

Edge and Blob Detection by Image Filtering Related to Chapters 3 and 4 Guido Gerig CS 6320 Spring 2012

Credits: Ross Whitaker, Trevor Darrell, Lana Lazebnik, K. Grauman, B. Leibe

Examples 1

()0 1 $\left(\right)$

Univ of Utah, CS6640 2010

Examples 2

1 1 1 1/9* 1 1 1 1 1 1

Univ of Utah, CS6640 2010

Digital Images: Boundaries are "Lines" or "Discontinuities"

Example: Characterization of discontinuities?

Derivatives: Finite Differences

$$\frac{\partial f}{\partial x} \approx \frac{1}{2h} \left(f(x+1,y) - f(x-1,y) \right)$$

Derivative Example

Univ of Utah, CS6640 2010

2D Edge Filter: Output at different scales

Э

Figure 5.11 Detection of a very low contrast step-edge in noise. Left: original image, the step-edge is barely visible. At small scales (second image, $\sigma = 2$ pixels) the edge is not detected. We see the edges of the noise itself, cluttering the edge of the step-edge. Only at large scale (right, $\sigma = 12$ pixels) the edge is clearly found. At this scale the large scale structure of the edge emerges from the small scale structure of the noise.

Response at different scales

Figure 5.11 Gradient edges detected at different scales ($\sigma = 0.5, 2, 5$ pixels resp.). coarser edges (right) indicate hierarchically more 'important' edges.

What about 2D?

At every position in the edgemagnitude output, there is a coordinate system with normal and tangent.

Blob Detection for Point Features: Laplacian

Local kernels

Laplacian of Gaussian LoG:

- Apply Laplacian at different image scales (images smoothed by Gaussian filtering).
- Implementation:
 - Smooth images by Gaussian with scale σ.
 - Apply 3x3 Laplacian kernel.

$$LoG(x,y) = -rac{1}{\pi\sigma^4} \left[1 - rac{x^2 + y^2}{2\sigma^2}
ight] e^{-rac{x^2 + y^2}{2\sigma^2}}$$

Laplacian of 2D Gaussian kernel

Laplacian-of-Gaussian (LoG)

 σ^2

 σ

- **Interest points:**
 - Local maxima in scale space of Laplacian-of-Gaussian

Scale-space blob detector: Example

Source: Lana Lazebnik

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector: Example

Source: Lana Lazebnik

Example of keypoint detection

- (a) 233x189 image
- (b) 832 DOG extrema
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principle curvatures (removing edge responses)