Keypoint Detection: Harris Operator

Guido Gerig CS 6320 Spring 2012

Credits: Ross Whitaker, Trevor Darrell, Lana Lazebnik, K. Grauman, B. Leibe, A. Efros

Keypoint Detection

- Where will the interest points come from?
- What are salient features that we'll detect in multiple views?
- How to describe a local region?
- How to establish correspondences, i.e., compute matches?

Figure 4.3: Image pairs with extracted patches below. Notice how some patches can be localized or matched with higher accuracy than others.

Finding Corners

Key property: in the region around a corner, image gradient has two or more dominant directions
Corners are repeatable and distinctive
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147--151.

Corners as distinctive interest points

We should easily recognize the point by looking through a small window
Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Local
neighborhoods of 3 distinctive local patterns: Strong point features (points, corners)
represent good landmarks.

Harris Detector formulation

Change of intensity for the shift [u, v]:

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Harris Detector formulation

This measure of change can be approximated by:

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a 2×2 matrix computed from image derivatives:

Sum over image region - area we are checking for corner

$$
M=\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]=\sum\left[\begin{array}{c}
I_{x} \\
I_{y}
\end{array}\right]\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]
$$

Harris Detector formulation

where M is a 2×2 matrix computed from image derivatives:

Sum over image region - area
we are checking for corner

$$
M=\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]=\sum\left[\begin{array}{c}
I_{x} \\
I_{y}
\end{array}\right]\left[\begin{array}{ll}
I_{x} I_{y}
\end{array}\right]
$$

What does this matrix reveal?

First, consider an axis-aligned corner:

What does this matrix reveal?

First, consider an axis-aligned corner:

$$
M=\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

This means dominant gradient directions align with x or y axis
If either λ is close to 0 , then this is not a corner, so look for locations where both are large.
What if we have a corner that is not aligned with the image axes?

Arbitrary rotation

$$
\begin{aligned}
& \sum_{\sum!}^{[L, L}
\end{aligned}
$$

- M arbitrary, positive semidefinite
- Edges and corner no more aligned with image axes

General Case

$\left.\left.\underset{\text { (eigenvalue-eigenvector transformation) }}{\text { Since } M \text { is symmetric, we have } M} \begin{array}{cc}{ }^{-1}\end{array}\right] \begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] R$
We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Interpreting the eigenvalues

Classification of image points using eigenvalues of M :
Edge (strong response across edge, small response along edge): $\lambda_{1} \gg \lambda_{2}$ or $\lambda_{2} \gg \lambda_{1}$

Corner (strong responses in both directions):
λ_{1} and $\lambda_{2} \gg 0$
Flat (small or no response in both directions):
λ_{1} and λ_{2} small

Corner response function: Harris

Response $=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}$
α : constant (0.04 to 0.06)

Harris Corner Detector

- Algorithm steps:
- Compute M matrix within all image windows to get their Response scores
- Find points with large corner response (Response > threshold)
- Take the points of local maxima of Response (search local neighborhoods, e.g. 3×3 or 5×5 for location of maximum response).

Harris Detector: Workflow

Slide adapted form Darya Frolova, Denis Simakov, Weizmann Institute.

Harris Detector: Workflow

Compute corner response R

Harris Detector: Workflow

Find points with large corner response: $R>$ threshold

Harris Detector: Workflow

Take only the points of local maxima of R

Harris Detector: Workflow

