CS5343 - Advanced Computer Animation
Project Report

Hoang Thai Duong - A0032670N

Introduction

Inthis project, we implement a Smoothed Particle Hydrodynamics (SPH) method to simulatewater. Our
implementation follows closely the method described in [MCGO03]. The code alsoincludes other performance
optimizations,such as Z-indexingand sorting [TABT11], SIMD vectorization,and multicore parallelization. We test
the implementation with sixtest scenes simulating differentsituationsinvolvingwater,and show that our system

is efficientand scalable.

Related Work

SPH is used in computer graphics to simulatefluid interactively for the firsttime in [MCGO3]. In this work, the
authors try to achieve the incompressible property of water by modeling pressureusinga gas equation. This
spring-like model needs a high stiffness valueto ensure incompressibility, butthat implies stricter timesteps to
deal with very largepressureforces. In practice,a moderately small timestep is often used, makingthe water
compressible. Follow-up works focus on improving the method’s performance, and ensuringincompressibility
whileusingsimilar or larger timesteps. They include [BT07] (Tait’s equation for pressurecomputation to make
the water less compressible), [APKGO07, ZSP08] (adaptive particlesizes toavoid simulatingtoo many particlesin
unimportant regions), [SP09, CBPO5] (predictive-corrective pressure (PCISPH) and density relaxation, allowing
much larger time steps), [IAGT10] (smarter boundary handling method for PCISPH), [AlY04, HKK07a, HKKO07b]
(GPU simulation), [GSSP10] (CUDA implementation, Z-indexing), [IABT11] (efficientimplementation on multi-
core CPUs). In the proposal for this project, we planned to implement PCISPH [SP09], but were unableto do so

due to time constraint.

Smoothed Particle Hydrodynamics
To simulatefluid using particles, we begin with the Lagrangian version of the Navier-Stoke equations.The
acceleration for each particleis calculated using thefollowing equation.

av 1 U foxe

—=—=Up+-V?v+
dt p p P m

+8

The second equation which states the incompressibility condition is difficult to enforce usinga particlesystem,
thus is hardly used. In practice,incompressibility is usually handled by empirical techniques. To convert the above
equation to SPH style, we start with the discrete definition of SPH, which is a method to interpolatefield quantities

using some kernel function W.
m;
i
(A);, = E ?A]-W(rij)
j]

The derivatives of the quantity are evaluated by putting the gradientor Laplaceoperator insidethe kernel. We can
now rewrite the first(pressure) and second (viscosity) terms on the righthand side of the Navier-Stoke equationin

SPH style as follows.

<—%Vp> ZP VW, (n;)
<%‘72”> = Z VijVZVVv(rij)

Each SPH method is free to designits own formula for P, (), and I/I/{,(ru) Our implementation uses the

jr Vij, W
set of equations described in [MCGO3] to interpolate pressureand viscosity.

Implementation

The code for this project is written in C++. Other libraries are used for specific purposes. They are: OpenGL (for
rendering), Freeglut (for OS and I/O functions), Parallel Pattern Library (for threading), and Eigen (for SIMD
vectorization).SPH is implemented as a typical particlesystem where the particles interactwith one another and
each particlereacts toforces exerted by nearby particles.Ouralgorithmis summarized by the pseudo-code below.
The maindifficulties come from the facts that SPH relies on correct parameters to work, and that the performance

decreases fastwith increasing number of particles.

while animating do

for all i do
find neighborhood N;(t)
compute density p;(t)
compute pressure p;(t)

for all i do
compute forces F/""9(t)

for all i do
compute new velocity v;(t+ 1)
compute new position x;(t+ 1)

Parameters

SPH is sensitiveto its parameters andinitial condition. Firstofall, the Navier-Stoke equations arescale-sensitive. In
practice, onlya relatively small volume of water canbe simulated interactively. Therefore, we use a scalingfactor
to relatethe SPH simulation world to the rendering world. Such a parameter is needed because it makes
integratingthe water with other objects inthe world easier. The scalingfactor used in our implementation is taken
from a presentation by AMD at
http://developer.amd.com/zones/OpenCLZone/Events/assets/SmoothedParticleHydrodynamics.pdf.

Another importantfactor is the boundary handling method. Simply pushingthe particles back whenit penetrates
the boundarywalls may not work sincedoingsowould change the density of water abruptly and hence affect the
system’s stability. Reflecting a particle’s velocity alongthe contact normal is also notenough to deal with very high
pressureforces in most cases. In our implementation, the boundaries exert a very stiff spring-likeforce (F) to push
the particles away alongthe contactnormal (n). Also, a dampening factor is included to model energy loss when
collision happens. The drawback of this approachis thatsince F is often very large,a small timestep is required.
This is not a problem in our case, however, since the use of gas equation for computing pressurealready requires
small timesteps.

SPHis alsosensitivetoits initial condition. For the system to work correctly, the initial positions of particles need
to be carefully calculated. Placingthem too far apartwill resultin some particles having no neighbors and thus
moving unpredictably; placing them too closetogether can make the system explode due to abnormally high
pressure. The initial gap between the particles (and alsothemass of each particle) can be calculated using the
fluid’s restdensity, the total number of particles,and the volume the particles occupy initially.

http://developer.amd.com/zones/OpenCLZone/Events/assets/SmoothedParticleHydrodynamics.pdf

A particle’s accelerationiscaused by viscosity, pressure, gravity,and maybe external forces. In some scenarios, the
pressureforce can sometimes get too high due to abnormallylow/high density. To avoid explosion, we artificially
dampen the acceleration of each particleifitgets larger thansome predefined value. The gravitational
accelerationis only added after this dampening to avoiditgetting “lost” in some close-to-infinity value. We finally
find the particles’ positionin the next simulation step usingleap-frogintegration, which computes velocities and
positions atinterleaving time steps. The advantage of this integration scheme is thatitis accuratetothe second
order andis relatively cheap to compute, although it requires more memory to keep trackof a particle’s velocity
and positionin previous time step.

All the above complications, together with the fact that the parameters need to be all workingtogether, make
parameter tuninga significantpartofthe project. In our implementation, the user needs to specify the following
parameters for the system: the total number of particles, the rest density of water, the pressure’s stiffness, the
viscosity coefficient, the kernel radius, thetime step, the simulationscale, the wall’s stiffness, the wall’s
dampening coefficient, and the maximum acceleration of a particle. Some parameters are explained above; for the
rest of them, we refer the reader to [MCGO03]. We borrow default values for some of the parameters from various
sources on the Internet (most of them are mentioned above); the rest of the values arefound by experiments. The
details arealso documented in the code.

Data Structure

InSPH, each particleneeds to query for its neighboring particles a fewtimes duringa simulation step. This
operationis the main bottleneck of the method; a naive implementation would need to iterate through all the
particles for each particle, making the runtime complexity O (n?). A common technique to deal with this problemis
to usea grid data structure to manage the particles. The whole simulation spaceis divided into uniformcells, each
cell stores the particles insideit. For the system to scale,caremust be taken when designing the data structure for
the grid.

Inan early version of our system, the gridis implemented using C#'s Dictionary, whichisahashtable.The key
used to index into the hashtableis a tuple of cell coordinate<x, y, z>. The valuestored with each key <x, y, z> is
the listof particles belongto the cell <x, y, z>. Intheory, this implementation has anadvantage thatis less memory
is used for the grid,sinceonly few cells areoccupied by particles. In practice, however, the costof the indexing
(look up) operation is high, especially when we need to look up a largenumber of particles per time step. That is
because ittakes time to compute a hashvaluefor each key, and also because when hash collision happens, the
algorithmneeds to traversea linear list of items to find the right value.

The next data structure we try for the gridis a C++ array where each element stores a linked list(std: :1ist) of
references to particles. However, a linked listis notthe fastest data structure to use if we want to iterate through
the elements, whichis what we do alotinSPH. The reasonis that the elements ina linked list may not be
consecutivein memory, thus loopingover all elements will cause many cache-misses. Writing cache-friendly code
isalsothereason why we use C++ instead of C#, as the latter manages objects by pointers exclusively, giving the
programmer little control over the memory location of the actual objects.

The data structure that we settle on is anarray where each element stores a vector (usingstd: :vector) of
references to particles.Incontrastto alinked list, elements ina vector are stored consecutivelyin memory, thus
cache-misses when iteratingthrough the elements arekept to a minimum. One complication when usingvectors,
however, is that the delete operationis not constant but linear time complexity. We avoid usingthis operation by
keeping track of the number of elements manuallyinstead of relyingonthe std: :vector classtodo sofor us.

Z-Indexing and Sorting

Z-indexing (or morton encoding) is a method to map multi-dimensional values to one-dimensional value, while
preservinglocality. Consider the following example. Suppose our gridis 8x8in 2D, andis storedin memory as a 64-
element one-dimensional array.Usinga trivialindexing scheme, a particleat<4, 3>would be stored ingrid[4 * 8 +

3] or grid[35], whilea particleat<5, 3> would be stored ingrid[5 * 8 + 3] orgrid[43]. The two particles arecloseto
each other in2D but are stored far apartin memory. InSPH, we often need to loop through sets of neighboring
particles. As we sawin the previous section, storing nearby particles in far-apart memory locations is bad for this
looping operation sinceitis not cache-friendly. Z-indexing, on the other hand, uses bit-interleaving of coordinates
to compute a 1D index. In our example, the bits of 4 (100)and 3 (011) areinterleaved to produce 26 (011010),
while5 (101)and 3 (011) will giveus 27 (011011). Thus the two particles would be stored next to each other in
memory, which means iteratingthrough the particles resultsinless cache misses.

Using z-indexing canimprove the grid data structure’s performance. However, the grid only stores the handles
(references) to particles. To fully utilizethe cache, the particles themselves need to be stored inasimilar wayas
the handles. We follow [IABT11] and sort the particlearray onceevery 100 simulation steps usinginsertionsort.
The array need not be sorted very frequently since particles’ positions changeslowly over time, while insertion
sortis used sinceitis very efficient for almost-sorted arrays.

SIMD Vectorization

A lotof operations on the particles arevector operation sincethe velocities, positions, accelerations,and forces
are all vector quantities. Modern processors can performvector operations very efficiently using special
instruction sets. One example of such an instructionsetis the Intel’s Streaming SIMD Extensions (SSE). As an
example, consider the addition of two 3D vectors, a and b. Usingnormal instructions, we write thisas c.x = a.x
+ b.x; c.y =a.y +b.y; c.z = a.z + b.z; whichwill translateinto 3 or more machineinstructions.
Using SIMD vectorization, all three instructions can bereduced to one, provided the vectors (a, b, and c) are
stored ina special way in memory so that the processor canfetch and add them component-wise. Obviously thisis
a major performance improvement over the traditional code. In our implementation, we use a library called Eigen
(http://eigen.tuxfamily.org). This linear algebra library compilesto SSE2 instructions,and also simplifies the code

dealing with vectors significantly (adding two vectors is simply writtenasc = a + b;).

Multithreaded Programming

SPH is anembarrassingly parallel problem, sincethe particles donotwrite to shared variables. As such, we can
easily, for example, assign each particletoa dedicatingthread so that the whole system can take a dvantage of
multicoreprocessors. Werely on Microsoft’s Parallel Pattern Library for C++ to do the threading for us, simply by
rewritingall each for loop over all particles intoa parallel_for loop.The PPLIlibrarywill decide how many

threads to spawnand how to map particles to threads effectively.

Result

We test our SPH simulation with six testscenes. They are described below.

e Dam break. A column of water initially occupying half of tankis collapsing, creating back and forth waves
from one side of the tank to the other.

e Water drop. A volume of water isinitially putinthe air,above a water bed. It then falls down, creating
some waves.

o Sink. Avolume of water is fallingdown to the level below through a hole in the center.

e Wave. A tankinitially contains some water. One of the walls move backand forth periodically, creating
largewaves to the other side.

e Ball.Aballis droppingona volume of water. The ball then move backand forth periodically, pushingthe
water around.

e A columnof water is putintoa container with the U shape (U). The water flows from one sideto the

other until equilibriumis reached.

http://eigen.tuxfamily.org/

Inall scenes we use 6400 particles insidea volume of roughly 0.008 m”>. However, notall scenes usethe same set

of values for the parameters. All the scenes are capturedina video submitted together with this report.

For performance evaluation, we run the dam breaking scene on anIntel Core2 Duo 2.0GHz system with 2GB DDR2
RAM and a GeForce 8600M GT graphics card. With 6400 particles theframe rate is 22.15 fps, with 24000 particles,
the demo runs at 4.85 fps. These results show that our system’s performanceis linear with respectto the number
of input particles, which means our use of data structure is efficient. Due to time constraint, however, we are
unableto evaluatescalability of the system on a machinewith more than two cores, and to quantify the effects z-
orderingand SIMD vectorization on performance.

References

[APKGO7] Adams B., Pauly M., Keiser R., Guibas L.].: Adaptively Sampled ParticleFluids.|n ACM Transactions on
Graphics 26,3 (2007), 48—54.

[AIY0O4] Amada T., Imura M., Yasumoro Y., Manabe Y., Chihara K.: Particle-Based Fluid Simulation on GPU. In
ACM Workshop on General-Purpose Computing on Graphics Processors (2004).

[BT07] Becker M., Teschner M.: Weakly compressible SPH for free surfaceflows. In SCA ‘07: Proceedings of the
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 63—72.

[CBPO5] Clavet S., Beaudoin P., Poulin P.: Particle-Based Viscoelastic Fluid Simulation. In SCA ‘05: Proceedings of
the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 219—228.

[GSSP10] Goswami P., Schlegel P., Solenthaler B., Pajarola R.:Interactive SPH Simulation and Rendering on the
GPU. In SCA ’10: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation .
[HKKAO7a] Harada T., Koshizuka S., Kawaguchi Y.: Smoothed Particle Hydrodynamics on GPUs. In Proceedings of
Computer Graphics International (2007), 63—70.

[HKKO7b] Harada T., Koshizuka S., Kawaguchi Y.: Sliced Data Structure for Particle-Based Simulation on GPUs.In
GRAPHITE ‘07: Proceedings of the 5™ International Conference on Computer Graphics and Interactive Techniques in
Australia and Southeast Asia, 55—62.

[IABT11] Thmsen M., Akinci N., Becker M., Teschner, M.: A Parallel SPH Implementation on Multi-Core CPUs. In
Computer Graphics Forum 30,1 (2011),99—112.

[TAGT10] Ihmsen M., Akinci N., Gissler M., Teschner, M.: Boundary Handling and Adaptive Time-Stepping for
PCISPH. In Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS 2010), 79—88.

[MCGO3] Muller M., Charypar D., Gross M.: Particle-Based Fluid Simulation for Interactive Applications. In SCA ‘03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154—159.

[SP09] Solenthaler B., Pajarola R.: Predictive-Corrective Incompressible SPH.In ACM Transactions on Graphics 28,
3(2009),40:1—6.

[ZSP08] Zhang Y., Solenthaler B., Pajarola R.: Adaptive Samplingand Rendering of Fluids onthe GPU. In
Proceedings of the 2008 IEEE/Eurographics Symposium on Point-Based Graphics, 137—146.

