

Part Chapter 2: Cameras "Lenses"

Guido Gerig CS 6320 S2012 (slides modified from Marc Pollefeys, UNC Chapel Hill)

Pinhole size / aperture

How does the size of the aperture affect the image we'd get?

Fig. 5.96 The pinhole camera. Note the variation in image clarity as the hole diameter decreases. [Photos courtesy Dr. N. Joel, UNESCO.]

Pinhole vs. lens

Adding a lens

A lens focuses light onto the film

- Rays passing through the center are not deviated
- All parallel rays converge to one point on a plane located at the *focal length f*

Cameras with lenses

- A lens focuses parallel rays onto a single focal point
- Gather more light, while keeping focus; make pinhole perspective projection practical

Snell's law

 $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$

Thin Lenses

spherical lens surfaces; thickness << radii; same refractive index on both sides; all rays emerging from P and passing through the lens are focused at P'. Let $n_1=1$ (vaccuum) and $n_2=n$.

Thin Lenses

spherical lens surfaces; thickness << radii; same refractive index on both sides; all rays emerging from P and passing through the lens are focused at P'. Let $n_1=1$ (vaccuum) and $n_2=n$.

$$\begin{cases} x' = z' \frac{x}{z} \\ y' = z' \frac{y}{z} \end{cases}$$

where
$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$
 and f

http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html

 $=\frac{R}{2(n-1)}$

Thick Lens

Focus and depth of field

Image credit: cambridgeincolour.com

The depth-of-field

Focus and depth of field

Depth of field: distance between image planes where blur is tolerable

Thin lens: scene points at distinct depths come in focus at different image planes.

(Real camera lens systems have greater depth of field.)

—— "circles of confusion" ——

Shapiro and Stockman

Focus and depth of field

w does the aperture affect the depth of field?

• A smaller aperture increases the range in which the object is approximately in focus

Flower images from Wikipedia <u>http://en.wikipedia.org/wiki/Depth_of_field</u>

Slide from S. Seitz

The depth-of-field

The depth-of-field

decreases with d+, increases with Z₀+ strike a balance between incoming light and sharp depth range

Deviations from the lens model

- 3 assumptions :
- 1. all rays from a point are focused onto 1 image point
- 2. all image points in a single plane
- 3. magnification is constant
- deviations from this ideal are *aberrations*

Aberrations

2 types :

1. geometrical

2. chromatic

geometrical : small for paraxial rays study through 3rd order optics $sin(\theta) \approx \theta - \frac{\theta^3}{6}$

chromatic : refractive index function of wavelength

Geometrical aberrations

spherical aberration

astigmatism

distortion

🖵 coma

aberrations are reduced by combining lenses

Spherical aberration

rays parallel to the axis do not converge

outer portions of the lens yield smaller focal lenghts

Astigmatism

Different focal length for inclined rays

pincushion (tele-photo)

barrel (wide-angle)

Distortion

magnification/focal length different for different angles of inclination

Can be corrected! (if parameters are know)

Coma

point off the axis depicted as comet shaped blob

Chromatic aberration

rays of different wavelengths focused in different planes

The image is blurred and appears colored at the fringe.

cannot be removed completely

sometimes achromatization is achieved for

more than 2 wavelengths

Lens materials

reference wavelengths :

 $\lambda_F = 486.13nm$ $\lambda_d = 587.56nm$ $\lambda_C = 656.28nm$

lens characteristics :

1. refractive index n_d 2. Abbe number $V_d = (n_d - 1) / (n_F - n_C)$

typically, both should be high allows small components with sufficient refraction

notation : e.g. glass BK7(517642) $n_d = 1.517$ and $V_d = 64.2$

Lens materials

additional considerations :

humidity and temperature resistance, weight, price,...

Vignetting

