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1 Introduction

In this project, I implement an inverse kinematics (IK) solver using the damped least
square (DLS) method. Compared to other popular methods for solving IK problems such
as Jacobian transpose or pseudo-inverse, DLS is more stable near singularities, which
means the animation is less jerky when the arms are fully stretched. The solver supports
any combination of translational joints (1-dof) and rotational joints (1/2/3-dof). It can
track multiple targets at the same time, while maintaining realtime framerates (60fps) for
moderately complex bodies. Simple, per-dof joint limits are supported. The solver can
also maintain a constraint on the horizontal position of the system’s center of mass.

2 Inverse Kinematics as a Linear Problem

Given a body which consists of a a hierarchy of joints, we want to rotate (or translate) the
joints so that certain pre-defined locations on the body (called end effectors) closely track
some (possibly moving) targets in the outside world. If we use a column vector θ to de-
note all the joint angles (θ = [θ0, θ1, . . . , θn]T, where n is the number of degrees of freedom
of the whole body), s for the x-y-z coordinates of all end effectors (s = [s1, s2, . . . , sm]T,
where m/3 = k is the number of end effectors), t for the x-y-z coordinates of all targets
(t = [t1, t2, . . . , tm]T), then s is a function of θ, and the goal of IK is to find θi so that
‖s(θi)− t‖ is minimized.

To relate the change in θ with the change in s, we use a Jacobian matrix J, defined
as Jij(θ) = ∂si/∂θj. Then we can approximate the change in s as ∆s ≈ J∆θ. Using e to
denote the difference between the targets and the end effectors (e = t − s), we can solve
the IK problem by finding an update ∆θ to add to the current θ so that the e ≈ ∆s ≈ J∆θ,
that is, solving for ∆θ in the equation

e = J∆θ. (1)

For details of computing J, please refer to [Bus04].
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3 Damped Least Square Solver

Very often, Equation (1) does not have an exact solution. It is common to solve for ∆θ
such that ‖J∆θ− e‖ is minimized instead, that is, solving the normal equation

JT J∆θ = JTe (2)

It can be shown that Equation (2) always has a solution. However, the solution is unstable
near singularities, which can cause jerkiness in the animation. The damped least square
method addresses this problem by solving a similar equation

(JT J + λ2I)∆θ = JTe (3)

It can be shown (by SVD decomposition) that (JT J + λ2I) is always invertible, hence
Equation (3) always has a solution

∆θ = (JT J + λ2I)−1 JTe (4)

The same SVD decomposition can also show how Equations (3) and (2) are related, and
why using (3) leads to a more stable solution [Bus04]. Instead of solving 4, we note that
(JT J + λ2I)−1 JT = JT(J JT + λ2I)−1 and use the following formula to solve for ∆θ

∆θ = JT(J JT + λ2I)−1e (5)

The advantage of using (5) over (4) is that the matrix J JT + λ2I has size m×m instead of
n× n (recall that m = 3k where k is the number of end effectors/targets, and thus usually
is much less than n, the total number of degrees of freedom in the body). We use row
operations to find f such that (J JT + λ2I) f = e, and then ∆θ = JT f is the solution.

4 Joint Limits

For each degree-of-freedom i we define a limit range: from θmin
i to θmax

i . If a solution
falls out of this range, it is simply clamped. This way of handling joint limit is quick and
reasonable for 1-dof and 2-dof joints. For 3-dof rotational joints (ball joints), it probably
makes more sense to define the limit as a cone of possible orientations. Another prob-
lem is that our system will sometimes miss legitimate solutions by not considering the
joint limits when solving for ∆θ. This problem, however, is not too severe if the targets’
trajectories are smooth (i.e. targets do not jump), as they often are in practice.

5 Constraining the Center of Mass

Assuming the body has a uniform mass distribution, we can solve the IK problem while
trying to keep the projected center of mass (cof) of the body at one pre-defined point
on the horizontal plane. The idea is to formulate the position of the cof (c) as a linear
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function of the joint angles (θ), then use a Lagrange-multiplier-based method to solve for
an optimal ∆θ that also satisfies the constraint, similar to what is done in [Gle98].

Denote the Jacobian relating the change in θ with the change in c as Jc. The constraint
can be written as

Jc∆θ = ∆c (6)

Taking the derivative of Equation (2), and set it to a linear combination of the derivative
of the constraint (6), we have

∆θT(JT J)− eT J = λT Jc (7)

where λ is a column vector of Lagrange multipliers. Taking the transpose of (7), and
adding a small term εI to JT J to make the matrix invertible, we arrive at

(JT J + εI)∆θ− JTe = JT
c λ (8)

Take out ∆θ in (8) and substitute it into (6) to get

Jc(JT J + εI)−1(JT
c λ + JTe) = ∆c (9)

Equation (9) is a linear equation in the form of Aλ = b, which can be solved using the
damped least square method described in Section 3. Once λ is found, it can be substituted
back into (8) to solve for ∆θ.

6 Experiments and Discussion

Here we describe the implementation of our system, and a few notable experiments we
have done. Our IK program lets the user control the animation by pausing and stepping
through the time steps, or speeding up/slowing down the animation. In our implemen-
tation, ∆θ is solved for a number of iterations per animation frame. The user can adjust
this number as well as the damping factor λ used in DLS.

Figure 1: Multiple joint types
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Figure 1 shows the interface of our program, and an example of a body consisting
of one ball joint (root), three universal joints, and two hinge joints, tracking two moving
targets. The targets often move out of reach of the body, but the animation is smooth,
given a high enough damping factor.

Figure 2: Hand skeleton driven my mocap data

Figure 2 shows a skeleton of a hand, with 20 ball joints and a movable root, tracking
20 targets, specified exactly at the positions of the joints. The targets’ trajectories and the
hand’s skeleton are taken from motion capture data. Our system gives stable solutions
and maintains real-time framerates for this case.

Figure 3: Center of mass constraint

Figure 3 shows the same body as in Figure 1, but with an added center-of-mass con-
straint (shown as the green sphere on the floor). The system is able to track the moving
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targets while maintaining a center of mass over the specified position. The user has con-
trol over the damping parameters used to solve the contrained optimization (ε and λ). We
have noticed that in general ε (see Section 5, Equation (8)) controls the stability of the so-
lution, while λ (the DLS damping factor) controls how well the constraint is maintained.

In conclusion, we have found that DLS is a stable and efficient method for solving the
IK problem. The drawback, however, is that the damping factor λ must be chosen by
hand. We could obtain better results if different λ values are used for different joints, but
this implies the need for a reliable way of choosing these damping values. This approach
is explored in [BK04].
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