

## Feature-based Alignment Chapter 6 R. Szelisky

Guido Gerig CS 6320 Spring 2012

**Slide Credits**: Trevor Darrell, Berkeley (C280 CV Course), Steve Seitz, Kristen Grauman, Alyosha Efros, L. Lazebnik, Marc Pollefeys

Original Slides Prof. Trevor Darrel (08Alignment, 06LocalFeatures): please visit http://www.eecs.berkeley.edu/~trevor/CS280Notes/



## Today: Alignment





### Motivation: Mosaics

- Getting the whole picture
  - Consumer camera: 50° x 35°





### Motivation: Mosaics

- Getting the whole picture
  - Consumer camera: 50° x 35°
  - Human Vision: 176° x 135°





## Motion models



### Motion models

- What happens when we take two images with a camera and try to align them?
- translation?
- rotation?
- scale?
- affine?
- perspective?







# Panoramas: generating synthetic views



Can generate any synthetic camera view as long as it has **the same center of projection!** 

Source: Alyosha Efros



Image reprojection



- The mosaic has a natural interpretation in 3D
  - The images are reprojected onto a common plane
  - The mosaic is formed on this plane
  - Mosaic is a synthetic wide-angle camera

Source: Steve Seitz



### Motion models



**Translation** 

**Affine** 

**Perspective** 

**3D rotation** 



2 unknowns



6 unknowns



8 unknowns



3 unknowns



### 2D coordinate transformations

• translation:  $\mathbf{x}' = \mathbf{x} + \mathbf{t}$   $\mathbf{x} = (x, y)$ 

• rotation: x' = R x + t

• similarity: x' = s R x + t

• affine: x' = A x + t

• perspective:  $\underline{x}' \cong H \underline{x}$   $\underline{x} = (x, y, 1)$ ( $\underline{x}$  is a homogeneous coordinate)

These all form a nested group (closed w/ inv.)



### **Basic 2D Transformations**

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

**Translate** 

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear



### 2D Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations are combinations of

. . .

- Linear transformations, and
- Translations
- Parallel lines remain parallel



## Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Projective transformations:
  - Affine transformations, and
  - Projective warps
- Parallel lines do not necessarily remain parallel



Grauman



## Image alignment



- Two broad approaches:
  - Direct (pixel-based) alignment
    - Search for alignment where most pixels agree
  - Feature-based alignment
    - Search for alignment where extracted features agree
    - Can be verified using pixel-based alignment



## Fitting an affine transformation

 Assuming we know the correspondences, how do we get the transformation?



$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$



## Fitting an affine transformation

 Assuming we know the correspondences, how do we get the transformation?



$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$



 $(x_i', y_i')$ 



## Fitting an affine transformation

$$\begin{bmatrix} x_{i} & y_{i} & 0 & 0 & 1 & 0 \\ 0 & 0 & x_{i} & y_{i} & 0 & 1 \\ & & \cdots & & \end{bmatrix} \begin{bmatrix} m_{1} \\ m_{2} \\ m_{3} \\ m_{4} \\ t_{1} \\ t_{2} \end{bmatrix} = \begin{bmatrix} \cdots \\ x'_{i} \\ y'_{i} \\ \cdots \end{bmatrix}$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for  $(x_{new}, y_{new})$  ?

### Panoramas













image from S. Seitz

Obtain a wider angle view by combining multiple images.



### **Outliers**

- Outliers can hurt the quality of our parameter estimates, e.g.,
  - an erroneous pair of matching points from two images
  - an edge point that is noise, or doesn't belong to the line we are fitting.









## Example: least squares line fitting

Assuming all the points that belong to a particular line are known





## Outliers affect least squares fit





## Outliers affect least squares fit





#### RANSAC

- RANdom Sample Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.



### RANSAC

#### • RANSAC loop:

- Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
- Compute transformation from seed group
- 3. Find *inliers* to this transformation
- If the number of inliers is sufficiently large, recompute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers





Slide credit: Jinxiang Chai, CMU













threshold of line.

















Source: Rick Szeliski













Towards large-scale mosaics...









• Extract features



- Extract features
- Compute *putative matches*



- Extract features
- Compute *putative matches*
- Loop:
  - Hypothesize transformation T (small group of putative matches that are related by T)



- Extract features
- Compute *putative matches*
- Loop:
  - Hypothesize transformation T (small group of putative matches that are related by T)
  - Verify transformation (search for other matches consistent with T)



- Extract features
- Compute putative matches
- Loop:
  - Hypothesize transformation T (small group of putative matches that are related by T)
  - Verify transformation (search for other matches consistent with T)

# RANSAC motion model



Towards large-scale mosaics...

## Probabilistic Feature Matching



# Probabilistic model for verification



Szeliski



# Other types of mosaics



- Can mosaic onto any surface if you know the geometry
  - See NASA's <u>Visible Earth project</u> for some stunning earth mosaics
    - <a href="http://earthobservatory.nasa.gov/Newsroom/BlueMarble/">http://earthobservatory.nasa.gov/Newsroom/BlueMarble/</a>



Final thought: What is a "panorama"?

Tracking a subject

Repeated (best) shots

Multiple exposures

"Infer" what photographer wants





#### Next time: 6.2 Pose Estimation

- 6.2 Pose Estimation
- Chapter 7: Structure from Motion