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Introduction 

In this project, we implement a Smoothed Particle Hydrodynamics (SPH) method to simulate water. Our 

implementation follows closely the method described in [MCG03]. The code also includes other performance 

optimizations, such as Z-indexing and sorting [IABT11], SIMD vectorization, and multicore parallelization. We test 

the implementation with six test scenes simulating different situations involving water, a nd show that our system 

is efficient and scalable. 

Related Work 

SPH is used in computer graphics to simulate fluid interactively for the first time in [MCG03]. In this work, the 

authors try to achieve the incompressible property of water by modeling pressure using a gas equation. This 

spring-like model needs a high stiffness value to ensure incompressibility, but that implies stricter time steps to 

deal with very large pressure forces. In practice, a moderately small time step is often used, making the water 

compressible. Follow-up works focus on improving the method’s performance, and ensuring incompressibility 

while using similar or larger time steps. They include [BT07] (Tait’s equation for pressure computation to make 

the water less compressible), [APKG07, ZSP08] (adaptive particle sizes to avoid simulating too many particles in 

unimportant regions), [SP09, CBP05] (predictive-corrective pressure (PCISPH) and density relaxation, allowing 

much larger time steps), [IAGT10] (smarter boundary handling method for PCISPH), [AIY04, HKK07a, HKK07b] 

(GPU simulation),  [GSSP10] (CUDA implementation, Z-indexing), [IABT11] (efficient implementation on multi -

core CPUs). In the proposal for this project, we planned to implement PCISPH [SP09], but were unable to do so 

due to time constraint. 

Smoothed Particle Hydrodynamics 
To simulate fluid using particles, we begin with the Lagrangian version of the Navier -Stoke equations. The 

acceleration for each particle is calculated using the following equation. 

  

  
  

 

 
   

 

 
    

    

 
   

The second equation which states the incompressibil ity condition is difficult to enforce using a particle system, 

thus is hardly used. In practice, incompressibility is usually handled by empirical techniques. To convert the above 

equation to SPH style, we start with the discrete definition of SPH, which is a method to interpolate field quantities  

using some kernel function  . 
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The derivatives of the quantity are evaluated by putting the gradient or Laplace operator inside the kernel. We can 

now rewrite the first (pressure) and second (viscosity) terms on the right hand side of the Navier-Stoke equation in 

SPH style as follows. 
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Each SPH method is free to design its own formula for    ,    ,   (   ) , and   (   ). Our implementation uses the 

set of equations described in [MCG03] to interpolate pressure and viscosity. 

Implementation 

The code for this project is written in C++. Other l ibraries are used for specific purposes. They are: OpenGL (for 

rendering), Freeglut (for OS and I/O functions), Parallel Pattern Library (for threading), and Eigen (for SIMD 

vectorization). SPH is implemented as a typical particle system where the particles interact with one another and 

each particle reacts to forces exerted by nearby particles . Our algorithm is summarized by the pseudo-code below. 

The main difficulties come from the facts that SPH relies on correct parameters to work, and that the performance 

decreases fast with increasing number of particles. 

while animating do 

  for all   do 
    find neighborhood       
    compute density       
    compute pressure       
  for all   do 
    compute forces   

     
    

  for all   do 
    compute new velocity         
    compute new position         

Parameters 

SPH is sensitive to its parameters  and initial condition. First of all, the Navier-Stoke equations are scale-sensitive. In 
practice, only a relatively small volume of water can be simulated interactively. Therefore, we use a scaling factor 
to relate the SPH simulation world to the rendering world. Such a parameter is needed because it makes 

integrating the water with other objects in the world easier. The scaling factor used in our implementation is taken 
from a presentation by AMD at 
http://developer.amd.com/zones/OpenCLZone/Events/assets/SmoothedParticleHydrodynamics.pdf .  
 

Another important factor is the boundary handling method. Simply pushing the particles back when it penetrates 

the boundary walls may not work since doing so would change the density of water abruptly and hence affect the 

system’s stability. Reflecting a particle’s  velocity along the contact normal is also not enough to deal with very high 

pressure forces in most cases. In our implementation, the boundaries exert a very stiff spring-like force ( ) to push 

the particles away along the contact normal ( ). Also, a dampening factor is included to model energy loss when 

collision happens. The drawback of this approach is that since   is often very large, a small time step is required. 

This is not a problem in our case, however, since the use of gas equation for computing pressure already requires 

small time steps. 

SPH is also sensitive to its initial condition. For the system to work correctly, the initial positions of particles need 

to be carefully calculated. Placing them too far apart will  result in some particles having no neighbors and thus 
moving unpredictably; placing them too close together can make the system explode due to abnormally high 
pressure. The initial gap between the particles  (and also the mass of each particle) can be calculated using the 
fluid’s rest density, the total number of particles, and the volume the particles occupy initially. 

http://developer.amd.com/zones/OpenCLZone/Events/assets/SmoothedParticleHydrodynamics.pdf


 
A particle’s acceleration is caused by viscosity, pressure, gravity, and maybe external forces. In some scenarios, the 

pressure force can sometimes get too high due to abnormally low/high density. To avoid explosion, we artificially 
dampen the acceleration of each particle if it gets larger than some predefined value. The gravitational 
acceleration is only added after this dampening to avoid it getting “lost” in some close-to-infinity value. We finally 
find the particles’ position in the next simulation s tep using leap-frog integration, which computes velocities and 

positions at interleaving time steps. The advantage of this integration scheme is that it is accurate to the second 
order and is relatively cheap to compute, although it requires more memory to keep track of a particle’s velocity 
and position in previous time step. 
 

All  the above complications, together with the fact that the parameters need to be all  working together, make 
parameter tuning a significant part of the project. In our implementation, the user needs to specify the following 
parameters for the system: the total  number of particles, the rest density of water, the pressure’s stiffness, the 

viscosity coefficient, the kernel radius, the time step, the simulation scale, the wall’s stiffness, the wall’s 
dampening coefficient, and the maximum acceleration of a particle. Some parameters are explained above; for the 
rest of them, we refer the reader to [MCG03]. We borrow default values for some of the parameters from various 
sources on the Internet (most of them are mentioned above); the rest of the values are found by experiments. The 

details are also documented in the code. 

Data Structure 

In SPH, each particle needs to query for its neighboring particles a few times during a simulation step. This 
operation is the main bottleneck of the method; a naïve implementation would need to iterate through all  the 

particles for each particle, making the runtime complexity      . A common technique to deal with this  problem is 
to use a grid data structure to manage the particles. The whole simulation space is divided into uniform cells, each 
cell  stores the particles inside it. For the system to scale, care must be taken when designing the data structure for 
the grid. 

 
In an early version of our system, the grid is implemented using C#’s Dictionary, which is a hash table. The key 
used to index into the hash table is a tuple of cell  coordinate <x, y, z>. The value stored with each key <x, y, z> is 

the list of particles belong to the cell  <x, y, z>. In theory, this implementation has an advantage that is less memory 
is used for the grid, since only few cells are occupied by particles. In practice, however, the cost of the indexing 
(look up) operation is high, especially when we need to look up a large number of particles per time step. That is 
because it takes time to compute a hash value for each key, and also because when hash collision happens, the 

algorithm needs to traverse a l inear l ist of items to find the right value. 
 
The next data structure we try for the grid is a C++ array where each element stores a l inked list (std::list) of 

references to particles. However, a l inked list is not the fastest data structure to use if we want to iterate through 
the elements, which is what we do a lot in SPH. The reason is that the elements in a l inked list may not be 
consecutive in memory, thus looping over all  elements will  cause many cache-misses. Writing cache-friendly code 
is also the reason why we use C++ instead of C#, as the latter manages objects by pointers exclusively, giving the 

programmer little control over the memory location of the actual objects. 
 
The data structure that we settle on is an array where each element stores a  vector (using std::vector) of 
references to particles. In contrast to a l inked list, elements in a vector are stored consecutively in memory, thus 

cache-misses when iterating through the elements are kept to a minimum. One complication when using vectors, 
however, is that the delete operation is not constant but l inear time complexity. We avoid using this operation by 
keeping track of the number of elements manually instead of relying on the std::vector class to do so for us. 

Z-Indexing and Sorting 

Z-indexing (or morton encoding) is a method to map multi -dimensional values to one-dimensional value, while 

preserving locality. Consider the following example. Suppose our grid is 8x8 in 2D, and is stored in memory as a 64-

element one-dimensional array. Using a trivial indexing scheme, a particle at <4, 3> would be stored in grid[4 * 8 + 



3] or grid[35], while a particle at <5, 3> would be stored in grid[5 * 8 + 3] or gr id[43]. The two particles are close to 

each other in 2D but are stored far apart in memory. In SPH, we often need to loop through sets of neighboring 

particles. As we saw in the previous section, storing nearby particles in far-apart memory locations is bad for this 

looping operation since it is not cache-friendly. Z-indexing, on the other hand, uses bit-interleaving of coordinates 

to compute a 1D index. In our example, the bits of 4 (100) and 3 (011) are interleaved to produce 26 (011010), 

while 5 (101) and 3 (011) will  give us 27 (011011). Thus the two particles would be stored next to each other in 

memory, which means iterating through the particles results in less cache misses. 

Using z-indexing can improve the grid data structure’s performance. However, the grid only stores the handles 

(references) to particles. To fully util ize the cache, the particles themselves need to be stored in a similar way as 

the handles. We follow [IABT11] and sort the particle array once every 100 simulation steps using insertion sort. 

The array need not be sorted very frequently since particles’ positions change slowly over time, while insertion 

sort is used since it is very efficient for almost-sorted arrays.  

SIMD Vectorization 

A lot of operations on the particles are vector operation since the velocities, positions, accelerations, and forces 

are all  vector quantities. Modern processors can perform vector operations very efficiently using special 

instruction sets. One example of such an instruction set is the Intel’s Streaming SIMD Extensions (SSE). As an 

example, consider the addition of two 3D vectors, a and b. Using normal instructions, we write this as c.x = a.x 

+ b.x; c.y = a.y + b.y; c.z = a.z + b.z; which will  translate into 3 or more machine instructions. 

Using SIMD vectorization, all  three instructions can be reduced to one, provided the vectors (a, b, and c) are 

stored in a special way in memory so that the processor can fetch and add them component-wise. Obviously this is 

a major performance improvement over the traditional code. In our implementation, we use a l ibrary called Eigen 

(http://eigen.tuxfamily.org). This l inear algebra library compiles to SSE2 instructions, and also simplifies the code 

dealing with vectors significantly (adding two vectors is simply written as c = a + b;). 

Multithreaded Programming 

SPH is an embarrassingly parallel problem, since the particles do not write to shared variables. As such, we can 

easily, for example, assign each particle to a dedicating thread so that the whole system can take a dvantage of 

multicore processors. We rely on Microsoft’s Parallel Pattern Library for C++ to do the threading for us, simply by 

rewriting all  each for loop over all  particles into a parallel_for loop. The PPL library will  decide how many 

threads to spawn and how to map particles to threads effectively. 

Result 

We test our SPH simulation with six test scenes. They are described below. 

 Dam break. A column of water initially occupying half of tank is collapsing, creating back and forth waves 

from one side of the tank to the other. 

 Water drop. A volume of water is initially put in the air, above a water bed. It then falls down, creating 

some waves. 

 Sink. A volume of water is fall ing down to the level below through a hole in the center. 

 Wave. A tank initially contains some water. One of the walls move back and forth periodically, creating 

large waves to the other side. 

 Ball. A ball  is dropping on a volume of water. The ball  then move back and forth periodically, pushing the 

water around. 

 A column of water is put into a container with the U shape ( ). The water flows from one side to the 

other until  equilibrium is reached. 

http://eigen.tuxfamily.org/


In all  scenes we use 6400 particles  inside a volume of roughly 0.008 m
3
. However, not all  scenes use the same set 

of values for the parameters. All  the scenes are captured in a video submitted together with this report. 

For performance evaluation, we run the dam breaking scene on a n Intel Core2 Duo 2.0GHz system with 2GB DDR2 

RAM and a GeForce 8600M GT graphics card. With 6400 particles the frame rate is 22.15 fps, with 24000 particles, 

the demo runs at 4.85 fps. These results show that our system’s performance is l inear with respect to the number 

of input particles, which means our use of data structure is efficient. Due to time constraint, however, we are 

unable to evaluate scalability of the system on a machine with more than two cores, and to quantify the effects z-

ordering and SIMD vectorization on performance. 
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