓𝑜

(𝑮𝑠, 𝑠) (𝑮, 𝑛)

hybrid tree k-d tree

even odd

Fig. 10: The even subtree T̄e is transformed from a hybrid tree to a k-d
tree Te. The odd subtree To is coded using a lockstep traversal with
Te. Local information at the two front nodes ((Gs, s) and (G, n)) are
used for context coding. When To is fully coded, it is combined with Te

and transformed into a k-d tree for next-level prediction.

“BT on k-d tree” and “DT on k-d tree” are the baseline
DG [36] methods; all other traversal-tree combinations are
our contributions. We quantify the reduction in data as bits-
per-particle (bpp), measured by dividing the number of bits
decoded by the total number of particles originally. Particle
are always specified using 32-bit floating point coordinates,
which are then quantized to 32-bit (96 bpp) integers prior to
experiments. To generate an approximation when a traver-
sal stops midway, for each node (G, n) at the traversal front,
we output one (random) particle within G. We use |C| to
refer to the size of container(s) used for traversal, in terms
of number of elements.

We use both the standard peak-signal-to-noise ratio
(PSNR) and rendered images, when appropriate, to assess
the quality of partial reconstructions. PSNR is defined as
20 log10 (W/E), where E is the root mean square point-wise
distance between every reference particle and its closest
reconstructed particle, and W is the maximum dimension
of the bounding box for the reference particles. A PSNR or
50 dB means that E is about W

300 , and an improvement of
1 dB corresponds to a reduction of E by 10 percent. The
rendered images are produced using OSPRay [93] after the
particles have been decoded (i.e., we do not decode and
render simultaneously); as previously mentioned, this work
focuses purely on encoding and decoding, and we hope
that future work can extend the ideas presented here to
perform direct rendering from compressed data. Note that
unless explicitly mentioned otherwise (as in subsection 7.4
and subsection 7.5), truncated binary coding is used.

7.1 Adaptive Traversal of k-d Trees

AT (with the proposed scoring heuristic, Equation 1) on k-
d trees improves the rate-distortion trade-off over BT on
k-d trees for a wide range of datasets (see Fig. 11). We
do not include DT in the same figure since the root-mean-
square error for DT is often exceptionally high due to whole
regions missing, rendering L2-norm-based quality metric
such as PSNR less meaningful. Visual demonstration of the
differences between low-bit-rate reconstructions using BT
and AT is provided in Fig. 14 (see the first green-highlighted
column pair). We render at low bit rates the outputs of the
various traversal and tree combinations with OSPRay [93].
The bit rates are chosen so that visual differences among
the combinations are most apparent. For the girl dataset,
AT (a3) provides a better covering of space compared to
BT (a2), which follows a strict order on each tree depth
level, creating a visible seam where the resolution changes.
The same phenomenon occurs for fissure (comparing b2 and
b3). For soldier, although less noticeable, AT (d3) generates a
smoother surface as well. For cosmic web, AT (f3) captures the
points of interest — clusters of particles (galaxies) — better
by favoring densely packed nodes. Overall, by being more
data-adaptive, AT can provide significant improvements
over BT, both visually and quantitatively (in PSNR).
Alternative AT. Our default scoring function for AT (Equa-
tion 1) does not always work well for all datasets. For
example, the rendering of the coal dataset (which contains
simulated coal particles) in Fig. 12 contains occlusion be-
cause particles on the “surface” are given more importance.
Because of occlusion, however, the majority of particles
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in dense tree nodes are hidden from view, but these are
also nodes that our scoring function deems important. To
improve visual quality, we instead use an alternative scoring
function, removing n from the numerator, to prevent an
overemphasis on dense nodes. The result is a reconstruction
with lower PSNR but improved visual quality (i.e., more
similar to the reference, compare Fig. 12b and Fig. 12c),
indicating that PSNR does not always capture visual quality.
When particles are intended to be viewed as surfaces, our
alternative scoring function often produces better visualiza-
tions, because nodes containing surface particles are given
higher priority, even though they tend to be more sparse.

7.2 Traversals of Hybrid and Block-Hybrid Trees

In Fig. 14, we encode six datasets with different characteris-
tics (rows) and decode them using five combinations of tree
and traversal orders (columns) discussed in the paper. For
each row, all columns are decoded at the same bit rate, but
note that the number of decoded particles can be different
for each method. It can be seen that DT on our hybrid
tree is able to recover coarse reconstructions of the whole
space instead of very fine reconstructions of only parts of
the data, as is the case with DT on a k-d tree (see the second
green-highlighted column pair). Compared to BT on k-d tree
(DG), DT on hybrid tree tend to produce better results for
dense surface data (girl, soldier), and worse results for sparse
scientific data. A specially difficult case for DT on hybrid
tree is molecule, where the distribution is very sparse but
the particles are specified with high precision. In such cases,
refining a coarse subset of particles to high precision is not
useful (see Fig. 14 (c5)).

For most datasets, BAT on block-hybrid tree often im-
proves upon DT on hybrid tree visually by distributing
error more uniformly throughout space. This observation
is most visible when comparing (a5) with (a6), (c5) with
(c6), and (e5) with (e6). Interestingly, in terms of PSNR,
BAT on block-hybrid tree tends to perform worse than BT
or AT on k-d trees and sometimes even DT on hybrid
trees. Visually, however, BAT typically outperforms all other
methods (most strikingly in the case of molecule), often
producing a less blocky look on densely sampled surfaces
compared to BT or AT (see girl or soldier). BAT can also fail
visually (cosmic web) compared to DT on hybrid tree (see
(f5) and (f6)) since when dense regions are clearly preferred,
uniform refinement is not a good strategy. Finally, our

coal
soldier

cosmic web

san migueladaptive
breath-first

Fig. 11: Rate-distortion curves for AT and BT on k-d trees. AT not only
outperforms BT on all datasets tested, but also produces significantly
“smoother” rate-distortion curves.

hybrid and block-hybrid trees often generate significantly
fewer particles at the same bit rates compared to BT on k-d
trees (see fissure, dam break, and cosmic web), which should
benefit downstream processing tasks. The most striking
example can be seen by comparing (e6) with (e2), where
BAT produces an almost identical-looking approximation to
BT using only one-eighth the number of particles.

7.3 Speed and Memory Footprint
Fig. 13 (a, b) shows that DT on any tree and BAT on block-
hybrid tree achieve a constant memory footprint, whereas
AT and BT require orders of magnitude more memory. Com-
pared to DT and BAT, BT and AT also become slower very
quickly. Compared to BT, our AT requires the same memory
footprint and is slower, but can improve reconstruction
quality by a good margin (as discussed in subsection 7.1).
The decode time for BAT grows faster than that of DT (on
both k-d and hybrid trees), and its memory footprint is also
higher, while still being asymptotically constant (Fig. 13b).
The trade-off is higher reconstruction quality (Fig. 14).
Notwithstanding its lack of features compared to BAT on
block-hybrid tree, perhaps the best trade-off is had with
DT on hybrid tree, which vastly improves reconstruction
quality over DT on k-d tree almost for free. Based on these
results, we recommend AT on k-d trees for small data and
BAT on block-hybrid trees for large data, with AT limited to
only the coarse k-d portion at the top.

We test the scalability of BAT on block-hybrid tree
against the state-of-the-art octree compressor, MPEG [17],
using the TMC3 [94] reference implementation. We encode
eight datasets in increasing numbers of particles, and record
the encoding time and memory usage of both methods.
Fig. 13 (c) shows that our block-based encoder is several
times faster than MPEG’s encoder and, at the same time,
uses an order of magnitude less memory for the larger
datasets. Furthermore, our method’s time requirement and
memory footprint grow at much slower rates. For decoding,
a fair comparison is difficult to obtain since MPEG decodes
and outputs one block at a time, whereas we maintain all
the states necessary for simultaneous progressive decoding
of all blocks (important for cross-block bit allocation). Nev-
ertheless, MPEG crashes while decoding the largest dataset
in this experiment, which consists 400 M particles.

We also encode a dataset with almost one billion parti-
cles (detonation-large, with 968M particles) using the block-
hybrid tree, and then progressively decode and render three
approximations from that same encoding (Fig. 15). Render-
ing is done with OSPRay [93] after a subset of particles of
the original 968M particles is decoded in each case. Since
OSPRay constructs its own acceleration data structure for
rendering which inflates the memory requirement, without
reducing the number of particles, the original dataset could
not be rendered on our machine with 64 GB RAM (it
was previously rendered using 3 TB of RAM [41]). With
block-hybrid tree, high-quality reconstructions are possible
at significantly lower particle counts, decoded progressively
using a constant memory footprint (50 MB of RAM).

7.4 Binomial Coding
In Fig. 16, we plot rate-distortion curves for both truncated
binary coding [89], [90] and our binomial coding using BT
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(a) 51,214,252 particles (b)0.3 bpp, 66.39 dB (c) 0.3 bpp, 62.56 dB (d)0.3 bpp, 63.15 dB (e) 0.3 bpp, 66.24 dB (f)0.3 bpp, 64.12 dB
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(96	bpp)
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on	k-d	tree
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on	k-d	tree

Per-resolution	BT
on	hybrid	tree

Alternative	AT
on	hybrid	tree

Fig. 12: Reconstruction results for alternative combinations of traversal orders and trees, including the use of an alternative scoring function for AT
to obtain a better reconstruction visually (c), even at a lower PSNR. All reconstructions are at 0.3 bpp. Although not canonical, BT and AT on hybrid
trees are very possible combinations, which may sometimes be preferable than BT on k-d trees, as is perhaps the case here.
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Fig. 13: (a, b): Decode times and memory footprints for combinations of trees and traversal methods, plotted for the detonation dataset. DT and
BAT achieve constant memory footprint and linearly scaled decode time in number of bits, whereas AT and BT require orders of magnitude more
memory, and also much faster growing decode time. (c): Compared to MPEG [17], our block-based encoder (BAT on block-hybrid tree) is almost
5× to 7× less expensive, and our time and memory costs also grow at much slower rates.

on k-d trees. We use three real-world datasets with approx-
imately uniform distributions of particles, and a synthetic
dataset where the distribution is truly uniform. It can be
seen that, at the same data quality, binomial coding consis-
tently improves the compression ratio by a factor between
10 and 20 percent. Conversely, at the same compression
ratio, binomial coding on average improves the PSNR by
about 0.5 dB. Fig. 17 visually demonstrates the difference in
data quality between binomial and truncated binary coding,
using the fissure dataset, which shows that even a seemingly
small difference of 0.68 dB can translate to a significant
visual difference. The most difficult dataset to compress is
unsurprisingly the random one.

To further evaluate the coding efficiency of our imple-
mentation, we compress the synthetic dataset consisting
of randomly generated particles, and compare the size of
our compressed bitstream to a theoretically calculated code
size. The theoretical code size is calculated by summing the
theoretically smallest number of bits needed to encode n1

under every k-d tree node (G, n), assuming n1 is binomially
distributed given n. Fig. 18 shows that our binomial coding
implementation achieves code sizes that are virtually the
same as the theoretically calculated ones across all tree
depths, meaning our average code size for each tree node is
close to the entropy of the binomial distribution. The same
figure also shows that this (normalized) entropy approaches
0.5 as n gets larger toward the root of the tree, and 1 as n
approaches 1 toward the leaves, consistent with our analysis
in subsection 6.1. This result is encouraging for increasingly
larger (and denser) datasets of the future, since progres-
sive refinements will stop more toward the root, resulting
in better compression for binomial coding, approaching a
reduction ratio of 0.5 compared to truncated binary coding.
In terms of performance, binomial coding runs about 1.5

times slower than truncated binary coding.

7.5 Odd-Even Context Coding

To test the efficacy of the odd-even context coding method,
we compress several datasets with two methods: truncated
binary coding and context coding. For this comparison, we
always use DT on hybrid trees because odd-even context
coding is designed to work with this combination. On a
hybrid tree, DT visits the resolution levels from coarse to
fine; we therefore record the ratio between the two bit-
streams as each resolution level is processed, and plot these
ratios in Fig. 19 (a ratio less than 1 means context coding
is better). The figure shows that context coding improves
on truncated binary coding in compression ratio for several
datasets, compressing up to 40% better (for dancer), and in
several cases up to 20% better at the last resolution level
(lossless). Context coding also works better as the resolution
gets finer, likely because sibling subtrees under an odd-even
split are more correlated at finer resolution levels due to
them being less spatially separated. On the other hand, as
this distance increases toward coarser resolution levels, the
correlation reduces, and thus compression suffers.

Fig. 19 also shows that our context coding does not work
as well for some datasets, but is never significantly worse
than truncated binary coding. We distinguish two kinds
of datasets: densely sampled surfaces (dashed lines) and
sparse but high-precision particles in scientific simulations
(solid lines). It can be seen that our scheme works better for
the surface datasets, where the particles form very distinct
shapes and there are enough particles that the shapes are
relatively well preserved by odd-even subsampling. Such
datasets contain densely distributed particles, therefore they
have significantly fewer in-cell refinement bits. Since such
bits tend to be more random, datasets with fewer of them
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Reference	
dataset

(96 bpp )
BT	on	

k-d	tree	(DG)
Proposed	AT	
on	k-d	tree

DT	on	
k-d	tree	(DG)

DT	on	proposed	
hybrid	tree

Proposed	BAT	on
block-hybrid	tree

(a1) n = 729,133
particles

(a2) 49.78 dB; 0.04s
|C| = 113K, n = 113K

(a3) 60.83 dB; 0.07s
|C| = 126K, n = 126K

(a4) N/A; 0.03s
|C| = 24, n = 217K

(a5) 62.24 dB; 0.03s
|C| = 26, n = 157K

(a6) 63.17 dB; 0.08s
|C| = 450, n = 172K

(c1) n = 742,614
particles

(c2) 52.06 dB; 0.28s
|C| = 725K, n = 725K

(c3) 53.06 dB; 0.69s
|C| = 742K, n = 742K

(c4) N/A; 0.13s
|C| = 24, n = 540K

(c5) 41.56 dB; 0.11s
|C| = 24, n = 550K

(c6) 50.45 dB; 0.30s
|C| =580, n = 504K

(d1) n = 4,001,754
particles

(d2) 60.31 dB; 0.06s
|C| = 149K, n = 149K

(d3) 60.87 dB; 0.12s
|C| = 121K, n = 121K

(d4) N/A; 0.06s
|C| = 34, n = 236K

(d5) 59.96 dB; 0.06s
|C| = 34, n = 168K

(d6)	59.84 dB; 0.18s
|C| = 5.2K, n = 164K

(e1) n = 8,054,368
particles

(e2) 64.80 dB; 1.99s
|C| = 5.6M, n = 5.6M 

(e3) 64.44 dB; 4.42s
|C| = 6.4M, n = 6.4M 

(e4) N/A; 1.03s
|C| = 57, n = 721K

(e5) 54.27 dB; 1.04s
|C| = 57, n = 706K

(e6) 53.94 dB; 2.56s
|C| = 280K, n = 640K

(f1) n = 51,214,252
particles

(f2) 62.22 dB; 4.35s
|C| = 12M, n = 12M

(f3) 63.82 dB; 12.44s
|C| = 13M, n = 13M

(f4) N/A; 2.67s
|C| = 59, n = 2.1M

(f5) 54.62 dB; 2.73s
|C| = 59, n = 1.9M

(f6) 54.37 dB; 7.02s
|C| = 810K, n = 1.6M
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(b1) n = 4,788,858
particles

(b2) 53.21 dB; 0.56s
|C| = 1.8M, n = 1.8M

(b3) 53.08 dB; 0.99s
|C| = 1.4M, n = 1.4M

(b4) N/A; 0.25s
|C| = 30, n = 726K

(b5) 50.41 dB; 0.25s
|C| = 30, n = 726K

(b6) 50.37 dB; 0.75s
|C| = 14K, n = 715K

Fig. 14: Visual comparison of the different traversal-tree combinations (columns) discussed in this paper for six datasets (rows). The reduced
datasets are shown at 1.1 bpp (girl), 1.3 bpp (fissure), 4.4 bpp (molecule), 0.4 bpp (soldier ), 3.1 bpp (dam break ), and 1.3 bpp (cosmic web).
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(a) 138×, n = 33M (b) 46×, n = 106M (c) 23×, n = 215M

Fig. 15: Three approximations of a detonation-large simulation dataset,
compressed and then decoded with our block-hybrid tree approach
(compression ratio k× and corresponding number of particles, n, given).
All three are snapshots of a single progressive decompression process,
and all use only 50 MB for decoding.

often compress better. In contrast, the scientific simulation
datasets are more difficult to compress because they are
dominated by in-cell refinement bits, due to the particles
being relatively sparse but stored with high precision.

There is one nonsurface dataset (detonation) for which
our context-based scheme also works well. Here, the parti-
cles mostly follow a very regular arrangement as they repre-
sent arrays of explosives, and context modeling can exploit
such global repetitions. Using the dancer dataset, Fig. 20
demonstrates that context coding can result in significant
improvements in PSNR over truncated binary coding for
progressive decompression. Visually, the improvements in
PSNR translate to better reconstructed surface at low bit
rates with significantly fewer artifacts (Fig. 20, bottom). In
experiments, our implementation of odd-even context cod-
ing is often two times slower (for the encoder), and between
three to eight times slower (for the decoder) than truncated
binary coding. The extra cost mostly comes from the re-
partitioning of the particles in the even subtree, which (as
expected) doubles the computational cost for the encoder.
Without odd-even context coding, the decoder is about four
times faster than the encoder since it does not have to
partition an array of particles to obtain node values (instead,
node values are decoded from the bit stream). With odd-
even context coding, which adds an extra partitioning step,
both the encoder and the decoder run at similar speeds.

7.6 (Near) Lossless Compression Ratio

We compare near lossless compression ratios (lossless
with respect to quantized particles) among four meth-
ods: DG [36], our proposed techniques, MPEG [17], and
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Fig. 16: Rate-distortion curves demonstrate that our proposed binomial
encoding outperforms the standard truncated-binary coding [89] for
datasets with approximately uniform distributions of particles. We also
include a synthetic random dataset, with random particle distribution.

(a) 8,054,368 particles (b)45.78 dB (c) 46.46 dB 

Reference	
(96	bpp)

Truncated	binary	coding
0.2	bpp

Binomial	coding
0.2	bpp

Fig. 17: At the same bit rates, binomial coding more faithfully recon-
structs features in the original data: for the fissure dataset, the shape of
the crack is more clearly defined with binomial coding.

LASZip [95] for several datasets in Table 1. To achieve the
best compression, we use k-d trees with binomial coding
for crystal, molecule, salt, fissure, detonation and random-80,
block-hybrid trees with odd-even context coding for girl,
dancer, and sodier, and hybrid trees with truncated binary
coding for the rest. For lossless compression of point clouds,
LASZip is an industry standard, and MPEG represents the
state-of-the-art in compression ratio. Table 1 shows that our
methods mostly achieve comparable lossless compression
ratios against that of DG, which means our use of the odd-
even splits does not degrade compression (while achiev-
ing much better quality-memory trade-offs as previously
shown). For dense surface datasets (girl, dancer, soldier),
our odd-even context coding results in significantly better
lossless compression ratios over DG. LASZip produces the
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Fig. 18: Ratios of code sizes (binomial coding over truncated binary
coding), both theoretically calculated and empirically measured, for a
synthetic dataset with randomly generated particles. Our binomial cod-
ing implementation achieves almost perfect coding efficiency.
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Fig. 19: Ratio between the compressed code sizes (context coding over
truncated binary coding) at progressively finer resolution levels, with
the last level corresponding to lossless compression. Our context coder
works very well for dense surface datasets (solid lines), and less well for
high-precision but sparse datasets (dashed lines).
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TABLE 1: Comparison of lossless compression ratios across four com-
pression methods for the several datasets used in our experiments. We
give further comments in the text for the datasets marked with *.

datasets # particles DG Ours MPEG LASZip
crystal [2] 16K 2.10 2.11 2.44 1.56
girl [11] 729K 13.90 39.57 67.29 9.92
molecule [41] 742K 2.19 2.20 2.18 1.64
salt [4] 1.8M 2.36 2.38 2.33 1.51
fissure [41] 4.7M 2.54 2.56 3.50 2.13
dancer [11] 3.1M 22.81 35.42 65.02 6.89
soldier [11] 4M 13.70 16.14 21.00 5.56
san miguel [96] 3.6M 3.36 3.20 3.46 2.02
dam break [6] 8M 2.71 2.69 2.69 1.85
coal [97] 27M 3.45 3.42 3.36 2.20
cosmic web [41] 51M 3.17 3.12 3.06 1.72
*detonation [98] 180M 3.08 3.85 24.20 10.30
*random-80 1.6M 42.70 95.50 crashed 27.40

worst compression ratios among all methods in most cases,
while MPEG compresses the best with its sophisticated
context modeling. Unsurprisingly, MPEG also performs the
best for the dense surface datasets (girl, dancer, soldier), since
it is designed specifically for this kind of data. For many
of the coarse but high-precision scientific datasets (molecule,
salt, dam break, coal and cosmic web), however, MPEG’s com-
pression ratios are no better than ours.

detonation contains highly regular, repeating particle ar-
rangements, which MPEG and LASZip take advantage of,
whereas DG and ours do not. However, with additional
dictionary-based compression, our compression ratio in-
creases from 3.85 to 10.3, comparable to that of LASZip’s.
random-80 is a synthetically generated dataset where a
random 80% of the grid cells contain particles. Since our
grid-based approach scales gracefully from sparse to dense
data by switching to coding empty cells when particles
are densely distributed, it compresses twice better than
DG and four times better than LASZip, whereas MPEG
simply crashes. Most scientific datasets in practice are sparse
relative to the grid size, but future data will likely become
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(a) 3,130,215 particles (b) 49.85 dB (c) 50.39 dB 

Reference	
(96	bpp)

Truncated	binary
0.03	bpp

Odd-even	context
0.03	bpp

Fig. 20: Top: rate-distortion plots for the dancer dataset shows that odd-
even context coding significantly outperforms truncated binary coding.
Bottom: visual comparison between the two coding methods at the same
bit rate of 0.03 bpp. Odd-even context coding reproduces the reference
data more faithfully (with fewer artifacts).

denser as more particles are captured and simulated.

8 CONCLUSION AND FUTURE WORK

We have presented novel techniques along a tree-based
particle compression pipeline, centered around the con-
cept of an odd-even split. We have presented novel tree
construction and traversal techniques that achieve a better
balance between data quality and resource requirements
compared to other state-of-the-art particle compressors. Our
adaptive traversal approach improves over the static breadth-
first traversal with respect to a user-defined error heuristic.
Compared to k-d trees, our hybrid trees enable high-quality
depth-first traversal. The block-hybrid tree allows not only in-
dependent, low-footprint encoding and decoding of blocks,
but also higher reconstruction quality compared to all other
approaches. Our block-adaptive traversal approach allows
flexible, error-guided reconstructions at decoding time inde-
pendent of how data is compressed. Our proposed binomial
coding and odd-even context coding significantly improve the
compression ratio for datasets they are designed for by
as much as 20% (for uniform distributions) and 40% (for
densely sampled surfaces). All of the proposed techniques
benefit the encoder and decoder equally. Working together,
our contributions amount to a highly flexible and scalable
particle compression system, which compares favorably to
the state-of-the-art MPEG standard in memory and speed,
both in absolute terms and in rates of growth.

Like DG [36], our method does not take advantage of
global redundancy, which could be useful to compress cer-
tain regular arrangements of particles, albeit at the expense
of coding complexity and speed. To realize the odd-even
splitting scheme, we need to quantize particle positions to
avoid the inaccuracy caused by floating-point operations,
but techniques may exist that maintain accuracy without
quantization. We also do not tackle compression of at-
tributes other than positions, although odd-even splitting –
being based on the lazy wavelet transform – might suggest
a wavelet-based compression scheme for attributes. We see
opportunities for more in-depth studies of the trade-offs
between odd-even and k-d splits, as well as between various
possible combinations of tree and traversal types. The idea
of odd-even splits may be generalized to octrees, although
perhaps with different trade-offs.

For tasks such as such as nearest-neighbor queries, oc-
clusion culling, or empty-space skipping in rendering, it
remains to be seen how our odd-even splitting mechanism
affects application-level concerns, and to what extent our
hybrid and block-hybrid trees can be used for noncom-
pression purposes. For some datasets, neither binomial cod-
ing nor odd-even context coding may be applicable. Such
datasets tend to contain nonuniform, relatively sparse but
high-precision particles, which are common in scientific
simulations. Better coding schemes might be invented to
better target these cases, for which we hope the ideas pre-
sented here provide good starting points. Finally, it is also
important to study task-oriented error metrics/heuristics
and their utility to drive either tree construction or tree
traversal, or both.
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APPENDIX A
GENERIC TREE-BASED DECODER

We give a generic template for a decoder that can be stopped
at any point to produce an approximation to the original
particles. The inputs include the total number of particles
n0, an initial bounding box B0, and a bit stream BS storing
the encoded bits. A data structure C, supporting a PUSH
and a POP operations (e.g., a stack or queue), keeps track of
the traversal front. In each iteration, a front node (B, n) is
popped from C, followed by an optional callback, which,
depending on whether (B, n) is a leaf, can append it to
an output list of particles or to a tree. For inner nodes, the
number of particles in the left child (i.e., n1) is decoded from
BS with the knowledge of n. (B, n) is then SPLIT into two
children, which are then pushed back into C, and the whole
process repeats until either C is empty or when DONE(BS) is
true (e.g., when enough bits have been read from BS).

Algorithm 1 Generic tree-based decoder. Inputs: n0 particles
in bounding box B0, bitstream BS, node container C (e.g.,
stack, queue).

1: function DECODETREE(n0,B0, BS, C)
2: C.PUSH(B0, n0) ▷ push node (B0, n0) to C
3: D← X ▷ initial dimension of splitting
4: while not DONE(BS) and not C.ISEMPTY do
5: (B, n)← C.POP
6: if n = 0 then
7: continue
8: end if
9: if ISLEAF(B, n) then

10: LEAFFUNC(B, n) ▷ e.g., output a particle
11: continue
12: else
13: INNERFUNC(B, n) ▷ e.g., create a tree node
14: end if
15: n1 ← DECODE(n, BS) ▷ particles in the left child
16: n2 ← n− n1 ▷ particles in the right child
17: B1,B2 ← SPLIT(B, D) ▷ split B along D
18: D← NEXT(D) ▷ e.g., if D = X, NEXT(D) = Y
19: C.PUSH(B1, n1)
20: C.PUSH(B2, n2)
21: end while
22: end function
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APPENDIX B
HYBRID TREE ENCODING

We give the pseudocode for a hybrid tree encoder in Algo-
rithm 2. Compared to Algorithm 1, this algorithm is written
in recursive form for simplicity, includes details on when
to use odd-even splits, and how we switch to encoding
empty cells if the current grid is dense in particles (lines
9 – 11). A new ENCODEREFINEMENTBITS step is invoked
to output a particle’s in-cell refinement bits (i.e., gray nodes
in Fig. 6). Finally, we further specify the actual low-level
encoding method to be the commonly used truncated binary
coding [89], [90].

Algorithm 2 Depth-first, recursive hybrid tree encoding.
Inputs: a set of particles P residing in a grid G, split type S
which is either ODD-EVEN or K-D (it is ODD-EVEN initially),
dimension of splitting D, and bitstream BS.

1: function DTHYBRIDENCODE(P , G, S, D, BS)
▷ step 1: encode in-cell refinement bits

2: if G = 1 then ▷ one particle in a single cell
3: ENCODEREFINEMENTBITS(P , G, D, BS)
4: return
5: end if

▷ step 2: split the current node
6: P1, P2,G1,G2 ← PARTITION(P,G, S, D)

▷ step 3: encode the current node
7: n← |P | ▷ number of particles in current node
8: n1 ← |P1| ▷ number of particles in the left child
9: if G− n < n then ▷ grid is dense in particles

10: n← G− n ▷ encode number of empty cells
11: n1 ← |G1| − n1

12: end if
13: TRUNCATEDBINARYENCODE(n1, n, BS)

▷ step 4: recurse
14: D← NEXT(D) ▷ next dimension of splitting
15: if |P1| > 0 then ▷ left child
16: DTHYBRIDENCODE(P1,G1, S, D, BS)
17: end if
18: if |P2| > 0 then ▷ right child
19: S← K-D ▷ by definition of hybrid-trees
20: DTHYBRIDENCODE(P2,G2, S, D, BS)
21: end if
22: end function
23:
24: function PARTITION(P , G, S, D)
25: P1, P2,G1,G2 ← ∅
26: if S = ODD-EVEN then
27: P1, P2,G1,G2 ← ODDEVENPARTITION(P,G, D)
28: else
29: P1, P2G1,G2 ← KDPARTITION(P,G, D)
30: end if
31: return P1, P2,G1,G2

32: end function
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APPENDIX C
BLOCK-ADAPTIVE TRAVERSAL

The pseudocode for BAT is given in Algorithm 3. B denotes
the current block being traversed, with B.l being the block’s
resolution level, B.n its total number of particles and B.n∗

its number of visited particles, as described above. In the
COARSETRAVERSE and MEDIUMTRAVERSE functions, N de-
notes the current node at the traversal front, with N.l storing
its resolution level and N.n its number of particles. The
FINETRAVERSE function performs fine-phase (breadth-first)
traversal, which decodes the in-cell refinement bits.

Algorithm 3 Block-adaptive traversal. Inputs: a priority
queue of blocks Q, coarse bit stream BS.

1: function BLOCKADAPTIVETRAVERSE(Q, BS)
2: if Q.ISEMPTY then ▷ still in coarse traversal phase
3: COARSETRAVERSE(CS)
4: end if
5: while not Q.ISEMPTY do
6: B← Q.POP ▷ B is the block with the largest error
7: if B.n∗ < B.n then ▷ not all of B’s particles visited
8: MEDIUMTRAVERSE(B)
9: Q.PUSH(B)

10: else ▷ all particles visited, do fine traversal phase
11: FINETRAVERSE(B)
12: if not ALLBITSREAD(B.BS) then
13: Q.PUSH(B)
14: end if
15: end if
16: end while
17: end function
18:

▷ Coarse-phase traversal: Algorithm 1 with a queue
container, bitstream BS and the following callback.

19: function COARSETRAVERSE(BS)
▷ LEAFFUNC ▷ from each leaf we create a block B

20: B.l← 0 ▷ with resolution level 0,
21: B.n← N.n ▷ and appropriate number of particles,
22: B.n∗ ← 0 ▷ and number of visited particles
23: B.ST← empty stack
24: B.ST.PUSH(N) ▷ N is the root node of block B
25: Q.PUSH(B)
26: end function
27:

▷ Medium-phase traversal: Algorithm 1 with B.ST as
the (stack) container, B.BS as the bitstream, and the
following callbacks.

28: function MEDIUMTRAVERSE(B) ▷ DT of block B
▷ LEAFFUNC ▷ each leaf is a particle

29: B.n∗ ← B.n∗ + 1 ▷ a new particle visited
30: B.n∗

l ← B.n∗
l + 1

▷ INNERFUNC
31: if N.l ̸= B.l then ▷ reached a finer resolution level
32: B.l← N.l ▷ update the current resolution level
33: B.nl ← N.n ▷ update number of particles
34: B.n∗

l ← 0 ▷ reset number of visited particles
35: end if
36: end function
37:

▷ Fine-phase traversal: for simplicity, always read an
entire bit plane of the input block B.

38: function FINETRAVERSE(B)
39: for each particle P ∈ B.P do
40: BIT← READONEBIT(B.BS)
41: P← REFINE(P, BIT)
42: end for
43: B.l← B.l + 1
44: end function
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APPENDIX D
BINOMIAL CODING AND ENTROPY

To get a better understanding of the theoretical gain achiev-
able with binomial coding, we look at the entropy of the
binomial distribution, H , which is

H = −
n∑

k=0

(
n

k

)
pk(1− p)n−k log2

((
n

k

)
pk(1− p)n−k

)
We use the de Moivre-Laplace theorem to get
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By the definitions of a normal distribution and its vari-

ance, we have, respectively,
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−∞
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1
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2

= 1 and
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2

(x− µ)2 = σ2 . Therefore,

H ≃ log2 (σ
√
2π) +

1

2
log2 e =

1

2
log2 (2πeσ

2)

=
1

2
log2 (2πenp(1− p))

Algorithm 4 Binomial coding. Inputs: CDF tables CDFS,
arithmetic bit stream BSa, truncated binary bit stream BSb,
number of particles in the current node n, number of parti-
cles in the left child n1.

1: function BINOMIALENCODE(CDFS, BSa, BSb, n, n1)
2: µ← n/2
3: σ2 ← n/4
4: small← n ≤ 30
5: while True do
6: a← ⌈a⌉
7: b← ⌊b⌋
8: if a = b then ▷ n1 = a = b, no need to encode
9: return

10: end if
11: n← b− a
12: if small then ▷ exact binomial modeling
13: ARITHMETICENCODE(n1 − a, CDFS[n], BSa)
14: return
15: end if
16: fa ← Fµ,σ2 (a) ▷ Fµ,σ2 is the CDF of N(µ, σ2)
17: fb ← Fµ,σ2 (b)
18: m← F−1

µ,σ2 ((fa + fb) /2)
19: if m = a or m = b then ▷ ran out of precision
20: TRUNCATEDBINARYENCODE(n, n1 − a, BSb)
21: return
22: end if
23: if n1 < m then
24: WRITEBIT(BSb, 0)
25: b← m
26: else
27: WRITEBIT(BSb, 1)
28: a← m
29: end if
30: end while
31: end function
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APPENDIX E
ODD-EVEN CONTEXT CODING

Algorithm 5 gives the pseudocode for our odd-even context
encoder, including details on how to perform the lockstep
traversal inline and inplace.

Algorithm 5 Odd-even context encoding. The inputs P , D,
G, S, BSa, BSb are the same as in previous algorithms. l and
h are, respectively, the resolution level and tree depth of the
current node during the recursive DT. R is a sorted array
containing particles of the current reference subtree, and GR

is the corresponding subgrid where these particles reside.

1: function OEENCODE(R, GR, P , G, D, S, l, h, BSa, BSb)
▷ first two steps are the same as Algorithm 2 . . .
▷ step 3: encode the current node

2: m← log2 (n+ 1)
3: m1 ← log2 (n1 + 1)
4: m2 ← log2 (n− n1 + 1)
5: R1, R2,GR1

,GR2
← KDPARTITION(R,GR,D)

6: P1, P2,G1,G2 ← PARTITION(P ,G,S,D) ▷ see Alg. 2
7: if |R| > 0 then ▷ reference node is present
8: r ← log2 (|R|+ 1)
9: r1 ← log2 (|R1|+ 1)

10: r2 ← log2 (|R2|+ 1)
11: c1 ← [m, r, r1, r2, l, h]
12: CONTEXTENCODE(m1, c1, BSa, BSb)
13: if CANNOTINFERm2FROM(m,m1) then
14: c2 ← [m, r, r1, r2, l, h,m1]
15: CONTEXTENCODE(m2, c2, BSa, BSb)
16: end if
17: else ▷ no reference node, minimal context
18: c1 ← [m, l, h]
19: CONTEXTENCODE(m1, c1, BSa, BSb)
20: if CANNOTINFERm2FROM(m,m1) then
21: c2 ← [m, l, h,m1]
22: CONTEXTENCODE(m2, c2, BSa, BSb)
23: end if
24: end if

▷ step 4: recurse
25: D← NEXT(D) ▷ next axis of splitting
26: h← h+ 1 ▷ next tree depth
27: if |P1| > 0 then ▷ left child
28: ln ← l + (S = ODD-EVEN) ▷ next resolution level
29: R1 ← (S = ODD-EVEN) ? ∅
30: OEENCODE(R1, GR1

, P1, G1, D, S, ln, h, BSa, BSb)
31: end if
32: if |P2| > 0 then ▷ right child
33: (R2,GR2

)← (S ̸= K-D) ? (R1, GR1
)

34: OEENCODE(R2, GR2
, P2, G2, D, S, l, h, BSa, BSb)

35: end if
36: end function
37:

▷ encode m1 using context c1 into bit streams BSa , BSb
38: function CONTEXTENCODE(m1, c1, BSa, BSb)
39: if H[c1][m1] > 0 then ▷ context can be used
40: ARITHMETICENCODE(m1, H[c1], BSa)
41: else ▷ context cannot be used due to 0 probability
42: H[c1][−1]← 1
43: ARITHMETICENCODE(−1, H[c1], BSa)
44: TRUNCATEDBINARYENCODE(m1, c1.m, BSb)
45: end if
46: H[c1][m1]← H[c1][m1] + 1
47: end function
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