Image Formation II Chapter 2 (R. Szelisky)

Guido Gerig CS 6320 Spring 2012

Acknowledgements:

- Slides used/modified from Prof. Trevor Darrell (trevor@eecs.berkeley.edu) (http://www.eecs.berkeley.edu/~trevor/CS280.html)

Recall, perspective effects...

- Far away objects appear smaller

Perspective effects

Perspective effects

Perspective effects

- Parallel lines in the scene intersect in the image
- Converge in image on horizon line

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow ?
- points
- Lines \rightarrow ?
- lines (collinearity preserved)
- Distances and angles are / are not? preserved
- are not
- Degenerate cases:
- Line through focal point projects to a point.
- Plane through focal point projects to line
- Plane perpendicular to image plane projects to part of the image.

Weak perspective

- Approximation: treat magnification as constant
- Assumes scene depth \ll average distance to camera

Orthographic projection

- Given camera at constant distance from scene
- World points projected along rays parallel to optical access

(c) scaled orthography

(e) perspective

$$
\boldsymbol{x}=\left[s \boldsymbol{I}_{2 \times 2} \mid 0\right] \boldsymbol{p} . \quad \boldsymbol{x}=\mathcal{P}_{z}(\boldsymbol{p})=\left[\begin{array}{c}
x / z \\
y / z \\
1
\end{array}\right]
$$

Figure 2.4: Basic set of 2 D planar transformations

2D

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid t]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid t]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid t]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{H}]_{3 \times 3}$	8	straight lines	\square

3D

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid t]_{3 \times 4}$	3	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid t]_{3 \times 4}$	6	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid t]_{3 \times 4}$	7	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{3 \times 4}$	12	parallelism $+\cdots$	\square
projective	$[\tilde{H}]_{4 \times 4}$	15	straight lines	\square

Other types of projection

- Lots of intriguing variants...
- (I'll just mention a few fun ones)

360 degree field of view...

- Basic approach
- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers... - See http://www.cis.upenn.edu/~kostas/omni.html

tilt, shift

wikipedia

http://www.luminous-landscape.com/tutorials/focusingts.shtml

Tilt-shift perspective correction

Rotating sensor (or object)

Rollout Photographs © Justin Kerr
http://research.famsi.org/kerrmaya.html
Also known as "cyclographs", "peripheral images"

