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Figure 2.1 A few components of the image formation process: (a) perspeclive projection;
(b) light scattering when hitting a surface; (c) lens optics; (d) Bayer color filter array.
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Before we can intelligenty analyze and manipulate images, we need to establish a vocabulary
for describing the geometry of a scene. We also need to understand the image formation
process that produced a particular image given a set of lighting conditions, scene geomeltry,
surface properties, and camera optics. In this chapter, we present a simplified model of such
an image formation process.

Section 2.1 introduces the basic geometric primitives used throughout the book (points,
lines, and planes) and the geometric transformations that project these 3D quantities into 2D
image features (Figure 2.1a). Section 2.2 describes how lighting, surface properties (Fig-
ure 2.1b), and camera optics (Figure 2.1¢) interact in order to produce the color values that
fall onto the image sensor. Section 2.3 describes how continuous color images are turned into
discrete digital samples inside the image sensor (Figure 2.1d) and how 1o avoid (or at least
characlerize) sampling deficiencies, such as aliasing.

The material covered in this chapter is but a brief summary of a very rich and deep set of
topics, traditionally covered in a number of separate fields. A more thorough introduction to
the geometry of points, lines, planes, and projections can be found in textbooks on multi-view
geometry (Hartley and Zisserman 2004; Faugeras and Luong 2001) and computer graphics
(Foley, van Dam, Feiner er al. 1995). The image formation (synthesis) process is traditionally
taught as part of a computer graphics curriculum (Foley, van Dam, Feiner et al. 1995; Glass-
ner 1995; Watt 1995; Shirley 2005) but it is also studied in physics-based computer vision
(WollTf, Shafer, and Healey 1992a). The behavior of camera lens systems is studied in optics
(Moller 1988: Hecht 2001; Ray 2002). Two good books on color theory are (Wyszecki and
Stiles 2000; Healey and Shafer 1992), with (Livingstone 2008) providing a more fun and in-
formal introduction to the topic of color perception. Topics relaling to sampling and aliasing
are covered in Llextbooks on signal and image processing (Crane 1997; Jahne 1997; Oppen-
heim and Schafer 1996; Oppenheim, Schafer, and Buck 1999; Pratt 2007; Russ 2007; Burger
and Burge 2008; Gonzales and Woods 2008).

A pote to students: If you have already studied computer graphics, you may want to
skim the material in Section 2.1, although the sections on projective depth and object-centered
projection near the end of Section 2.1.5 may be new (o you. Similarly, physics students (as
well as computer graphics students) will mostly be familiar with Section 2.2. Finally, students
with a good background in image processing will already be familiar with sampling issues
(Section 2.3) as well as some of the material in Chapter 3.

2.1 Geometric primitives and transformations

In this section, we introduce the basic 2D and 3D primitives used in this textbook, namely
points, lines, and planes. We also describe how 3D features are projected into 2D features.
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More detailed descriptions of these topics (along with a gentler and more intuitive introduc-
tion) can be found in texibooks on muliiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.
In this section, we introduce points, lines, and planes. Later sections of the book discuss
curves (Sections 5.1 and 11.2), surfaces (Section [2.3), and volumes (Section 12.5).

2D points. 2D points (pixel coordinales in an image) can be denoted using a pair of values,

z=[I]. 2.1)
y

(As stated in the introduction, we use the (z1,Za, . . .) notation (o denote column vectors.)

z = (z,y) € R?, or alternalively,

2D points can also be represented using homogeneous coordinates, & = (%, i, b) € P2,
where vectors that differ only by scale are considered 10 be equivalent. P2 = R3 — (0,0, 0)
is called the 2D projective space.

A homogeneous veclor Z can be converted back intlo an inhomogeneous vector & by
dividing through by the lasi element w, i.e.,

T = (%,§,¥) = d(z,y,1) = 0z, (2.2)

where T = (z,y, 1) is the augmented vector. Homogeneous points whose last element is i =
0 are called ideal points or points ar infiniry and do not have an equivalent inhomogeneous
representation.

2D lines. 2D lines can also be represented using homogeneous coordinates I = (a, b, c).
The corresponding line equarion is

Z-l=ar+by+c=0. (2.3)

We can normalize the line equation vector so that I = (A, fiy,, d) = (R, d) with |72 = 1. Tn
this case, 2 is the normal vector perpendicular (o the line and 4 is its distance 1o the origin
(Figure 2.2). (The one exception (o this normalization is the line ar infinity I = (0,0,1),
which includes all (ideal) points at infinity.)

We can also express 7 as a function of rotation angle 8, # = (A, 7,) = (cos6,sinf)
(Figure 2.2a). This representation is commonly used in the Hough transform line-finding
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Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
1 and distance 10 the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (8,d) is also known as
polar coordinates.

When using homogeneous coordinates, we can compute the intersection of two lines as

Z=1; x1ly, (2.4)
where X is the cross product operator. Similarly, the line joining two points can be writlen as
=% x&,. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves Lhat can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a guadric equation

Qi =0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates = (x,y, z) € R3 or homogeneous coordinates & = (%, 7, z,%w) € P3. As before,
it is sometimes useful to denote a 3D point using the augmented veclor T = (z,y, z,1) with

I = wk.
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Figure 2.3 3D line equation, 7 = (1 — A\)p + \q.

3D planes. 3D planes can also be represented as homogeneous coordinates m = (a, b, ¢, d)
with a corresponding plane equation

IT-m=azx+by+cz+d=0. Q2.7

We can also normalize the plane equation as m = (#,, Ay, A, d) = (71, d) with ||R]| = 1.
In this case, 7 is the normal vector perpendicular to the plane and d is its distance 10 the
origin (Figure 2.2b). As with the case of 2D lines, the plane ar infinity 7 = (0,0,0,1),
which contains all the points al infinily, cannot be normalized (i.e., il does not have a unique
normal or a finite distance).

We can express 7 as a function of two angles (6, ¢),

7 = (cos 0 cos ¢, sin 8 cos ¢, sin @), (2.8)
1.e., using spherical coordinates, but lhese are less commonly used than polar coordinates

since they do not uniformly sample the space of possible normal veclors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is (o use (wo points on the ling, (p,q). Any other point on Lhe line can be
expressed as a linear combination of these itwo poinls

r=(1-\)p+2gq, (2.9)

as shown in Figure 2.3. If we restrict 0 < X < 1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

7= up+ g (2.10)

A special case of this is when the second point is at infinity, i.e., § = (dy, dy, ds, 0) = (d, 0).
Here, we see that d is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r=p+\d. .11
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A disadvanlage of the endpoinl representation for 3D lines is that it has too many degrees
of freedom, i.c., six (three for each endpoint) instead of the four degrees that a 3D line auly
has. However, if we fix the two points on the line to lie in specific planes, we obtain a rep-
resentation with four degrees of freedom. For example, if we are representing nearly vertical
lines, then z = 0 and z = 1 form two suitable planes, i.e., the (z,y) coordinates in both
planes provide the four coordinates describing the line. This kind of two-plane parameteri-
zation is used in the light field and Lumigraph image-based rendering systems described in
Chapter 13 to represent the collection of rays seen by a camera as it moves in front of an
object. The two-endpoint representation is also useful for representing line segments, even
when their exact endpoints cannot be seen (only guessed at).

If we wish to represent all possible lines without bias towards any particular orientation,
we can use Pliicker coordinates (Hartley and Zisserman 2004, Chapter 2; Faugeras and Luong
2001, Chapter 3). These coordinates are the six independent non-zero entries in the 4 x 4 skew
Symmetric matrix

L=p7 - q, (2.12)

where p and § are any two (non-identical) points on the line. This representation has only
four degrees of freedom, since L is homogeneous and also satisfies det(L) = 0, which results
in a quadratic constraint on the Pliicker coordinates.

In practice, the minimal representation is not essential for most applications. An ade-
quate madel of 3D lines can be obtained by estimating their direction (which may be known
ahead of time, e.g., for architecture) and some point within the visible portion of the line
(see Section 7.5.1) or by using the two endpoints, since lines are most often visible as finite
line segments. However, if you are interested in more details about the topic of minimal
line parameterizations, Forstner (2005) discusses various ways 1o infer and model 3D lines in
projective geometry, as well as how 1o estimate the uncertainty in such fitted models.

3D quadrics. The 3D analog of a conic section is a quadric surface
zFQz =0 (2.13)

(Hartley and Zisserman 2004, Chapter 2). Again, while quadric surfaces are useful in the
study of multi-view geometry and can also serve as useful modeling primitives (Spheres,
ellipsoids, cylinders), we do not study them in great detail in this book.

2.1.2 2D transformations

Having defined our basic primitives, we can now turn our attention to how they can be trans-
formed. The simplest transformations occur in the 2D plane and are illustrated in Figure 2.4.
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as £’ = £ + £ or
- [ It } F (2.14)

where I is the (2 x 2) identily matrix or

z = l OIT ’i ]z (2.15)

where 0 is the zero vector. Using a 2 x 3 matrix results in a more compact notation, whereas
using a full-rank 3 x 3 matrix (which can be obtained from the 2 X 3 matrix by appending a
[07 1] row) makes it possible 10 chain transformations using matrix multiplication. Note that
in any equation where an augmenled vector such as & appears on both sides, it can always be
replaced with a full homogeneous vector .

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). Tt can be writien as
' =Rz +tor

= [ R t ] 5 (2.16)
where
R= c.ose —sinf 2.17)
sind cos®

is an orthonormal rotation matrix with RRT = I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as ' = sRax + t where s is an arbitrary scale factor. It can also be writien as

;: - tI]i, (2.18)

a t,

2=|sR t|z=

where we no longer require that a2 4+ b2 = 1. The similarity transform preserves angles
between lines.
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Affine. The affine transformation is written as &' = AZ, where A is an arbitrary 2 x 3
matrix, i.e.,
' oo 201 Qo2

x = 2|z, (2.19)
210 211 a2

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operales on homogeneous coordinates,

& =Hz, (2.20)

where H is an arbitrary 3 x 3 matrix. Note that H is homogeneous, i.e., it is only defined
up Lo a scale, and that two H matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate £ must be normalized in order (o obtain an inhomogeneous result

x,ie.,
_ hooz + hary + koo ,_ hioz 4+ hny + hia

"~ hooT + hyyy + hao " haoT + hoyy + hag
Perspective transformations preserve straight lines (i.e., they remain straight after the trans-

2.21)

formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way (o think of them is as a set
of (potentially restricted) 3 x 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more delailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations (o images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly 1o transform a line equation? Consider the homogeneous equa-
tionl - & = 0. If we transform z' = Hx, we obtain

{.&=0"Hs=@\ [\T6=1-%=0, (2.22)

. 4 =T . Lo .

ie,l = H [ Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H, since projective transformation matrices are homogencous. Jim
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Transformation Matrix # DoF Preserves Icon

translation [ I ‘ t ] 2 orientation D
2x3

rigid (Euclidean) [ Rt } 3 lengths O
2x3

H

similaricy [ sR ‘ t ]2 s angles O
X

affine [ A ] parallelism / /
2x3

projective [ A ] straight lines E‘
3Ix3

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves

o)}

[»e]

the properties listed in the rows below iL, i.e.. similarity preserves nol only angles but also
parallelism and straight lines. The 2 x 3 matrices are extended with a third [07 1] row to form
a full 3 x 3 matrix for homogeneous coordinate transformations.

Blinn (1998) describes (in Chapters 9 and 10) the ins and ouls of notating and manipulating
CO-veclors.

While the above transformations are the ones we use most extensively, a number of addi-
tional transformations are sometimes used.

Stretch/squash. This ransformation changes the aspect ratio of an image,

!
T = 8§,T+ ¥,

yo= syt
and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly
with the groups listed in Table 2.1.

Planar surface flow. This eight-parameter transformation (Horn 1986; Bergen, Anandan,
Hanna et al. 1992; Girod, Greiner, and Niemann 2000),

= ag + a1 + azy + 0612 “+ arzy

2
Y = a3+ asT+asy+arz” +apy,

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a
small motion approximation 10 a full homography. lts main attraction is that it is linear in the
motion paramelers, ax, which are often the quantities being estimaited.
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Transformation Matrix # DoF Preserves Icon
translation [ I ‘ t ] 3 orientation D
3x4
rigid (Euclidean) [ Rt } 6  lengths O
3x4
similaricy [ sR ‘ t ] 7 angles O
3x4
affine [ A ] 12 paallehem [/
Ix4
projective [ A ] 15 swraight lines E‘
4x4

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e.. similarity preserves not only angles but also
parallelism and straight lines. The 3 x 4 matrices are extended with a fourth [0 1) row to
form a full 4 X 4 matrix for homogeneous coordinate transformations. The mnemonic icons
are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Bilinear interpolant. This eight-parameter transform (Wolberg 1990),

7

T = ap+a 1T+ axy + agTy

Y = a3+ a4t +asy+arry,

can be used 10 interpolate the deformation due 1o the motion of the four comer points of
a square. (In facl, il can interpolate the motion of any four non-collinear points.) While
the deformation is linear in the motion paramelers, it does not generally preserve straight
lines (only lines parallel to the square axes). However, i is ofien quile useful, e.g., in the
interpolation of sparse grids using splines (Section 8.3).

2.1.3 3D transformations

The set of three-dimensional coordinale transformations is very similar to that available for
2D transformations and is summarized in Table 2.2. As in 2D, these transformations form a
nested set of groups. Hartley and Zisserman (2004, Section 2.4) give a more delailed descrip-
tion of this hierarchy.

Translation. 3D translations can be written as ' = £ + £ or

a:'=[I t ]i (2.23)
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where I is the (3 x 3) identity matrix and O is the zero veclor.

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as ' = Rz +t or

a:'=[R t]i (2.24)

where R is a 3 x 3 orthonormal rotation matrix with RRY = I and |R| = 1. Note that
sometimes it is more convenient to describe a rigid motion using

&' = R(z — ¢) = Rz — Re, (2.25)

where ¢ is the center of rotation (often the camera center).
Compaclly parameterizing a 3D rotation is a non-trivial task, which we describe in more
detail below.

Scaled rotation. The 3D similarity transform can be expressed as ' = sRz + t where s
is an arbitrary scale factor. It can also be written as

z' = [ sR t ]i (2.26)

This transformation preserves angles between lines and planes.

Affine. The affine transform is written as ' = AZ, where A is an arbitrary 3 x 4 matrix,
1e.,

app Qo1 2p2 Qo3
r = ajp a1l a12 a3 T. (227)

G20 Q21 a2 Q33

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspecrive transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

& =Hz, (2.28)

where H is an arbitrary 4 x 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate ' must be normalized in order 10 obtain an inhomogeneous result . Perspective
transformations preserve straight lines (i.e., they remain straight afier the transformation).
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Figure 2.5 Rotation around an axis i by an angle 4.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
eg., I,y and z, or z, ¥, and z. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible 10 move
smoothly in the parameter space, i.c., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.! For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rolations are known (o be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis 2 and an angle 8, or equivalently by a 3D
vector w = On. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis 7 Lo obtain

v = A v) = (An])v, (2.29)

which is the component of v that is nol affecied by the rotation. Next, we compute the
perpendicular residual of v from 7,

vi=v—v=(I-nn")v (2.30)

! [n robotics, this is sometimes referred to as gimbal lock.
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We can rotate this vector by 90° using the cross product,
vy =XV =[x, (2.31)

where (73] is the matrix form of the cross product operator with the vector & = (g, iy, 71, ),

0 —h, n,
[Alx=| 7, 0 —n. |- (2.32)
—A, Ay 0

Note that rotating this vector by another 90° is equivalent Lo taking the cross product again,
- =12
Uy =R X Uy = [A]Sv=—v],

and hence

v =v—v, =v+v., =T+ [

We can now compule the in-plane component of the rotated vector w as
u_ = cosbv) +sinbv, = (sinf[i)x — cosb[n]% )v.
Putting all these terms Logether, we obtain Lhe final rolaled veclor as
uw=u;+v = +sinlln). + (1 — cos8)[A]2)v. (2.33)

We can therefore write the rotation matrix corresponding 1o a rotation by § around an axis 7i
as
R(n,8) = I +sin0[Aa]« + (1 — cos8)[A|%, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).

The product of the axis 7 and angle 8, w = 67 = (w;,wy,w,), is a minimal represen-
tation for a 3D rotation. Rotalions through common angles such as multiples of 90° can be
represented exactly (and converted (o exact matrices) if 8 is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360° (27 radians) to
# and get the same rotation matrix. As well, (71, §) and (—#, —8) represent the same rolation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and € expressed in radians,
Rodriguez’s formula simplifies 1o

Rw)=I+sinff|x =~ I+ =| w,. 1 —we |, (2.35)
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which gives a nice linearized relationship between the rotation parameters w and R. We can
also write R(w)v ~ v + w X v, which is handy when we want 10 compute the derivative of
R with respect (o w,

0 z -y

OR

W;’ =—folx=| -z 0 =z |. (2.36)
y -z 0

Another way to derive a rotation through a finite angle is called the exponenrial rwist
(Murray, Li, and Sastry 1994). A rotation by an angle # is equivalent 10 k rotations through
6/k. In the limit as & — oo, we obtain

R(7,0) = kli_ngo I+ %[Gﬁ]x)" = exp [w)«. (2.37)

If we expand the matrix exponential as a Taylor series (using the identity ()52 = —([f)%,
k > 0, and again assuming 8 is in radians),

. 62 6
aplwl, = T+6[A) + (Al + Al + -
63 . 62 6 12
= I+(9_E‘f‘"')[”]x‘f‘(?—z-f'"')[n]x
= I +sinf[a), + (1 — cosf)[A)?, (2.38)

which yields the familiar Rodriguez’s formula.

Unit quaternions

The unit quaternion representation is closely related 1o the angle/axis representation. A unit
guaternion is a unit length 4-vector whose components can be written as ¢ = (¢x, gy, 42, qw)
q|| = 1 and antipodal

or g = (z,y, z,w) for short. Unit quaternions live on the unit sphere |
(opposite sign) quaternions, g and —q, represent the same rotation (Figure 2.6). Other than
this ambiguity (dual covering), the unit quaternion representation of a rotation is unique.
Furthermore, the representation is continuous, 1.€., as rolation matrices vary continuously,
one can find a continuous quaternion representation, although the path on the quaternion
sphere may wrap all the way around before returning to the “origin” ¢, = (0,0,0,1). For
these and other reasons given below, qualernions are a very popular representation for pose
and for pose interpolation in computer graphics (Shoemake 1985).
Quaternions can be derived from the axis/angle representation through the formula
0

.0,
q = (v,w) = (sin o cos 5), (2.39)
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Figure 2.6 Unit quaternions live on the unit sphere ||g|| = 1. This figure shows a smooth
(rajectory through the three quaternions g, q,, and g,. The antipodal point (o q,, namely
—g,, represents the same rotation as q,.

where 71 and € are the rotation axis and angle. Using the trigonometric identities sin @ =
2sin £ cos & and (1 — cos§) = 2sin® §, Rodriguez’s formula can be converted to

R(7,0) = I+sinf[f)x + (1 — cosb)[n)?
= I+ 2wl]. +2[v)>%. (2.40)

This suggests a quick way (o rotate a vector v by a quaternion using a series of cross products,
scalings, and additions. To obtain a formula for R(q) as a function of (z, y, z, w), recall that

-z oy —y? — 2?2 Ty zz
wlx=| 2z 0 -z | and [v]2 = Ty —z2%— 22 yz
-y =z 0 Tz Yz —z% — 3

We thus obtain
1-202+2%) 2(zy— 2w) 2(zz + yw)
R(q) = 2Azy+2w) 1-2(z24+2%) 2(yz — zw) . (2.41)
2(zz — yw) 20z + zw) 1—2(z®+y?)
The diagonal terms can be made more symmetrical by replacing 1 — 2(y? + 22) with (z2 +
w? — y? — 22), elc.
The nicest aspect of unit quaternions is that there is a simple algebra for composing rota-

tions expressed as unit quaternions. Given two quaternions g, = (vg, wo) and g, = (v1,wn),
the guaternion multiply operator is defined as

Qs = Qpqy = (Vg X 1 + wev) + wyvg, W — Vg -v1), (2.42)
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with the property that R(g,) = R(qy)R(q,). Note that quaternion multiplication is ros
commutative, just as 3D rotations and matrix multiplications are not.

Taking the inverse of a quaternion is easy: Just flip the sign of v or w (but not both!).
(You can verify this has the desired effect of transposing the R matrix in (2.4().) Thus, we
can also define quaternion division as

q, = ‘10/41 = 4041_1 = ('UO X U1 + wov1 — U1V, —WoWy — Vg - ’01)- (2.43)

This is useful when the incremental rotation beiween two rotations is desired.

In particular, if we want to determine a rotation that is partway between two given rota-
tions, we can compute the incremental rotation, take a fraction of the angle, and compule the
new rolation. This procedure is called spherical linear interpolation or slerp for short (Shoe-
make 1985) and is given in Algorithm 2.1. Note that Shoemake presents two formulas other
than the one given here. The first exponentiales g, by alpha before multiplying the original
quaternion,

a; = 47 qo, (2.44)

while the second treats the quatermions as 4-vectors on a sphere and uses

_ sin(l — )8 sin af

2

2 sin 0 >

where § = cos~1(g, - ;) and the dot product is directly between the quaternion 4-vectors.
All of these formulas give comparable results, although care should be taken when g and g,
are close together, which is why I prefer to use an arctangent 1o establish the rotation angle.

Which rotation representation is better?

The choice of representation for 3D rotations depends partly on the application.

The axis/angle representation is minimal, and hence does not require any additional con-
straints on the paramelers (no need to re-normalize after each update). If the angle is ex-
pressed in degrees, it is easier to understand the pose (say, 90° twist around z-axis), and also
easier (0 express exact rolations. When the angle is in radians, the derivatives of R with
respect to w can easily be computed (2.36).

Quaternions, on the other hand, are better if you want to keep track of a smoothly moving
camera, since there are no discontinuities in the representation. It is also easier to inlerpolate
between rotations and 1o chain rigid ransformations (Murray, Li, and Sastry 1994; Bregler
and Malik 1998).

My usual preference is 10 use qualernions, but to update Lheir estimales using an incre-
mental rotation, as described in Section 6.2.2.
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procedure slerp(qg, g,, a):
l. q.=¢q,/q, = (v, 0,)
2. ifw, < O then g, +— —q,
3. 8, = 2tan " (||lv,|| /w,)
4. fr = N(0) = v /[0
5.0, =08,
6. g, = (sin &, cos &)

7. return q, = q,4q,

Algorithm 2.1 Spherical linear interpolation (slerp). The axis and total angle are first com-
puted from the quaternion ratio. (This computation can be lifted outside an inner loop that
generales a set of interpolaled position for animation.) An incremental quatermion is then
computed and multiplied by the starting rotation quaternion.

2.1.5 3D to 2D projections

Now that we know how to represent 2D and 3D geometric primitives and how (o transform
them spatially, we need 1o specify how 3D primitives are projecied onto the image plane. We
can do this using a linear 3D 1o 2D projection matrix. The simplest model is orthography,
which requires no division 1o get the final (inhomogeneous) result. The more commonly used
model is perspeclive, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the z component of the three~dimensional coordi-
nate p to obtain the 2D point x. (In this section, we use p to denote 3D points and z to denote
2D points.) This can be wrillen as

x = [I2x2|0] p. (2.46)

If we are using homogeneous (projeclive) coordinates, we can write

(2.47)

o = o
o oo
™

0
0
1

B
l
o O -
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(a) 3D view

(¢) scaled orthography

(e) perspective (f) object-centered

Figure 2.7 Commonly used projection models: (a) 3D view of world, (b) orthography, (¢)
scaled orthography, (d) para-perspective, (¢) perspective, (f) object-centered. Each diagram
shows a top-down view of the projection. Note how parallel lines on the ground plane and
box sides remain parallel in the non-perspective projections.
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i.e., we drop the 2 component but keep the w component. Orthography is an approximate
model for long focal length (telepholo) lenses and objects whose depth is shallow relative
to their distance to the camera (Sawhney and Hanson 1991). It is exact only for telecentric
lenses (Baker and Nayar 1999, 2001).

In practice, world coordinates (which may measure dimensions in meters) need 1o be
scaled 1o fit onlo an image sensor (physically measured in millimelers, but ultimately mea-
sured in pixels). For this reason, scaled orthography is actually more commonly used,

x = [sI2x2|0] - (2.48)

This model is equivalent 1o first projecting the world points onto a local fronto-parallel image
plane and then scaling this image using regular perspective projection. The scaling can be the
same for all pars of the scene (Figure 2.7b) or it can be different for objects that are being
modeled independently (Figure 2.7¢). More importantly, the scaling can vary from frame to
frame when estimating structure from motion, which can better model the scale change that
occurs as an object approaches the camera.

Scaled orthography is a popular model for reconstructing the 3D shape of objects far away
from the camera, since it greatly simplifies certain computations. For example, pose (camera
orientation) can be estimaled using simple least squares (Section 6.2.1). Under orthography,
structure and motion can simultaneously be estimaled using factorization (singular value de-
composition), as discussed in Section 7.3 (Tomasi and Kanade 1992).

A closely related projection model is para-perspective (Aloimonos 1990; Poelman and
Kanade 1997). In this model, objecl points are again first projected onto a local reference
parzalle] to the image plane. However, rather than being projected orthogonally 1o this plane,
they are projecied parallel (o the line of sight o the object center (Figure 2.7d). This is
followed by the usual projection onto the final image plane, which again amounts to a scaling.
The combination of these two projections is therefore affine and can be written as

apo Qo1 Qo2 2p3
Z=| a9 en @2 a3 | D (2.49)
0 0 0 1

Note how parallel lines in 3D remain parallel afier projection in Figure 2.7b—d. Para-perspective
provides a more accurate projection model than scaled orthography, without incurring the
added complexity of per-pixel perspective division, which invalidates traditional factoriza-
tion methods (Poelman and Kanade 1997).

Perspective

The most commonly used projection in computer graphics and computer vision js true 3D
perspective (Figure 2.7e). Here, poinis are projected onto the image plane by dividing them
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by their z component. Using inhomogeneous coordinates, this can be written as

z/z
=P, (p)=| y/z |. (2.50)
1

In homogeneous coordinates, the projection has a simple linear form,

@2.51)

o =~ o
ol

0
0
1

B

ll
o o
o o o

i.e., we drop the w component of p. Thus, after projection, it is not possible 1o recover the
distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection that first projects
3D coordinates into normalized device coordinates in the range (z,y,z) € [—1,-1] x
[—1, 1) x [0,1]. and then rescales these coordinates to integer pixel coordinates using a view-
port iransformation (Watt 1995; OpenGL-ARB 1997).  The (initial) perspective projection
is then represented using a 4 x 4 matrix

1 0 0 0
- 01 0 0 -
= 2.52
¥ 00 _zfar/zr&nge Znee.rzfar/zre.nge P ( )
00 1 0

where zpear and zgar are the near and far z clipping planes and ziapge = Zfar — Znear- NOLE
that the first ilwo rows are actually scaled by the focal length and the aspect ratio so that
visible rays are mapped to (z,y, z) € [—1, —1|2. The reason for keeping the third row, rather
than dropping it, is that visibility operations, such as z-buffering, require a depth for every
graphical element that is being rendered.

If we set zpear = 1, 2far — 00, and switch the sign of the third row, the third element
of the normalized screen vector becomes the inverse depth, i.e., the disparity (Okutomi and
Kanade 1993). This can be quile convenient in many cases since, for cameras moving around
outdoors, the inverse depth (o the camera is often a more well-conditioned parameterization
than direct 3D disiance.

While a regular 2D image sensor has no way of measuring distance 10 a surface point,
range sensors (Section 12.2) and siereo matching algorithms (Chapier 11) can compute such
values. It is then convenient to be able to map from a sensor-based depth or disparity value d
directly back 10 a 3D location using the inverse of a 4 x 4 matrix (Section 2.1.5). We can do
this if we represent perspeclive projection using a full-rank 4 x 4 matrix, as in (2.64).
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Figure 2.8 Projection of a 3D camera-centered point p, onto the sensor planes at location
p. O, is the camera center (nodal point), ¢, is the 3D origin of the sensor plane coordinate
system, and s, and s, are the pixel spacings.

Camera intrinsics

Once we have projecled a 3D point through an ideal pinhole using a projection matrix, we
must still transform the resulting coordinales according 10 the pixel sensor spacing and the
relative position of the sensor plane to the origin. Figure 2.8 shows an illustration of the
geomelry involved. In this section, we first present a mapping from 2D pixel coordinates to
3D rays using a sensor homography M ,, since this is easier to explain in lerms of physically
measurable quantities. We then relate these quantities to the more commonly used camera in-
trinsic matrix K, which is used Lo map 3D camera-centered points p, to 2D pixel coordinates
Iy

Image sensors return pixel values indexed by integer pixel coordinates (z,,ys), often
with the coordinates starting at the upper-left corner of the image and moving down and to
the right. (This convention is not obeyed by all imaging libraries, but the adjustment for
other coordinate sysiems is straightforward.) To map pixel centers to 3D coordinates, we first
scale the (z,, y,) values by the pixel spacings (s., s,,) (sometimes expressed in microns for
solid-stale sensors) and then describe Lhe orientation of the sensor array relative Lo the camera
projection center O, with an origin ¢, and a 3D rotation R, (Figure 2.8).

The combined 2D 10 3D projection can then be written as

s, 0 O -
0 0 ° =

p=|Re ||, ¥, | =M. (2.53)
0 0 1

The first two columns of the 3 x 3 matrix M, are the 3D vectors corresponding to unit steps
in the image pixel array along the z, and y, directions, while the third column is the 3D
image array origin ¢,.
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The matrix M, is parameterized by eight unknowns: the three parameters describing
the rotation R,, the three parameters describing the translation ¢,, and the two scale factors
(sz, sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of {reedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M, with the required seven degrees of freedom
(i.e., where the first lwo columns are orthogonal after an appropriate re-scaling) is impractical,
$0 mosl practitioners assume a general 3 X 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point p,. is
given by an unknown scaling s, p = sp.. We can therefore write the complete projection
between p, and a homogeneous version of the pixel address &, as

i, =aM.'p,=Kp,. (2.54)

The 3 x 3 matrix K is called the calibrarion matrix and describes the camera intrinsics (as
opposed 10 the camera’s orientation in space, which are called the exrrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3 x 3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004: Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R,%) camera paramelters simultaneously using a series of
measurements,

55=K[R‘t]pw=Ppw, (2.55)

where p,, are known 3D world coordinates and
P = K[R[t] (2.56)

is known as the camera matrix. Inspecting this equation, we se¢ that we can post-multiply
K by R, and pre-multiply [R|#] by R, and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3 x 4 camera matrix P = K [R|t], we can compute an upper-triangular K matrix using QR
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Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(e, ¢y). The image width and height are W and H.

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

fI 8 CI
K=|0 7§ <. (2.57)
0 0 1

which uses independent focal lengths f, and f,, for the sensor z and y dimensions. The entry
s encodes any possible skew belween the sensor axes due Lo the sensor not being mounted
perpendicular 10 the optical axis and (¢, ¢,) denotes the oprical center expressed in pixel
coordinates. Another possibility is

f s &
K=|0 af ¢, |, (2.58)
0 0 1

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applicalions an even simpler form can be obtained by setting a = 1

and s =Q,
f 0 e
K=|0 f ¢ |- (2.59)
0 0 1

Often, setting the origin at roughly the center of the image, e.g., (¢c,,c,) = (W/2,H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.¢., the focal length f.
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Figure 2.10 Central projection, showing the relationship between the 3D and 2D coordi-
nates, p and x, as well as the relationship between the focal length f, image width W, and
the field of view 4.

Figure 2.9 shows how these quantities can be visualized as part of a simplified imaging
model. Note that now we have placed the image plane in front of the nodal point (projection
center of the lens). The sense of the y axis has also been flipped to get a coordinale system
compalible with the way thal mosl imaging libraries treat the vertical (row) coordinate. Cer-
tain graphics libraries, such as Direci3D, use a lefi-handed coordinate system, which can lead
(0 some confusion.

A note on focal lengths

The issue of how Lo express focal lengths is one that ofien causes confusion in implementing
computer vision algorithms and discussing their results. This is because the focal length
depends on the units used to measure pixels.

If we number pixel coordinates using integer values, say [0, W) x (0, H), the focal length
f and camera center (c,, ¢,) in (2.59) can be expressed as pixel values. How do these quan-
tities relate to the more familiar focal lengths used by photographers?

Figure 2.10 illustrates the relationship between the focal length f, the sensor width W,
and the field of view 8, which obey the formula

-1
taug = w or f= w [tan Q] . (2.60)
2 2
For conventional film cameras, W = 35mm, and hence f is also expressed in millimeters.
Since we work with digital images, it is more convenient to express W in pixels so that the
focal length f can be used directly in the calibration matrix K as in (2.59).

Another possibility is 1o scale the pixel coordinates so that they go from [—1,1) along
the longer image dimension and |—a=1,a~!) along the shorter axis, where @ > 1 is the
image aspect rario (as opposed to the sensor cell aspect ratio introduced earlier). This can be
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accomplished using modified normalized device coordinates,
T, = 2z, — W)/S and ¢, = (2y, — H)/S, where S = max(W,H). (2.61)

This has the advantage that the focal length f and optical center (e, ¢, ) become independent
of the image resolution, which can be useful when using multi-resolution, image-processing
algorithms, such as image pyramids (Section 3.5).2 The use of S instead of W also makes the
focal length the same for landscape (horizonial) and portrait (vertical) pictures, as is the case
in 35mm photography. (In some computer graphics lextbooks and sysiems, normalized device
coordinates go from [—1,1] x [—1, 1], which requires the use of iwo different focal lengths
to describe the camera intrinsics (Watt 1995; OpenGL-ARB 1997).) Setting S = W = 2in
(2.60), we obtain the simpler (unitless) relationship

0
7= tan . (2.62)
The conversion between the various focal length representations is straightforward, ¢.g.,
to go from a unitless f to one expressed in pixels, multiply by W/2, while to convert from an

f expressed in pixels to the equivalent 35mm focal length, multiply by 35/W.

Camera matrix

Now that we have shown how to parameterize the calibration matrix K, we can put the
camera intrinsics and extrinsics together Lo obtain a single 3 x 4 camera matrix

P=K|R|t]. (2.63)

It is sometimes preferable to use an invertible 4 x 4 matrix, which can be obtained by not
dropping the last row in the P matrix,
- K |
5= l 0

o7 1 o7 1

l Rt } =KE, (2.64)

where F is a 3D rigid-body (Euclidean) transformation and K is the full-rank calibration
matrix. The 4 x 4 camera matrix P can be used to map directly from 3D world coordinates
P = (T, Yuw, 2w, 1) 10 screen coordinates (plus disparity), . = (zs, s, 1, d),

z, ~ PP, (2.65)

where ~ indicales equality up lo scale. Note thal after multiplication by P, the vector is
divided by the #lird element of the vector to obtain the normalized form z, = (x5, ¥s, 1,d).

2 To make the conversion muly accurate afier a downsampling step in a pyramid, floating point values of W and
H would have 10 be maintained since they caa become non-integral if they are ever odd at a larger resolution o the
pyramid.
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a=1.0 d=0.67 d=05 d d=0.5 d=0 d=025
(e Zu)
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\ 1 p]_a_ne
d =1nverse depth d = projective depth

Figure 2.11 Regular disparity (inverse depth) and projective depth (parallax from a reference
plane).

Plane plus parallax (projective depth)

In general, when using the 4 x 4 matrix P, we have the freedom to remap the last row to
whatever suils our purpose (rather than just being the “standard” interpretation of disparity as
inverse depth). Let us re-write the last row of P as py = sg[fig|co), where [|7ig|| = 1. We
then have the equation

d= (A p, + co), (2.66)

where z = p, - B, = T - (D, — €) I8 the distance of p,, from the camera center C (2.25)
along the optical axis Z (Figure 2.11). Thus, we can interpret d as the projective disparity
or projective depth of a 3D scene point p,, from the reference plane fig - p,, +co = 0
(Szeliski and Coughlan 1997; Szeliski and Golland 1999; Shade, Gortler, He er al. 1998;
Baker, Szeliski, and Anandan 1998). (The projeclive depth is also sometimes called parallax
in reconstruction algorithms that use the term plane plus parallax (Kumar, Anandan, and
Hanna 1994; Sawhney 1994).) Setting fip = 0 and ¢y = 1, i.e., putting the reference plane
al infinily, results in the more standard d = 1/z version of disparity (Okutomi and Kanade
1993).

Another way to see this is (o invert the P matrix so that we can map pixels plus disparity
directly back to 3D points,

5, =P 'z,. (2.67)

In general, we can choose P (o have whatever form is convenienl, i.e., to sample space us-
ing an arbitrary projection. This can come in particularly handy when setting up multi-view
stereo reconstruction algorithms, since it allows us to sweep a series of planes (Section 11.1.2)
through space with a variable (projective) sampling that best matches the sensed image mo-
tions (Collins 1996; Szeliski and Golland 1999; Saito and Kanade 1999).
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Figure 2.12 A point is projected into two images: (a) relationship between the 3D point co-
ordinate (X, Y, Z, 1) and the 2D projected point {z,y, L, d): (b) planar homography induced
by points all lying on a2 common plane fig - p+ ¢ = 0.

Mapping from one camera to another

What happens when we lake two images of a 3D scene from different camera positions or
orientations (Figure 2.12a)? Using the full rank 4 x 4 camera matrix P = KE from 2.64),
we can wrile the projection from world 1o screen coordinales as

zo ~ KoEop = Pyp. (2.68)
Assuming that we know the z-buffer or disparity value dy for a pixel in one image, we can
compute the 3D point location p using
p~ Ey K, & (2.69)
and then project it into another image yielding

. = = 11 = =1, -
Z, ~ K1Ewp=K\E1Ej' K, &g = PPy o= Myap. (2.70)

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular
photographic image. However, for a planar scene, as discussed above in (2.66), we can
replace the last row of Py in (2.64) with a general plane equation, 71y - p + ¢ thal maps
points on the plane to dy = 0 values (Figure 2.12b). Thus, if we set dyp = 0, we can ignore
the last column of Mg in (2.70) and also its last row, since we do not care aboul the final
z-buffer depth. The mapping equation (2.70) thus reduces to

%y ~ Hoo, (2.71)

where H g is 2 general 3 x 3 homography matrix and &, and g are now 2D homogeneous
coordinates (i.e., 3-vectors) (Szeliski 1996).This justifies the use of the 8-parameter homog-
raphy as a general alignment model for mosaics of planar scenes (Mann and Picard 1994;
Szeliski 1996).
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The other special case where we do nol need 1o know depth to perform inter-camera
mapping is when the camera is undergoing pure rotation (Section 9.1.3), i.e., when £y = ¢;.
In this case, we can write

&1~ K \RiRy 'Ky %y = K1R10K &0, (2.72)

which again can be represented with a 3 x 3 homography. If we assume that the calibration
matrices have known aspect ratios and centers of projection (2.59), this homography can be
parameterized by the rotation amount and the two unknown focal lengths. This particular
formulation is commonly used in image-stilching applications (Section 9.1.3).

Object-centered projection

When working with long focal length lenses, it often becomes difficult to reliably estimate
the focal length from image measurements alone. This is because the focal length and the
distance to the object are highly correlated and it becomes difficult to tease these two effects
apart. For example, the change in scale of an object viewed through a zoom telephoto lens
can either be due 10 a zoom change or a molion towards the user. (This effect was put to
dramatic use in some of Alfred Hitchcock’s film Verrigo, where the simultaneous change of
zoom and camera motion produces a disquieting effect.)

This ambiguity becomes clearer if we write out the projection equation corresponding to
the simple calibration matrix K (2.59),

Tz p"'ta:

= f—F " +e¢, 2.73

T, f’l‘z-p . c ( )
ry,-D+1, "

= f2L =74 2.74

wo= St (2.74)

where 1, 7y, and r, are the three rows of R. If the distance to the object center ¢, > ||p||
(the size of the object), the denominator is approximately ¢, and the overall scale of the
projected object depends on the ratio of f to t,. It therefore becomes difficull to disentangle
these (wo quantities.

To see this more clearly, let 7, = £, and s = 7, f. We can then re-write the above
equalions as

T::'p"'tz
= gz Pl 27
o Sl+nzrz'p+c (275)
T!}'p+t!} ”
—= = 2.76
Ys s]-+7)z7'z'P ( )

(Szeliski and Kang 1994; Pighin, Hecker, Lischinski ez al. 1998). The scale of the projection
s can be reliably estimated if we are looking at a known object (i.e., the 3D coordinates p
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are known). The inverse distance 7, is now mostly decoupled from the estimates of s and
can be estimated from the amount of foreshortening as the object rotates. Furthermore, as
the lens becomes longer, i.e., the projection model becomes orthographic, there is no need to
replace a perspective imaging model with an orthographic one, since the same equation can
be used, with i, — 0 (as opposed to f and ¢, both going to infinity). This allows us to form
a natural link between orthographic reconstruction lechniques such as factorization and their
projective/perspective counterparts (Section 7.3).

2.1.6 Lens distortions

The above imaging models all assume thal cameras obey a linear projection model where
straight lines in the world result in straight lines in the image. (This follows as a natural
consequence of linear matrix operations being applied to homogeneous coordinates.) Unfor-
tunately, many wide-angle lenses have noticeable radial distortion, which manifests itself as
a visible curvature in the projection of straight lines. (See Section 2.2.3 for a more detailed
discussion of lens oplics, including chromatic aberration.) Unless this distortion is taken into
account, it becomes impossible 10 create highly accurate photorealistic reconstructions. For
example, image mosaics constructed without taking radial distortion into account will often
exhibit blurring due to the mis-registration of corresponding features before pixel blending
(Chapter 9).

Fortunately, compensating for radial distortion is not that difficult in practice. For most
lenses, a simple quartic model of distortion can produce good results. Let (z.,y.) be the
pixel coordinates obtained after perspective division but before scaling by focal length f and
shifting by the optical center (c,, ¢,), i.e.,

Te = Tr'p+t1
Tz'p+tz
p+t

ye = Tw Pt 2.77)
Tz'p+tz

The radial distortion model says that coordinates in the observed images are displaced away
(barrel distortion) or towards (pincushion distortion) the image center by an amount propor-
tional to their radial distance (Figure 2.13a-b).> The simplest radial distortion models use
low-order polynomials, ¢.g.,

Fo = z(l+ nlrf + rcgrz)

Je = ye(l+ mr2 + Kard), (2.78)

3 Anamorphic lenses, which are widely used in feature film production, do not follow this radial distortion model.
Instead, they can be thought of, to a first approximation, as inducing different vertical and horizontal scalings, i.e.,
non-square pixels.
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Figure 2.13 Radial lens distortions: (a) barrel, (b) pincushion, and (c) fisheye. The fisheye
image spans almost 180° from side-to-side.

where 72 = z2 + y2 and k, and K, are called the radial distortion parameters.* Afier the
radial distortion siep, the final pixel coordinates can be compuled using

Iy fI::+cz

¥ys = fu.+tey (2.79)

A variety of techniques can be used to estimate the radial distortion parameters for a given
lens, as discussed in Section 6.3.5.

Sometimes the above simplified model does not model the true distortions produced by
complex lenses accurately enough (especially at very wide angles). A more complete ana-
lytic model also includes tangential distortions and decentering distortions (Slama 1980), but
these distortions are not covered in this book.

Fisheye lenses (Figure 2.13c) require a model that differs from traditional polynomial
models of radial distortion. Fisheye lenses behave, to a first approximation, as equi-distance
projectors of angles away from the optical axis (Xiong and Turkowski 1997), which is the
same as the polar projection described by Equations (9.22-9.24). Xiong and Turkowski
(1997) describe how this model can be extended with the addition of an exira quadratic cor-
rection in ¢ and how the unknown parameters (center of projection, scaling factor s, etc.)
can be estimated from a set of overlapping fisheye images using a direct (intensity-based)
non-linear minimization algorithm.

For even larger, less regular distortions, a parametric distortion model using splines may
be necessary (Goshtasby 1989). If the lens does not have a single center of projection, it

4 Sometimes the relationship berween z. and Z. is expressed the other way around, i.e., 2, = Z.(1 + & 1‘-2 +
K273). This is convenieol if we map image pixels into (warped) rays by dividing through by f. We can then nndistort
the rays and have crue 3D rays in space.
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may become necessary to model the 3D line (as opposed 1o direction) corresponding 10 each
pixel separately (Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée, Sautot et al.
1992; Grossberg and Nayar 2001: Sturm and Ramalingam 2004; Tardif, Sturm, Trudeau et
al. 2009). Some of these techniques are described in more detail in Section 6.3.5, which
discusses how to calibrate lens distortions.

There is one subtle issue associated with the simple radial distortion model that is often
glossed over. We have introduced a non-linearily between the perspective projection and final
sensor array projection steps. Therefore, we cannol, in general, post-mulliply an arbitrary 3 x
3 matrix K with a rotation 1o pul it into upper-triangular form and absorb this into the global
rotation. However, this situation is not as bad as it may al first appear. For many applications,
keeping the simplified diagonal form of (2.5%) is still an adequate model. Furthermore, if we
correct radial and other distortions to an accuracy where straight lines are preserved, we have
essentially converted the sensor back into a linear imager and the previous decomposition still
applies.

2.2 Photometric image formation

In modeling the image formation process, we have described how 3D geometric features in
the world are projected into 2D features in an image. However, images are nol composed of
2D features. Instead, they are made up of discrete color or intensity values. Where do these
values come from? How do they relate 1o the lighting in the environment, surface properties
and geometry, camera optics, and sensor properties (Figure 2.14)? In this section, we develop
a set of models to describe these interactions and formulate a generative process of image
formation. A more detailed treatment of these topics can be found in other textbooks on
computer graphics and image synthesis (Glassner 1995; Weyrich, Lawrence, Lensch er al.
2008; Foley, van Dam, Feiner er af. 1995; Watt 1995; Cohen and Wallace 1993; Sillion and
Puech 1994).

2.2.1 Lighting

Images cannol exist without light. To produce an image, the scene must be illuminated with
one or more light sources. (Certain modalities such as fluorescent microscopy and X-ray
tomography do not fit this model, but we do not deal with them in this book.) Light sources
can generally be divided into point and area light sources.

A point light source originates at a single location in space (e.g., a small light bulb),
potentially at infinity (e.g., the sun). (Note that for some applications such as modeling soft
shadows (penumbras), the sun may have (o be treated as an area light source.) In addition to
its location, a point light source has an intensity and a color spectrum, i.¢., a distribution over
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Figure 2.14 A simplified model of photometric image formation. Light is emitted by one
or more light sources and is then reflected from an object’s surface. A portion of this light is
directed 1owards the camera. This simplified model ignores multiple reflections, which often
occur in real-world scenes.

wavelengths L(X). The intensity of a light source falls off with the square of the distance
between the source and the object being lil, because the same light is being spread over a
larger (spherical) area. A light source may also have a directional falloff (dependence), but
we ignore this in our simplified model.

Area light sources are more complicaled. A simple area light source such as a fluorescent
ceiling light fixture with a diffuser can be modeled as a finite rectangular area emitting light
equally in all directions (Cohen and Wallace 1993; Sillion and Puech 1994; Glassner 1995).
When the distribution is strongly directional, a four-dimensional lightfield can be used instead
(Ashdown 1993).

A more complex light distribution that approximates, say, Lhe incident illumination on an
object sitting in an ouldoor courtyard, can often be represented using an environment map
{Greene 1986) (originally called a reflection map (Blinn and Newell 1976)). This representa-
tion maps incident light directions 9 to color values (or wavelengths, A),

L(D; A), (2.80)

and is equivalent to assuming that all light sources are al infinity. Environment maps can be
represented as a collection of cubical faces (Greene 1986), as a single longitude—latitude map
(Blinn and Newell 1976), or as the image of a reflecting sphere (Watt 1995). A convenient
way to get a rough mode] of a real-world environment map is to lake an image of a reflective
mirrored sphere and 16 unwrap this image onto the desired environment map (Debevec 1998).
Watt (1995) gives a nice discussion of environment mapping, including the formulas needed
to map directions 16 pixels for the three most commonly used representations.
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Figure 2.15 (a) Light scatters when it hits a surface. (b) The bidirectional reflectance
distribution function (BRDF) f(8;, ¢;, 0, d,) is parameterized by the angles that the inci-
dent, 9;, and reflected, v,., light ray directions make with the local surface coordinate frame
(dz, dy, 7).

2.2.2 Reflectance and shading

When light hits an object’s surface, it is scattered and reflected (Figure 2.15a). Many different
models have been developed to describe this interaction. In this section, we first describe the
most general form, the bidirectional reflectance distribution function, and then look at some
more specialized models, including the diffuse, specular, and Phong shading models. We also
discuss how these models can be used to compute the global illumination corresponding Lo a

scene.

The Bidirectional Reflectance Distribution Function (BRDF)

The most general model of light scattering is the bidirectional reflectance distribution func-
tion (BRDF).5 Relative to some local coordinate frame on the surface, the BRDF is a four-
dimensional function that describes how much of each wavelength arriving at an incident
direction 9; is emitted in a reflecred direction ®,. (Figure 2.15b). The function can be written
in terms of the angles of the incident and reflected directions relative to the surface frame as

Ir(6i, b3, 0, de; A). (2.81)

The BRDF is reciprocal, i.e., because of the physics of light transport, you can interchange
the roles of 9; and ¥, and still get the same answer (this is sometimes called Helmholrz

reciprocity).

3 Acmally, even more general models of light transport exist, including some that model spatial variation along
the surface, sub-surface scattering, and atmospheric effects—see Section 12.7.1—{Dorsey, Rushmeier, and Sillion
2007; Weyrich, Lawrence, Lensch et al. 2008).
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Most surfaces are isorropic, i.e., there are no preferred directions on the surface as far
as light transport is concerned. (The exceptions are anisorropic surfaces such as brushed
(scratched) aluminum, where the reflectance depends on the light orientation relative to the
direction of the scratches.) For an isotropic material, we can simpli{y the BRDF 1o

fr(ee‘; 01'; |¢r - ¢i|; /\) or fr({’i> 'ﬁmﬁ’; ’\‘)) (282)

since the quantities 8;, 8, and ¢, — ¢; can be computed from the directions 3;, ¥, and 7.

To calculate the amount of light exiting a surface point p in a direction 9,- under a given
lighting condition, we integrate the product of the incoming light L;(9;; \) with the BRDF
(some authors call this step a comvolution). Taking into account the foreshoriening factor
cost 6;, we obtain

Lr({’r;/\) =/Li({)i;/\)fr‘(ﬁi‘l{’rlﬁ;/\)cos+6i d‘ﬁil (283)

where
cost 8; = max(0, cos 8;). (2.84)

If the light sources are discrete (a finite number of point light sources), we can replace the
integral with a summation,

Le(95)) =Y Li(A) fo(#:, B, 715 A) cos™ 6. (2.85)

1

BRDFs for a given surface can be obtained through physical modeling (Torrance and
Sparrow 1967; Cook and Torrance 1982; Glassner 1995), heuristic modeling (Phong 1975), or
through empirical observation (Ward 1992; Westin, Arvo, and Torrance 1992; Dana, van Gin-
neken, Nayar et al. 1999; Dorsey, Rushmeier, and Sillion 2007; Weyrich, Lawrence, Lensch
et al. 2008).° Typical BRDFs can oflen be split into their diffuse and specular components,
as described below.

Diffuse reflection

The diffuse component (also known as Lambertian or marie reflection) scatters light uni-
formly in all directions and is the phenomenon we most normally associate with shading,
e.g., the smooth (non-shiny) variation of intensity with surface normal that is seen when ob-
serving a statue (Figure 2.16). Diffuse reflection also often imparts a strong body color (o
the light since it is caused by selective absorption and re-emission of light inside the object’s
malerial (Shafer 1985; Glassner 1995).

6 See http:/fwww | .cs.columbia.edw/CAVE/software/curet/ for a database of some empirically ssmpled BRDFs.
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Figure 2.16 This close-up of a statue shows both diffuse (smooth shading) and specular
(shiny highlight) reflection, as well as darkening in the grooves and creases due to reduced
light visibility and interreflections. (Photo courtesy of the Caltech Vision Lab, http://www.
vision.caltech.edu/archive.html.)

While light is scattered uniformly in all directions, i.e., the BRDF is constant,

fa(®:, 00,75 %) = fa(N), (2.86)

the amount of light depends on the angle between Lhe incident light direction and the surface
normal 8;. This is because the surface area exposed to a given amount of light becomes larger
al oblique angles, becoming complelely self-shadowed as the outgoing surface normal points
away from the light (Figure 2.17a). (Think about how you orient yourself 1owards the sun or
fireplace to get maximum warmth and how a flashlight projected obliquely against a wall is
less bright than one pointing directly at it.) The shading equation for diffuse reflection can
thus be written as

Ls(9e; ) = Z Li(A) fa(X) cosT 6; = Z LN faN)[o: - AT, (2.87)

where
[0 - A)" = max(0, 9; - 7). (2.88)

Specular reflection

The second major component of a typical BRDF is specular (gloss or highlight) reflection,
which depends strongly on the direction of the outgoing light. Consider light reflecting off a
mirrored surface (Figure 2.17b). Incident light rays are reflecied in a direction that is rotated
by 180° around the surface normal 7i. Using the same notation as in Equations (2.29-2.30),
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Figure 2.17 (a) The diminution of returned light caused by foreshortening depends on ¥; - i,
the cosine of the angle between the incident light direction 9; and the surface normal 7i. (b)
Mirror (specular) reflection: The incident light ray direction ®; is reflected onto the specular
direction 8; around the surface normal 7.

we can compute the specular reflection direction 8; as

8, =v—v, = (2an" — Iv,. (2.89)

The amount of light reflected in a given direction 3, thus depends on the angle 8, =
cos~ 1 (®, - 4;) between the view direction 9, and the specular direction &;. For example, the
Phong (1975) model uses a power of the cosine of the angle,

Fa(Bs; 2) = ko(N) cos® 8, (2.90)
while the Torrance and Sparrow (1967) micro-facet model uses a Gaussian,
Fo(Bs;2) = ko(M) exp(—c262). (2.91)

Larger exponents k, (or inverse Gaussian widths ¢,) correspond to more specular surfaces
with distinct highlights, while smaller exponents better model materials with softer gloss.

Phong shading

Phong (1975) combined the diffuse and specular components of reflection with another term,
which he called the ambient illumination. This term accounts for the fact that objecls are
generally illuminated not only by point light sources but also by a general diffuse illumination
corresponding to inter-reflection (e.g., the walls in a room) or distant sources, such as the
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Figure 2.18 Cross-section through a2 Phong shading model BRDF for a fixed incident illu-
mination direction: (2) component values as a function of angle away from surface normal;
(b) polar plot. The value of the Phong exponent k, is indicated by the “Exp” labels and the
light source is at an angle of 30° away from the normal.

blue sky. In the Phong model, the ambient term does not depend on surface orientation, but
depends on the color of both the ambient illumination L,({\) and the object k, (1)),

fa(’\) = ka(’\)La(’\) (2.92)
Putting all of these terms together, we arrive at the Phong shading model,

Lo(8r;3) = ka(NLa(A) + ka(0) > LN - AT + ka(A) Y Li(A)(0r - 8:)%. (2.93)

Figure 2.18 shows a typical set of Phong shading model components as a function of the
angle away from the surface normal (in a plane containing both the lighting direction and the
viewer).

Typically, the ambient and diffuse reflection color distributions k,(A) and kq(}\) are the
same, since they are both due to sub-surface scattering (body reflection) inside the surface
malerial (Shafer 1985). The specular reflection distribution k,()) is often uniform (white),
since it is caused by interface reflections that do not change the light color. (The exception
to this are metallic malerials, such as copper, as opposed 1o the more common dielectric
materials, such as plastics.)

The ambient illumination L4 (X) often has a different color cast from the direct light
sources L;()\), e.g., it may be blue for a sunny outdoor scene or yellow for an interior lit
with candles or incandescent lights. (The presence of ambient sky illumination in shadowed
areas is what often causes shadows (o appear bluer than the corresponding lit portions of a
scene). Note also that the diffuse component of the Phong model (or of any shading model)
depends on the angle of the incoming light source ¥;, while the specular component depends
on the relative angle between the viewer v,. and the specular reflection direction 8; (which
itself depends on the incoming light direction ©; and the surface normal 7).
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The Phong shading model has been superseded in terms of physical accuracy by a number
of more recently developed models in computer graphics, including the model developed by
Cook and Torrance (1982) based on the original micro-facet model of Torrance and Sparrow
(1967). Until recently, most computer graphics hardware implemented the Phong model but
the recent advent of programmable pixel shaders makes the use of more complex models
feasible.

Di-chromatic reflection model

The Torrance and Sparrow (1967) model of reflection also forms the basis of Shafer’s (1985)
di-chromatic reflection model, which stales that the apparent color of a uniform material lit
from a single source depends on the sum of two lerms,

L.,(i').,; )\) = Lg(ﬁr, Vi, 1 )\) -+ Lb(‘f)r, Vg, N )\) (2.94)
ei(Nymi (B, B3, ) + cu(Nymp (81, 35, 72), (2.95)

i.e., the radiance of the light reflected al the interface, L;, and the radiance reflected at the siur-
Jace body, Ly. Each of these, in Lurn, is a simple product between a relative power spectrum
c()\), which depends only on wavelength, and a magnitude m(%.., d;, 72 ), which depends only
on geometry. (This model can easily be derived from a generalized version of Phong’s model
by assuming a single light source and no ambient illumination, and re-arranging terms.) The
di-chromatic model has been successfully used in computer vision lo segment specular col-
ored objects with large vanations in shading (Klinker 1993) and more recently has inspired
local two-color models for applications such Bayer pattern demosaicing (Bennett, Uyltten-
daele, Zitnick er al. 2006).

Global illumination (ray tracing and radiosity)

The simple shading model presented thus far assumes that light rays leave the light sources,
bounce off surfaces visible to the camera, thereby changing in intensity or color, and arrive
al the camera. In reality, light sources can be shadowed by occluders and rays can bounce
multiple times around a scene while making their trip from a light source to the camera.
Two methods have traditionally been used to model such effects. If the scene is mostly
specular (the classic example being scenes made of glass objects and mirrored or highly pol-
ished balls), the preferred approach is ray tracing or path tracing (Glassner 1995; Akenine-
Méller and Haines 2002; Shirley 2005), which follows individual rays from the camera across
multiple bounces towards the light sources (or vice versa). If the scene is composed mostly
of uniform albedo simple geometry illuminators and surfaces, radiosity (global illumination)
techniques are preferred (Cohen and Wallace 1993; Sillion and Puech 1994; Glassner 1995).
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Combinations of the two techniques have also been developed (Wallace, Cohen, and Green-
berg 1987), as well as more general light transport techniques for simulating effects such as
the caustics cast by rippling water.

The basic ray tracing algorithm associates a light ray wilh each pixel in the camera im-
age and finds its inlersection with the nearest surface. A primary contribution can then be
computed using the simple shading equations presented previously (e.g., Equation (2.93))
for all light sources that are visible for thal surface element. (An allernative technique for
computing which surfaces are illuminated by a light source is to compute a shadow map,
or shadow buffer, 1.¢., a rendering of the scene from the light source’s perspective, and then
compare the depth of pixels being rendered with the map (Williams 1983; Akenine-Méller
and Haines 2002).) Additional secondary rays can then be cast along the specular direction
towards other objecls in the scene, keeping track of any attenuation or color change that the
specular reflection induces.

Radiosity works by associating lightness values with rectangular surface areas in the scene
(including area light sources). The amount of light interchanged between any two (mutually
visible) areas in the scene can be captured as a form facror, which depends on their relative
orientation and surface reflectance properties, as well as the 1 /72 fall-off as light is distributed
over a larger effective sphere the further away il is (Cohen and Wallace 1993; Sillion and
Puech 1994; Glassner 1995). A large linear system can then be set up to solve for the final
lightness of each area patch, using the light sources as the forcing function (right hand side).
Once the system has been solved, the scene can be rendered from any desired point of view.
Under certain circumstances, it is possible 1o recover the global illumination in a scene from
photographs using computer vision techniques (Yu, Debevee. Malik et al. 1999).

The basic radiosity algorithm does not take into account certain near field effects, such
as the darkening inside corners and scratches, or the limited ambient illumination caused
by partial shadowing from other surfaces. Such effects have been exploited in a number of
computer vision algorithms (Nayar, Ikeuchi, and Kanade 1991; Langer and Zucker 1994).

While all of these global illumination effects can have a strong effect on the appearance
of a scene, and hence its 3D interprelation, they are not covered in more detail in this book.
(But see Section 12.7.1 for a discussion of recovering BRDFs from real scenes and objects.)

2.2.3 Optics

Once the light from a scene reaches the camera, it must still pass through Lhe lens before
reaching the sensor (analog film or digital silicon). For many applications, it suffices to
treal the lens as an ideal pinhole that simply projects all rays through a common center of
projection (Figures 2.8 and 2.9).

However, if we want to deal with issues such as focus, exposure, vignetting, and aber-
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Figure 2.19 A thin lens of focal length f focuses the light from a plane a distance z, in front
of the lens at a distance z; behind the lens, where % + }' = } If the focal plane (vertical
gray line next lo ¢) is moved forward, the images are no longer in focus and the circle of
confusion c (small thick line segments) depends on the distance of the image plane motion
Az, relative to the lens aperture diameter d. The field of view (f.0.v.) depends on the ratio
between the sensor width W and the focal length f (or, more precisely, the focusing distance
z;, which is usually quite close to f).

ration, we need to develop a more sophisticated model, which is where the study of oprics
comes in (Moller 1988; Hecht 2001; Ray 2002).

Figure 2.19 shows a diagram of the most basic lens model, i.e., the thin lens composed
of a single piece of glass with very low, equal curvature on both sides. According to the
{ens law (which can be derived using simple geometric arguments on light ray refraction), the
relationship beltween the distance to an object z, and the distance behind the lens at which a
focused image is formed 2; can be expressed as

1 + L_ l, (2.96)
z 2z f
where f is called the focal length of the lens. If we let z, — 00, 1.€., we adjust the lens (move
the image plane) so that objects at infinity are in focus, we gel z; = f, which is why we can
think of a lens of focal length f as being equivalent (to a first approximation) to a pinhole a
distance f from the focal plane (Figure 2.10), whose field of view is given by (2.60).

If the focal plane is moved away from its proper in-focus setling of z; (¢.g., by (wisting
the focus ring on the lens), objects at z, are no longer in focus, as shown by the gray plane in
Figure 2.19. The amount of mis-focus is measured by the circle of confitsion ¢ (shown as short
thick blue line segments on the gray plane).” The equation for the circle of confusion can be
derived using similar triangles; it depends on the distance of travel in the focal plane Az,
relative to the original focus distance z; and the diameter of the aperture d (see Exercise 2.4).

7 If the aperture is not completely circular, e.g., if it is caused by a hexagonal diaphragm, it is sometimes possible
(o see this effect in the acmal blur function (Levin, Fergus, Durand er al. 2007; Joshi, Szeliski, and Kriegman 2008)
or in the “glints” that are seen when shooting into the sun.
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Figure 2.20 Regular and zoom lens depth of field indicators.

The allowable depth variation in the scene that limits the circle of confusion 1o an accept-
able number is commonly called the depth of field and is a function of both the focus distance
and the aperture, as shown diagrammatically by many lens markings (Figure 2.20). Since this
depth of field depends on the aperture diameter d, we also have to know how this varies with
the commonly displayed f~nuwmber, which is usually denoted as f/# or N and is defined as

Fl#=N= g, (2.97)

where the focal length f and the aperture diameler d are measured in the same unit (say,
millimeters).

The usual way to write the f-number is to replace the # in f/# with the actual number,
ie., f/L4,f/2,f/2.8,..., f/22. (Allernatively, we can say N = 1.4, etc.) An easy way to
interpret these numbers is (o notice that dividing the focal length by the f-number gives us the
diameter d, so these are just formulas for the aperture diameter.®

Notice thal the usual progression for f-numbers is in ful! stops, which are multiples of V2,
since this corresponds to doubling the area of the entrance pupil each ime a smaller f-number
is selected. (This doubling is also called changing the exposure by one exposure value or EV.
It has the same effect on the amount of light reaching the sensor as doubling the exposure
duration, ¢.g., from 1/125 (0 1/250, see Exercise 2.5.)

Now that you know how to convert between f-numbers and aperture diamelers, you can
constructl your own plots for the depth of field as a function of focal length f, circle of
confusion ¢, and focus distance z,, as explained in Exercise 2.4 and see how well these match
what you observe on actual lenses, such as those shown in Figure 2.20.

Of course, real lenses are not infinilely thin and therefore suffer from geometric aber-
rations, unless compound elements are used 10 correct for them. The classic five Seidel
aberrarions, which arise when using third-order optics, include spherical aberration, coma,
asligmatism, curvalture of field, and distortion (Méller 1988; Hecht 2001; Ray 2002).

8 This also explains why, with zoom lenses, the f-mimber varies with the current zoom (focal length) setting.



2.2 Photometric image formation 71

|«'—:r ‘=103mm: “l‘ Zo=500F ‘l

Figure 2.21 In a lens subject to chromatic aberration, light at different wavelengths (e.g.,
the red and blur arrows) is focused with a different focal length f/ and hence a different depth
z], resulling in both a geometric (in-plane) displacement and a loss of focus.

Chromatic aberration

Because the index of refraction for glass varies slightly as a function of wavelength, sim-
ple lenses suffer from chromatic aberration, which is the tendency for light of different
colors to focus at slightly different distances (and hence also with slightly different mag-
nification factors), as shown in Figure 2.21. The wavelength-dependent magnification fac-
tor, i.e., the transverse cliromatic aberration, can be modeled as a per-color radial distortion
(Section 2.1.6) and, hence, calibrated using the techniques described in Section 6.3.5. The
wavelength-dependent blur caused by longitudinal chromaric aberration can be calibrated
using techniques described in Section 10.1.4. Unfortunately, the blur induced by longitudinal
aberration can be harder 10 undo, as higher frequencies can get strongly atienuated and hence
hard Lo recover.

In order to reduce chromatic and other kinds of aberrations, most pholographic lenses
today are compound lenses made of different glass elements (with different coatings). Such
lenses can no longer be modeled as having a single nodal point P through which all of the
rays must pass (when approximaling the lens with a pinhole model). Insiead, these lenses
have both a front nodal point, through which the rays enter the lens, and a rear nodal point,
through which they leave on their way to the sensor. In practice, only the location of the front
nodal point is of interest when performing careful camera calibration, €.g., when determining
the point around which 1o rotate to capture a parallax-free panorama (see Section 9.1.3).

Not all lenses, however, can be modeled as having a single nodal point. In particular, very
wide-angle lenses such as fisheye lenses (Section 2.1.6) and certain caradioptric imaging
systems consisting of lenses and curved mirrors (Baker and Nayar 1999) do not have a single
point through which all of the acquired light rays pass. In such cases, it is preferable to
explicitly construct a mapping function (look-up table) between pixel coordinates and 3D
rays in space (Gremban, Thorpe. and Kanade 1988; Champleboux, Lavallée, Sautot et al.
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Figure 222 The amount of light hitting a pixel of surface area 4: depends on the square of
the ratio of the aperture diameter d to the focal length f, as well as the fourth power of the

off-axis angle o cosine, cos? a.

1992; Grossberg and Nayar 2001; Sturm and Ramalingam 2004; Tardif, Sturm, Trudeau er
al. 2009), as mentioned in Section 2.1.6.

Vignetting

Another property of real-world lenses is vignerting, which is the tendency for the brightness
of the image to fall off towards the edge of the image.

Two kinds of phenomena usually contribute to this effect (Ray 2002). The first is called
natural vignetring and is due 1o the foreshoriening in the objecl surface, projected pixel, and
lens aperture, as shown in Figure 2.22. Consider the light leaving the object surface patch
of size do localed at an off-axis angle cc. Because this patch is foreshortened with respect
to the camera lens, the amount of light reaching the lens is reduced by a factor cosa. The
amount of light reaching the lens is also subject 10 the usual 1/72 fall-off; in this case, the
distance v, = z,/cosa. The actual area of the aperture through which the light passes
is foreshortened by an additional factor cos o, i.e., the aperture as seen from point O is an
ellipse of dimensions d x d cos c. Putting all of these factors together, we see that the amount
of light leaving O and passing through the aperture on its way to the image pixel located at 1
is proportional to

) a\? &
Jocosa czsaﬂ 2Y cosa=60~Z costa. (2.98)
r2 2 4 72

Since iriangles AOPQ and AT PJ are similar, the projected areas of of the object surface do
and image pixel 41 are in the same (squared) ratio as 2, : 2,

do 22
5= (2.99)

Putting these together, we obtain the final relationship between the amount of light reaching
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pixel ¢ and the aperture diameter d, the focusing distance z; = f, and the off-axis angle o,

nd? xd? 7 [(d\? 4
502—3 cost a = 512—? cos” o & ézz ? cos” «, (2.100)
which is called the fundamental radiomerric relation between the scene radiance L and the
light (irradiance) E reaching the pixel sensor,

x /d\* 4
E= LZ (?) cos” a, (2.101)
(Horn 1986; Nalwa 1993; Hecht 2001; Ray 2002). Notice in this equation how the amount of
light depends on the pixel surface area (which is why the smaller sensors in point-and-shoot
cameras are so much noisier than digital single lens reflex (SLR) cameras), the inverse square
of the f-stop N = f/d (2.97), and the fourth power of the cos* & off-axis fall-off, which is
the natural vignetling term.

The other major kind of vignetting, called mechanical vignetring, is caused by the internal
occlusion of rays near the periphery of lens elements in a compound lens, and cannot easily
be described mathematically without performing a full ray-tracing of the actual lens design.?
However, unlike natural vignetting, mechanical vignelting can be decreased by reducing the
camera aperture (increasing the f-number). It can also be calibraled (along with natural vi-
gnetting) using special devices such as integrating spheres, uniformly illuminated targets, or
camera rotation, as discussed in Section 10.1.3.

2.3 The digital camera

After slarting from one or more light sources, reflecting off one or more surfaces in the world,
and passing through the camera’s optics (lenses), light finally reaches the imaging sensor.
How are the photons arriving al this sensor converted into the digital (R, G, B) values that
we observe when we look at a digilal image? In this section, we develop a simple model
that accounts for the most important effects such as exposure (gain and shutter speed), non-
linear mappings, sampling and aliasing, and noise. Figure 2.23, which is based on camera
models developed by Healey and Kondepudy (1994); Tsin, Ramesh, and Kanade (2001); Liu,
Szeliski. Kang er al. (2008), shows a simple version of the processing stages thal occur in
modern digital cameras. Chakrabarti, Scharstein, and Zickler (2009) developed a sophisti-
cated 24-parameter model that is an even better maich to the processing performed in taday’s
cameras.

9 There are some empirical models that work well 1o practice (Kang and Weiss 2000; Zheng, Lin, and Kang
2006).
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Figure 2.23 Image sensing pipeline, showing the various sources of noise as well as Lypical
digital post-processing steps.

Light falling on an imaging sensor is usually picked up by an active sensing area, inte-
grated for the duration of the exposure (usually expressed as the shutter speed in a fraction of
asecond, e.g., 138, gg- 35)> and then passed (o a set of sense amplifiers . The two main kinds
of sensor used in digital still and video cameras today are charge-coupled device (CCD) and
complementary metal oxide on silicon (CMOS).

In a CCD, photons are accumulated in each active well during the exposure time. Then,
in a transfer phase, the charges are transferred from well to well in a kind of “bucket brigade”
until they are deposited at the sense amplifiers, which amplify the signal and pass il to
an analog-lo-digital converter (ADC).® Older CCD sensors were prone (0 blooming, when
charges from one over-exposed pixel spilled into adjacent ones, but most newer CCDs have
anti-blooming technology (“iroughs” into which the excess charge can spill).

In CMOS, the photons hitling the sensor directly affect the conductivity (or gain) of a
photodetector, which can be selectively gated 1o control exposure duration, and locally am-
plified before being read out using a multiplexing scheme.  Traditionally, CCD sensors
outperformed CMOS in qualily sensitive applications, such as digital SLRs, while CMOS
was better for low-power applications, but today CMOS is used in most digital cameras.

The main factors affecting the performance of a digital image sensor are the shutler speed,
sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and quality)

10 [q digital still cameras, a complete frame is caprured and then read out sequentially at once. However, if video
is being capmwred, a rolling shurter, which exposes and transfers each lige separately, is ofien used. [o older video
cameras, the even fields (lines) were scanned first, followed by the odd fields, in a process that is called interfacing.
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of the analog-to-digilal converter. Many of the actual values for these parameters can be read
from the EXIF tags embedded with digital images. while others can be obtained from the
camera manufacturers® specification sheets or from camera review or calibration Web sites."!

Shutter speed. The shutter speed (exposure time) directly controls the amount of light
reaching the sensor and, hence, determines if images are under- or over-exposed. (For bright
scenes, where a large aperture or slow shuller speed are desired to get a shallow depth of field
or motion blur, neutral density filters are sometimes used by photographers.) For dynamic
scenes, the shutler speed also determines the amount of motion biur in the resulting picture.
Usually, a higher shutter speed (less motion blur) makes subsequent analysis easier (see Sec-
tion 10.3 for techniques (o remove such blur). However, when video is being captured for
display, some motion blur may be desirable to avoid siroboscopic effecls.

Sampling pitch. The sampling pitch is the physical spacing between adjacent sensor cells
on the imaging chip. A sensor with a smaller sampling pitch has a higher sampling density and
hence provides a higher resolution (in lerms of pixels) for a given aclive chip arca. However,
a smaller pitch also means that each sensor has a smaller area and cannot accumulate as many
photons; this makes it not as /ight sensitive and more prone 1o noise.

Fill factor. The fill factor is the active sensing area size as a fraction of the theoretically
available sensing area (the product of the horizontal and vertical sampling pitches). Higher
fill factors are usually preferable, as they resull in more light capture and less aliasing (see
Section 2.3.1). However, this must be balanced with the need to place additional electronics
between the active sense areas. The fill factor of a camera can be determined empirically
using a photometric camera calibration process (see Section 10.1.4).

Chip size. Video and point-and-shoot cameras have traditionally used small chip areas (%-
inch to 1-inch sensors'?), while digital SLR cameras iry 10 come closer (o the traditional size
of a 35mm film frame.!* When overall device size is not important, having a larger chip
size is preferable, since each sensor cell can be more photo-sensitive. (For compact cameras,
a smaller chip means that all of the optics can be shrunk down proportionately.) However,

" hitp:/fwww.clarkvision.com/imagedetail/digital. sensor.performance.summary/ .

12 These numbers refer to the “mbe diameter” of the old vidicon mibes used in video cameras (http://www.
dpreview.com/learn/?/Glossary/Camera_System/sensor_sizes_01.htm). The 1/2.5” sensor on the Canon SD800 cam-
era actually measures 5.76mm X 4.29mm, i.e., a sixth of the size (op side) of a 35mm full-frame (36mm x 24mm)
DSLR sensor.

13 When a DSLR chip does not fill the 35mm full frame, it results in a multiplier effect on the lens focal length.
For example, a chip that is oaly 0.6 the dimeasion of a 35mm frame will make a 50mm lens iage the same aggular
extentas a 50/0.6 = 50 x 1.6 =80mm lens, as demonstrated in (2.60).
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larger chips are more expensive 10 produce, not only because fewer chips can be packed into
each wafer, bul also because the probability of a chip defect goes up linearly with the chip
area.

Analog gain. Before analog-to-digital conversion, the sensed signal is usually boosted by
a sense amplifier. In video cameras, the gain on these amplifiers was traditionally controlled
by automaric gain control (AGC) logic, which would adjust these values to obtain a good
overall exposure. In newer digilal still cameras, the user now has some additional control
over this gain through the ISO serting, which is typically expressed in [SO standard units
such as 100, 200, or 400. Since the aulomated exposure control in mosl cameras also adjusts
the aperture and shutter speed, setting the ISO manually removes one degree of freedom from
the camera’s control, just as manually specifying aperture and shutler speed does. In theory, a
higher gain allows the camera to perform betler under low light conditions (less motion blur
due to long exposure times when the aperture is already maxed out). In practice, however,
higher ISO settings usually amplify the sensor noise.

Sensor noise. Throughout the whole sensing process, noise is added from various sources,
which may include fixed panern noise, dark current noise, shot noise, amplifier noise and
quantization noise (Healey and Kondepudy 1994; Tsin, Ramesh, and Kanade 2001). The
final amount of noise present in a sampled image depends on all of these quantities, as well
as the incoming light (controlled by the scene radiance and aperture), the exposure time, and
the sensor gain. Also, for low light conditions where the noise is due 10 low pholon counts, a
Poisson model of noise may be more appropriate than a Gaussian model.

As discussed in more detail in Section 10.1.1, Liu, Szeliski, Kang er al. (2008) use this
model, along with an empirical database of camera response functions (CRFs) obtained by
Grossberg and Nayar (2004), to estimale the noise level function (NLF) for a given image,
which predicts the overall noise variance at a given pixel as a function of its brightness (a
separate NLF is estimated for each color channel). An altemative approach, when you have
access (o the camera before taking pictures, is 1o pre-calibrate the NLF by taking repeated
shots of a scene conlaining a variety of colors and luminances, such as the Macbeth Color
Chart shown in Figure 10.3b (McCamy, Marcus, and Davidson 1976). (When estimating
the variance, be sure 1o throw away or downweight pixels with large gradients, as small
shifts between exposures will affect the sensed values at such pixels.) Unfortunately, the pre-
calibration process may have Lo be repealed for different exposure times and gain settings
because of the complex interactions occurring within the sensing system.

In practice, most computer vision algorithms, such as image denoising, edge delection,
and stereo matching, all benefit from at least a rudimentary estimalte of the noise level. Barring
the abilicy to pre-calibrate the camera or to lake repeated shots of the same scene, the simplest
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approach is to look for regions of near-constant value and to estimate the noise¢ variance in
such regions (Liu, Szeliski, Kang er al. 2008).

ADC resolution. The final step in the analog processing chain occurring within an imaging
sensor is the analog to digital comversion (ADC). While a variety of technigues can be used
(0 implement thig process, the two quantities of interest are the resolurion of this process
(how many bils it yields) and its noise level (how many of these bits are useful in practice).
For most cameras, the number of bits quoted {eight bits for compressed JPEG images and a
nominal 16 bits for the RAW formats provided by some DSLRs) exceeds the actual number
of usable bits. The best way to tell is to simply calibrate the noise of a given sensor, ¢.g.,
by taking repeated shots of the same scene and plotting the estimated noise as a function of
brightness (Exercise 2.6).

Digital post-processing. Once the irradiance values arriving at the sensor have been con-
verted to digital bits, most cameras perform a variety of digital signal processing (DSP)
operalions to enhance the image before compressing and storing the pixel values. These in-
clude color filter array (CFA) demosaicing, white point setting, and mapping of the luminance
values through a gamma function to increase the perceived dynamic range of the signal. We
cover these topics in Section 2.3.2 but, before we do, we return (o the topic of aliasing, which
was mentioned in connection with sensor array fill factors.

2.3.1 Sampling and aliasing

What happens when a field of light impinging on the image sensor falls onlo the active sense
areas in the imaging chip? The photons arriving at each active cell are integrated and then
digitized. However, if the fill factor on the chip is small and the signal is not otherwise
band-limited, visually unpleasing aliasing can occur.

To explore the phenomenon of aliasing, let us first look at 2 one-dimensional signal (Fig-
ure 2.24), in which we have (wo sine waves, one at a frequency of f = 3/4 and the other at
f = 5/4. If we sample these two signals at a frequency of f = 2, we see that they produce
the same samples (shown in black), and so we say that they are aliased.'* Why is this a bad
effect? In essence, we can no longer reconstruct the original signal, since we do not know
which of the two original frequencies was present.

In fact, Shannon’s Sampling Theorem shows that the minimum sampling (Oppenheim
and Schafer 1996; Oppenheim, Schafer, and Buck 1999) rate required (o reconstruct a signal

14 An alias is an alternate name for someone, so the sampled signal corresponds to two different aliases.
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Figure 224 Aliasing of a one-dimensional signal: The blue sine wave a1 f = 3/4 and the
red sine wave al f = 5/4 have the same digital samples, when sampled at f = 2. Even after
convolution with a 100% fill factor box filler, the two signals, while no longer of the same
magnitude, are still aliased in the sense that the sampled red signal looks like an inverted
lower magnitude version of the blue signal. (The image on the right is scaled up for better
visibility. The actual sine magnitudes are 30% and —18% of their original values.)

from its instantaneous samples must be at least 1wice the highest frequency,'
fs 2 2fmax. (2.102)

The maximum frequency in a signal is known as the Nyquist frequency and the inverse of the
minimum sampling frequency 7y = 1/ f, 1s known as the Nyquist rate.

However, you may ask, since an imaging chip actually averages the light field over a
finite area, are the resulis on point sampling still applicable? Averaging over the sensor area
does tend 1o allenuale some of the higher frequencies. However, even if the fill faclor is
[00%, as in the right image of Figure 2.24, frequencies above the Nyquist limit (half the
sampling frequency) still produce an aliased signal, although with a smaller magnitude than
the corresponding band-limited signals.

A more convincing argument as 10 why aliasing is bad can be seen by downsampling
a signal using a poor quality filter such as a box (square) filter. Figure 2.25 shows a high-
frequency chirp image (so called because the frequencies increase over time), along with the
results of sampling it with a 25% fill-factor area sensor, a 100% fill-factor sensor, and a high-
quality 9-tap filter. Additional examples of downsampling (decimation) filters can be found
in Section 3.5.2 and Figure 3.30.

The best way Lo predict the amount of aliasing that an imaging system (or even an image
processing algorithm) will produce is 1o estimate the point spread function (PSF), which
represents the response of a particular pixel sensor 10 an ideal point light source. The PSF
is a combination (convolution) of the blur induced by the optical sysiem (lens) and the finite
integration area of a chip sensor.-®

15 The acmal theorem states that fs must be at least twice the signal bandwidth but, since we are not dealing with
modulated signals such as radio waves during image capture, the maximum frequency suffices.

16 [maging chips usually interpose an optical anti-aliasing filter just before the tnaging chip to reduce of control
the amount of aliasing.
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Figure 2.25 Aliasing of a two-dimensional signal: (a) original [ull-resolution image; (b)
downsampled 4x with a 25% fill factor box filter; (¢) downsampled 4x with a 100% fill
factor box filter; (d) downsampled 4 x with a high-quality 9-tap filier. Notice how the higher
frequencies are aliased into visible frequencies with the lower quality filters, while the 9-tap
filter completely removes these higher frequencies.

If we know the blur function of the lens and the fill factor (sensor area shape and spacing)
for the imaging chip (plus, optionally, the response of the anti-aliasing filler), we can convolve
these (as described in Section 3.2) (o obtain the PSE. Figure 2.26a shows the one-dimensjonal
cross-section of a PSF for a lens whose blur function is assumed to be a disc of a radius
equal 1o the pixel spacing s plus a sensing chip whose horizontal fill factor is 80%. Taking
the Fourier transform of this PSF (Section 3.4), we oblain the modulation transfer funcrion
(MTE), from which we can estimale the amount of aliasing as the area of the Fourier magni-
tude outside the f < f, Nyquist frequency.!” 1T we de-focus the lens so that the blur function
has a radius of 2s (Figure 2.26c), we see that the amount of aliasing decreases significantly,
bul so does the amount of image detail (frequencies closer lo f = fo).

Under laboratory conditions, the PSF can be estimated (o pixel precision) by looking at a
point light source such as a pin hole in a black piece of cardboard lit from behind. However,
this PSF (the actual image of the pin hole) is only accurale to a pixel resolution and, while
it can model larger blur (such as blur caused by defocus), it cannot model the sub-pixel
shape of the PSF and predict the amount of aliasing. An altermalive technique, described in
Section 10.1.4, is to look at a calibration pattern (e.g., one consisting of slanted step edges
(Reichenbach, Park, and Narayanswamy 1991: Williams and Burns 2001; Joshi, Szeliski, and
Kriegman 2008)) whose ideal appearance can be re-synthesized o sub-pixel precision.

In addition Lo occurring during image acquisition, aliasing can also be introduced in var-
ious image processing operations, such as resampling, upsampling, and downsampling. Sec-
tions 3.4 and 3.5.2 discuss these issues and show how careful selection of filiers can reduce

'? The complex Fourter transform of the PSF 15 actually called the opfical fransfer function (OTF) (Williams
1999). Its magnitude is called the modulation transfer fancuon (MTF) and 0s phase (s called (he phase fransfer
funetion (PTF).
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Figure 226 Sample point spread functions (PSF): The diameter of the blur disc (blue) in
(a) is equal Lo half the pixel spacing, while the diameterin (c) is twice the pixel spacing. The
horizontal fill factor of the sensing chip is 80% and is shown in brown. The convolution of
these two kernels gives the point spread funclion, shown in green. The Fourier response of
the PSF (the MTF) is plotted in (b) and (d). The area above the Nyquist frequency where
aliasing occurs is shown in red.

the amount of aliasing that operations inject.

2.3.2 Color

In Section 2.2, we saw how lighting and surface reflections are functions of wavelength.
When the incoming light hits the imaging sensor, light from different parts of the spectrum is
somehow integraled into the discrete red, green, and blue (RGB) color values that we see in
a digital image. How does this process work and how can we analyze and manipulate color
values?

You probably recall from your childhood days the magical process of mixing paint colors
(o oblain new ones. You may recall that blue+yellow makes green, red+blue makes purple,
and red+green makes brown. If you revisited this topic at a later age, you may have learned
that the proper subtractive primaries are actually cyan (a light blue-green), magenta (pink),
and yellow (Figure 2.27b), although black is also often used in four-color printing (CMYK).
(If you ever subsequently took any painting classes, you learned that colors can have even
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Figure 2.27 Primary and secondary colors: {a) additive colors red, green, and blue can be

mixed to produce cyan, magenta, yellow, and white: (b) subtraclive colors cyan, magenta,
and yellow can be mixed to produce red, green, blue, and black.

more fanciful names, such as alizarin crimson, cerulean blue, and chartreuse.) The sublractive
colors are called subiraclive because pigments in the paint absorb certain wavelengths in the
color spectrum.

Later on, you may have learned about the additive primary colors (red, green, and blue)
and how they can be added (with a slide projector or on a computer monitor) to produce cyan,
magenia, yellow, while, and all the other colors we typically see on our TV sets and monitors
(Figure 2.27a).

Through what process is it possible for two different colors, such as red and green, to
interact to produce a third color like yellow? Are the wavelengths somehow mixed up to
produce a new wavelength?

You probably know that the correct answer has nothing lo do with physically mixing
wavelengths. Instead, the exisience of three primaries is a result of the rri-stimulus (or tri-
chromaric) nature of the human visual system, since we have three different kinds of cone,
each of which responds selectively to a different portion of the color spectrum (Glassner 1995;
Wyszecki and Stiles 2000; Fairchild 2005; Reinhard, Ward, Pattanaik et al. 2005; Livingstone
2008).'* Note that for machine vision applications, such as remote sensing and terrain clas-
sification, il is preferable to use many more wavelengths. Similarly, surveillance applications
can often benefit from sensing in the near-infrared (NIR) range.

CIE RGB and XYZ

To test and quantify the tri-chromatic theory of perception, we can aitempt to reproduce all
monochromatic (single wavelength) colors as a mixiure of three suitably chosen primaries.

18 See also Mark Fairchild’s Web page, hutp://www.cis.rit.edu/fairchild/WhylsColor/hooks_links.html.
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Figure 2.28 Standard CIE color matching functions: (a) 7#()), g(}), b(\) color spectra
obtained from matching pure colors to the R=700.0nm, G=546.1nm, and B=435.8nm pri-
maries; (b) Z(A), F(A), (1) color matching functions, which are linear combinations of the

(F(X), g(X), b())) spectra.

(Pure wavelength light can be obtained using either a prism or specially manufactured color
filters.) [n the 1930s, the Commission Internationale d’Eclairage (CIE) standardized the RGB
representation by performing such color maiching experiments using the primary colors of
red (700.0nm wavelength), green (546.1nm), and blue (435.8nm).

Figure 2.28 shows the results of performing these experiments with a standard observer,
i.e., averaging perceptual resulls over a large number of subjects. You will notice that for
certain pure spectra in the blue—green range, a negarive amount of red light has to be added,
i.e., a certain amount of red has to be added to the color being matched in order to get a color
maitch. These results also provided a simple explanation for the existence of metamers, which
are colors with different spectra that are perceptually indistinguishable. Note that two fabrics
or paint colors thal are metamers under one light may no longer be so under different lighting.

Because of the problem associated with mixing negative light, the CIE also developed a
new color space called XYZ, which contains all of the pure spectral colors within its positive
octant. (It also maps the Y axis to the luminance, i.e., perceived relative brightness, and maps
pure white (o a diagonal (equal-valued) vector.) The transformation from RGB 10 XYZ is
given by

X 1 0.49 0.31 0.20 R
= 017697 0.17697 0.81240 0.01063 G |. (2.103)
0.00 0.01 0.99 B

While the official definition of the CIE XYZ standard has the matrix normalized so Lhat the
Y value corresponding 1o pure red is 1, a more commonly used form is 1o omit the leading
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Figure 2.29 CIE chromaticity diagram, showing colors and their corresponding {r, ) val-
ues. Pure spectral colors are arranged around the outside of the curve.

fraction, so that the second row adds up (o one, i.e., the RGB triplet (1,1, 1) maps toa Y value
of 1. Linearly blending the (F(X), g()\),b())) curves in Figure 2.28a according (o (2.103), we
obtain the resulting (Z(X), §(X), Z(A)) curves shown in Figure 2.28b. Nolice how all three
spectra (color malching funclions) now have only positive values and how the Z(A) curve
malches thal of the luminance perceived by humans.

If we divide the XYZ values by the sum of X+Y+Z, we oblain the chromaticity coordi-
nates

_ X _ Y _ A
T X4v+2 VT XyvY+2 T TX+Yv 12

which sum up to 1. The chromaticily coordinates discard the absolute intensily of a given

x

(2.104)

color sample and just represent its pure color. If we sweep the monochromatic color A pa-
rameler in Figure 2.28b from A = 380nm to A = 800nm, we obtain the familiar chromaticity
diagram shown in Figure 2.29. This figure shows the (z,y) value for every color value per-
ceivable by most humans. (Of course, the CMYK reproduction process in this book does not
actually span the whole gamul of perctivable colors.) The outer curved rim represents where
all of the pure monochromatic color values map in (xz, y) space, while the lower straight line,
which connects the two endpoints, is known as the purple line.

A convenient representation for color values, when we want (o lease aparl luminance
and chromaticity, is therefore Yxy (luminance plus the two most distinclive chrominance
components).

L*a*b* coler space

While the XYZ color space has many convenient properties, including the ability o separate
luminance from chrominance, it does not actually predict how well humans perceive differ-
ences in color or luminance.
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Because the response of the human visual sysiem is roughly logarithmic (we can perceive
relative luminance differences of about 1%), the CIE defined a non-linear re-mapping of the
XYZ space called L*a*b* (also sometimes called CIELAB), where differences in luminance
or chrominance are more perceptually uniform.'?

The L* component of lighmess is defined as

L* =116f (YX) , (2.103)

where Y}, is the luminance value for nominal white (Fairchild 2005) and

£1/3 t> 8
) = { £/(36%) +26/3 else, (2.106)

is a finite-slope approximation to the cube rool with § = 6/29. The resulting 0. .. 100 scale
roughly measures equal amounts of lightness perceptibility.
In a similar fashion, the a* and b* components are defined as

o=l (£) 5 ()] o -wp () 5(2)]. e

where again, (X,, Yy, Zn) is the measured white point. Figure 2.32i-k show the L*a*b*
representation for a sample color image.

Color cameras

While the preceding discussion tells us how we can uniquely describe the perceived tri-
stimulus description of any color (spectral distribution), it does not tell us how RGB siill
and video cameras actually work. Do they just measure the amount of light at the nominal
wavelengths of red (700.0nm), green (546. Inm), and blue (435.8nm)? Do color monitors just
emit exaclly these wavelengths and, if so, how can they emit negative red light to reproduce
colors in the cyan range?

In fact, the design of RGB video cameras has historically been based around the availabil-
ity of colored phosphors that go into lelevision sets. When standard-definition color television
was invented (NTSC), a mapping was defined between the RGB values thal would drive the
three color guns in the cathode ray tube (CRT) and the XYZ values that unambiguously de-
fine perceived color (this standard was called ITU-R BT.601). With the advent of HDTV and
newer monitors, a new standard called ITU-R BT.709 was created, which specifies the XYZ

19 Another perceprually motivated color space called L¥n*v* was developed and standardized simultageously
(Fairchild 2005).
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values of each of the color primaries,

X 0.412453 0.357580 0.180423 Rgg
Y | = 0212671 0.715160 0.072169 Gros | - (2.108)
A 0.019334 0.119193 0.950227 Brog

In practice, each color camera integrates light according to the spectral response function
of i1s red, green, and blue sensors,

R = / L(\)Sr(N)d),
G = / L(N)Sc(N)dA, (2.109)
B = / L(N)Sa(N\)d,

where L()) is the incoming spectrum of light at a given pixel and {Sp()\), Sg(})), Sg(M)}
are the red, green, and blue spectral sensitivities of the corresponding sensors.

Can we tell what spectral sensilivities the cameras actually have? Unless the camera
manufacturer provides us with Lhis dala or we observe the response of the camera Lo a whole
spectrum of monochromatic lights, these sensitivities are nor specified by a standard such as
BT.709. Instead, all that matters is that the tri-stimulus values for a given color produce the
specified RGB values. The manufacturer is free to use sensors with sensitivities that do not
malch the standard XYZ definitions, so long as they can later be converted (through a linear
transform) to the standard colors.

Similarly, while TV and computer monitors are supposed to produce RGB values as spec-
ified by Equation (2.108), there is no reason that they cannot use digital logic Lo transform the
incoming RGB values into different signals to drive each of the color channels. Properly cal-
ibrated monitors make this information available to software applications that perform color
management, so that colors in real life, on the screen, and on the printer all maich as closely
as possible.

Color filter arrays

While early color TV cameras used three vidicons (tubes) to perform their sensing and later
cameras used three separate RGB sensing chips, most of today’s digital still and video cam-
eras cameras use a color filter array (CFA), where alternating sensors are covered by different
colored filters.*

2 A pewer chip desiga by Foveon (http://www.foveon.com) stacks the red, green, and blue sepsors bepeath each
other, but it has not yet gained widespread adoption.
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Figure 2.30 Bayer RGB pattern: (a) color filter array layout; (b) interpolated pixel values,
with unknown (guessed) values shown as lower case.

The most commonly used pattern in color cameras loday is the Bayer partern (Bayer
1976), which places green filters over half of the sensors (in a checkerboard pattern), and red
and blue filters over the remaining ones (Figure 2.30). The reason that there are twice as many
green filters as red and blue is because the luminance signal is mostly determined by green
values and the visual sysiem is much more sensitive to high frequency detail in luminance
than in chrominance (a fact that is exploited in color image compression—see Section 2.3.3).
The process of interpolaring the missing color values so that we have valid RGB values for
all the pixels is known as demosaicing and is covered in delail in Section 10.3.1.

Similarly, color LCD monitors typically use alternating siripes of red, green, and blue
fillers placed in front of each liquid crystal active area to simulate the experience of a full color
display. As before, because the visual system has higher resolution (acuity) in luminance than
chrominance, it is possible to digitally pre-filter RGB (and monochrome) images 1o enhance
the perception of crispness (Betrisey, Blinn, Dresevic et al. 2000; Plau 2000).

Color balance

Before encoding the sensed RGB values, most cameras perform some kind of color balancing
operation in an attempl to move the white point of a given image closer 1o pure white (equal
RGB values). If the color system and the illumination are the same (the BT.709 system uses
the daylight illuminant Dgg as its reference white), the change may be minimal. However,
if the illuminant is strongly colored, such as incandescent indoor lighting (which generally
resulls in a yellow or orange hue), the compensation can be quile significant.

A simple way to perform color correction is to multiply each of the RGB values by a
different factor (i.e., 1o apply a diagonal matrix transform to the RGB color space). More
complicaled transforms, which are sometimes the resull of mapping to XYZ space and back,
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Figure 231 Gamma compression: (a) The relationship between the input signal luminance
Y and the transmitted signal Y is given by Y’ = Y'/7. (b) A( the receiver, the signal Y” is
exponentiated by the factor ~, Y = Y*". Noise introduced during transmission is squashed in
the dark regions, which corresponds 1o the more noise-sensitive region of the visual system.

actually perform a color rwist, i.e., they use a general 3 x 3 color transform matrix.?! Exer-
cise 2.9 has you explore some of these issues.

Gamma

In the early days of black and white television, the phosphors in the CRT used 1o display
the TV signal responded non-linearly to their input voliage. The relationship between the
vollage and the resulting brightness was characterized by a number called gamma (), since
the formula was roughly

B=V7, (2.110)

with a -y of about 2.2. To compensate for this effect, the electronics in the TV camera would
pre-map the sensed luminance Y through an inverse gamma,

Y =Y7, 2.111)

with a typical value of J; = 0.45.

The mapping of the signal through this non-linearity before transmission had a beneficial
side effect: noise added during transmission (remember, these were analog days!) would be
reduced (after applying the gamma at the receiver) in the darker regions of the signal where
it was more visible (Figure 2.31).?> (Remember that our visual sysiem is roughly sensilive to
relative differences in luminance.)

2! Those of yon old egough to remember the early days of color television will pamurally think of the hue adjustment
knob on the television set, which could produce truly bizarre results.
2 A related techaique called companding was the basis of the Dolby goise reduction systems used with andio

tapes.
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When color television was invented, it was decided Lo separately pass the red, green, and
blue signals through the same gamma non-linearity before combining them for encoding.
Today, even though we no longer have analog noise in our (ransmission systems, signals are
still quantized during compression (see Section 2.3.3), so applying inverse gamma to sensed
values is stll useful.

Unfortunately, for both computer vision and computer graphics, the presence of gamma
in images is often problematic. For example, the proper simulation of radiometric phenomena
such as shading (see Section 2.2 and Equation (2.87)) occurs in a linear radiance space. Once
all of the computations have been performed, the appropriate gamma should be applied before
display. Unfortunately, many computer graphics sysiems (such as shading madels) operate
directly on RGB values and display these values direcily. (Fortunately, newer color imaging
standards such as the 16-bit scRGB use a linear space, which makes this less of a problem
(Glassner 1995).)

In computer vision, the situation can be even more daunting. The accurate delermination
of surface normals, using a technique such as photometric stereo (Section 12.1.1) or even a
simpler operation such as accurate image deblurring, require that the measurements be in a
linear space of intensities. Therefore, it is imperative when performing detailed quantitative
computations such as these to first undo the gamma and the per-image color re-balancing
in the sensed color values. Chakrabarti, Scharstein, and Zickler (2009) develop a sophisti-
cated 24-parameter model that is a good match 1o the processing performed by today’s digital
cameras; they also provide a database of color images you can use for your own testing.

For other vision applications, however, such as feature detection or the matching of sig-
nals in stereo and motion estimation, this linearization step is often not necessary. In fact,
determining whether il is necessary to undo gamma can lake some careful thinking, e.g., in
the case of compensating for exposure variations in image stitching (see Exercise 2.7).

If all of these processing sieps sound confusing lo madel, they are. Exercise 2.10 has you
try (o lease apart some of these phenomena using empirical investigation, i.¢., taking pictures
of color charts and comparing the RAW and JPEG compressed color values.

Other color spaces

While RGB and XYZ are the primary color spaces used to describe the spectral content (and
hence tri-stimulus response) of color signals, a variety of other representations have been
developed both in video and still image coding and in computer graphics.

The earliest color representation developed for video transmission was the YIQ standard
developed for NTSC video in North America and the closely related YUV standard developed
for PAL in Europe. In both of these cases, it was desired (o have a luma channel Y (so called

n http:/fvision.middlebury.edu/colory/.
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since it only roughly mimics true luminance) that would be comparable (o the regular black-
and-white TV signal, along with two lower frequency chroma channels.

In both systems, the Y signal (or more appropriately, the Y’ luma signal since it is gamma
compressed) is obtained from

Yio1 = 0.209R’ 4 0.587G’ + 0.114B’, (2.112)

where R’G’B’ is the triplel of gamma-compressed color components. When using the newer
color definitions for HDTV in BT.709, the formula is

Y799 = 0.2125R’ 4 0.7154G’ + 0.0721B’. (2.113)
The UV components are derived from scaled versions of (B’ —Y”) and (R'—Y"'), namely,
U =0.492111(B’'—Y’') and V = 0.877283(R' - Y"), (2.114)

whereas the IQ components are the UV components rotated through an angle of 33°. In
composile (NTSC and PAL) video, the chroma signals were then low-pass filtered horizon-
tally before being modulated and superimposed on 1op of the Y’ luma signal. Backward
compalibility was achieved by having older black-and-white TV sets effectively ignore the
high-frequency chroma signal (because of slow electronics) or, at worsl, superimposing it as
a high-frequency pattern on top of the main signal.

While these conversions were important in the early days of computer vision, when frame
grabbers would directly digitize the composite TV signal, today all digital video and still
image compression slandards are based on the newer YCbCr conversion. YCbCer is closely
related to YUV (the Cp and C.. signals carry the blue and red color difference signals and have
more useful mnemonics than UV) but uses different scale factors to fit within the eighi-bit
range available with digital signals.

For video, the Y’ signal is re-scaled to fit within the [16 ...235| range of values, while
the Cb and Cr signals are scaled to fit within |16. .. 240| (Gomes and Velho 1997, Fairchild
2005). For still images, the JPEG standard uses the full eight-bit range with no reserved

values,
Y’ 0.299 0.587 0.114 R 0
Cy | = | —0.168736 —0.331264 0.5 G |+ | 128 |, (2.115)
C, 0.5 —0.418688 —0.081312 B’ 128

where the R’G’B’ values are the eight-bit gamma-compressed color components (i.¢., the
actual RGB values we obtain when we open up or display a JPEG image). For most appli-
cations, this formula is not that important, since your image reading software will directly



90 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

provide you with the eight-bit gamma-compressed R’G’B’ values. However, if you are trying
to do careful image deblocking (Exercise 3.30), this information may be useful.

Anather color space you may come across 18 hue, saturation, value (HSV), which is a pro-
jection of the RGB color cube onto a non-linear chroma angle, a radial saturation percentage,
and a luminance-inspired value. In more detail, value is defined as either the mean or maxi-
mum color value, saturation is defined as scaled distance from the diagonal, and hue is defined
as the direction around a color wheel (the exacl formulas are described by Hall (1989); Foley,
van Dam, Feiner et al. (1993)). Such a decomposition is quite natural in graphics applications
such as color picking (it approximaltes the Munsell chart for color description). Figure 2.321-
n shows an HSV representation of a sample color image, where saturation is encoded using a
gray scale (saturated = darker) and hue is depicted as a color.

If you want your computer vision algorithm 1o only affect the value (luminance) of an
image and not its saturation or hue, a simpler solution is to use either the Y zy (luminance +
chromaticity) coordinates defined in (2.104) or the even simpler color ratios,

R G B

"=R+G+B '"R+G+B "“R+G+B @Ho

(Figure 2.32¢—h). After manipulating the luma (2.112), e.g., through the process of histogram
equalization (Section 3.1.4), you can multiply each color ratio by the ratio of the new 1o old
luma to obtain an adjusted RGB tiriplet.

While all of these color systems may sound confusing, in the end, it often may not mat-
ter that much which one you use. Poynton, in his Color FAQ, hutp://www.poynton.cony/
ColorFAQ.html, notes that the perceptually mativated L*a*b* sysiem is qualitatively similar
to the gamma-compressed R’G’B’ system we mostly deal with, since both have a fractional
power scaling (which approximates a logarithmic response) between the actual intensity val-
ues and the numbers being manipulated. As in all cases, think carefully aboul what you are
(rying to accomplish before deciding on a technique (o use.?

2.3.3 Compression

The last stage in a camera’s processing pipeline is usually some form of image compression
(unless you are using a lossless compression scheme such as camera RAW or PNG).

All color video and image compression algorithms starl by converting the signal into
YCbCr (or some closely related variant), so that they can compress the luminance signal with
higher fidelity than the chrominance signal. (Recall that the human visual system has poorer

24 [f yon are at a loss for questions at a conference, you can always ask why the speaker did not use a percepmal
color space, such as L*a*b¥. Coaversely, if they did use L*a*h*, you caa ask if they bave agy concrete evideace that
this works befter than regular colors.
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(a) RGB

(B

Figure 2.32 Color space transformations: (a—d) RGB; (e-h) tgb. (i—k) L*a*b*; (I-n) HSV.
Note that the rgb, L*a*b*, and HSV values are all re-scaled to fit the dynamic range of the
printed page.

frequency response 1o color than (o luminance changes.) In video, it is common to subsam-
ple Cb and Cr by a factor of two horizontally; with still images (JPEG), the subsampling
(averaging) occurs both horizontally and vertically.

Once the luminance and chrominance images have been approprialely subsampled and
separated inlo individual images, they are then passed 10 a block transform stage. The most
common lechnique used here is the discrete cosine transform (DCT), which is a real-valued
variani of the discrete Fourier transform (DFT) (se¢ Section 3.4.3). The DCT is a reasonable
approximation 10 the Karhunen-Logve or eigenvalue decomposition of natural image patches,
i.e., the decomposition that simultaneously packs the most energy into the first coefficients
and diagonalizes the joint covariance matrix among the pixels (makes transform coefficients
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Figure 233 [mage compressed with JPEG at three quality settings. Note how the amount
of black artifact and high-frequency aliasing (“‘mosquito noise™) increases from left to right.

statistically independent). Both MPEG and JPEG use 8 x 8 DCT transforms (Wallace 1991;
Le Gall 1991), although newer variants use smaller 4 x 4 blocks or alternative transformations,
such as wavelets (Taubman and Marcellin 2002) and lapped transforms (Malvar 1990, 1998,
2000) are now used.

After transform coding, the coefficient values are quantized into a set of small integer
values that can be coded using a variable bit length scheme such as a Huffman code or an
arithmetic code (Wallace 1991). (The DC (lowest frequency) coefficients are also adaptively
predicted from the previous block’s DC values. The term “DC” comes from “direct current”,
i.e., the non-sinusoidal or non-alternaling part of a signal.) The step size in the quantization
is the main variable controlled by the qualiry setting on the JPEG file (Figure 2.33).

With video, it is also usual to perform block-based motion compensation, i.¢., to encode
the difference between each block and a predicted sel of pixel values obtained from a shifted
block in the previous frame. (The exception is the morion-JPEG scheme used in older DV
camcorders, which is nothing more than a series of individually JPEG compressed image
frames.) While basic MPEG uses 16 x 16 motion compensation blocks with inleger motion
values (Le Gall 1991), newer standards use adaptively sized block, sub-pixel motions, and
the ability 1o reference blocks from older frames. In order to recover more gracefully from
failures and to allow for random access 1o the video stream, predicted P frames are interleaved
among independently coded I frames. (Bi-directional B frames are also sometimes used.)

The quality of a compression algorithm is usually reported using its peak signal-to-noise
rario (PSNR), which is derived from the average mean square error,

MSE = %Z [I(a:) - f(a:)]2 , @2.117)
z

where I(z) is the original uncompressed image and f(z) is its compressed counterpart, or
equivalently, the root mean square error (RMS error), which is defined as

RMS = VMSE. 2.118)
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The PSNR is defined as

I2 Tmax
PSNR = ].OIOng ﬁ = 20]0310 m, (21 ]9)

where Lpay 1s the maximum signal extent, e.g., 255 for eight-bil images.

While this is just a high-level skeich of how image compression works, il is useful to
undersiand so that the artifacts introduced by such techniques can be compensaled for in
various compuler vision applications.

2.4 Additional reading

As we mentioned at the beginning of this chapter, it provides but a brief summary of a very
rich and deep set of topics, traditionally covered in a number of separate fields.

A more thorough introduction 1o the geometry of points, lines, planes, and projections
can be found in textbooks on multi-view geometry (Hartley and Zisserman 2004; Faugeras
and Luong 2001) and computer graphics (Foley, van Dam, Feiner et al. 1995; Watt 1995;
OpenGL-ARB 1997). Topics covered in more depth include higher-order primitives such as
quadrics, conics, and cubics, as well as three-view and multi-view geometry.

The image formation (synthesis) process is traditionally taught as part of a computer
graphics curmiculum (Foley, van Dam, Feiner et al. 1995; Glassner 1995; Watt 1995; Shirley
2003) but it is also studied in physics-based computer vision (Wolff, Shafer, and Healey
1992a).

The behavior of camera lens systems is studied in optics (Méller 1988; Hecht 2001; Ray
2002).

Some good books on color theory have been written by Healey and Shafer (1992); Wyszecki
and Stiles (2000); Fairchild (2005), with Livingstone (2008) providing a more fun and infor-
mal introduction to the topic of color perception. Mark Fairchild’s page of color books and
links® lists many other sources.

Topics relating to sampling and aliasing are covered in textbooks on signal and image
processing (Crane 1997; Jihne 1997; Oppenheim and Schafer 1996; Oppenheim, Schafer,
and Buck 1999; Praut 2007; Russ 2007; Burger and Burge 2008; Gonzales and Woods 2008).

2.5 Exercises

A note to students: This chapter is relatively Jight on exercises since it contains mostly
background material and nol that many usable techniques. If you really want to understand

s hutp:/fwww.cis.rit.edu/fairchild/WhylsColor/books_links himl.
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mulli-view geometry in a thorough way, I encourage you to read and do the exercises provided
by Hartley and Zisserman (2004). Similarly, if you want some exercises related to the image
formation process, Glassner’s (1995) book is full of challenging problems.

Ex 2.1: Least squares intersection point and line fitting—advanced Equation (2.4) shows
how the intersection of two 2D lines can be expressed as their cross product, assuming the
lines are expressed as homogeneous coordinates.

1. If you are given more than iwo lines and want to find a point & that minimizes the sum
of squared distances to each line,

D= (& 1.)* (2.120)

how can you compute this quantity? (Hint: Write the dot product as Z71; and turn the
squared quantity into a quadratic form, &* AZ.)

2. To fit a line to a bunch of points, you can compule the centroid (mean) of the points
as well as the covariance matrix of the poinis around this mean. Show that the line
passing through the centroid along the major axis of the covariance ellipsoid (largest
eigenvector) minimizes the sum of squared distances 10 the points.

3. These two approaches are fundamentally different, even though projective duality tells
us thal points and lines are interchangeable. Why are these (wo algorithms so appar-
ently different? Are they actually minimizing different objectives?

Ex 2.2: 2D transform editor Write a program thal lets you interactively create a set of
rectangles and then modify their “pose” (2D transform). You should implement the following
sleps:

1. Open an empty window (“canvas™).
2. Shift drag (rubber-band) to create a new rectangle.

3. Select the deformation mode (motion model): translation, rigid, similarity, affine, or
perspeclive.

4. Drag any corner of the outline to change its transformation.

This exercise should be built on a set of pixel coordinate and transformation classes, either
implemented by yourself or from a software library. Persistence of the created representation
(save and load) should also be supported (for each rectangle, save its transformation).
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Ex 2.3: 3D viewer Wrile a simple viewer for 3D points, lines, and polygons. Import a set
of point and line commands (primitives) as well as a viewing transform. Interactively modify
the object or camera (ransform. This viewer can be an extension of the one you created in
(Exercise 2.2). Simply replace the viewing transformations with their 3D equivalents.
(Optional) Add a z-buffer 10 do hidden surface removal for polygons.
(Optional) Use a 3D drawing package and just write the viewer control.

Ex 2.4: Focus distance and depth of field Figure out how the focus distance and depth of
field indicators on a lens are determined.

1. Compute and plot the focus distance z, as a function of the distance traveled from the
focal length Az; = f — z; for a lens of focal length f (say, 100mm). Does this explain
the hyperbolic progression of focus distances you see on a typical lens (Figure 2.20)?

2. Compute the depth of field (minimum and maximum focus distances) for a given focus
setting z, as a function of the circle of confusion diameter ¢ (make it a fraction of
the sensor width), the focal length £, and the f-stop number N (which relates to the
aperture diameter d). Does this explain the usual depth of field markings on 2 lens that
bracket the in-focus marker, as in Figure 2.2Ca?

3. Now consider a zoom lens with a varying focal length f. Assume that as you zoom,
the lens stays in focus, i.e., the distance from the rear nodal point to the sensor plane
z; adjusts itself automatically for a fixed focus distance z,. How do the depth of field
indicators vary as a function of focal length? Can you reproduce a two-dimensional
plot that mimics the curved depth of field lines seen on the lens in Figure 2.20b?

Ex 2.5: F-numbers and shutter speeds List the common f-numbers and shutter speeds
that your camera provides. On older model SLRs, they are visible on the lens and shut-
ter speed dials. On newer cameras, you have to look at the electronic viewfinder (or LCD
screen/indicator) as you manually adjust exposures.

1. Do these form geometric progressions; if so, what are the ratios? How do Lhese relate
to exposure values (EVs)?

2. If your camera has shutter speeds of g5 and 13z, do you think that these two speeds are

exactly a factor of two apart or a factor of 125/60 = 2.083 apart?

3. How accurate do you think these numbers are? Can you devise some way to measure
exactly how the aperture affects how much light reaches the sensor and what the exact
exposure times actually are?
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Ex 2.6: Noise level calibration Estimate the amount of noise In your camera by taking re-
peated shots of a scene with the camera mounted on a tripod. (Purchasing a remote shutter
release is a good investment if you own a DSLR.) Alternatively, take a scene with constant
color regions (such as a color checker chart) and estimate the variance by fitling a smooth
function Lo each color region and then taking differences from the predicted funclion.

1. Plot your estimated variance as a function of level for each of your color channels
separately.

2. Change the ISO setting on your camera: if you cannot do that, reduce the overall light
in your scene (turn off lights, draw the curtains, wait until dusk). Does the amount of
noise vary a lot with ISO/gain?

3. Compare your camera to another one at a different price point or year of make. Is
there evidence to suggest that “you get what you pay for’? Does the quality of digital
cameras seem (o be improving over time?

Ex 2.7: Gamma correction in image stitching Here’s a relatively simple puzzle. Assume
you are given two images that are part of a panorama that you want to stitch (see Chapter 9).
The two images were Laken with different exposures, so you want to adjust the RGB values
so that they match along the seam line. 1s it necessary to undo the gamma in the color values
in order 1o achieve this?

Ex 2.8: Skin color detection Devise a simple skin color detector (Forsyth and Fleck 1999;
Jones and Rehg 2001; Vezhnevets, Sazonov, and Andreeva 2003; Kakumanu, Makrogiannis,
and Bourbakis 2007) based on chromaticity or other color properties.

1. Take a variety of photographs of people and calculate the xy chromaricity values for
each pixel.

2. Crop the photos or otherwise indicate with a painting tool which pixels are likely to be
skin (e.g. face and arms).

3. Calculate a color (chromaticity) distribulion for these pixels. You can use something as
simple as 2 mean and covariance measure or as complicated as a mean-shift segmenta-
tion algorithm (see Section 5.3.2). You can optionally use non-skin pixels to model the
background distriburion.

4. Use your computed distribution to find the skin regions in an image. One easy way to
visualize this is to paint all non-skin pixels a given color, such as white or black.

5. How sensitive is your algorithm Lo color balance (scene lighting)?
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6. Does a simpler chromaticity measurement, such as a color ratio (2.116), work just as
well?

Ex 2.9: White point balancing—tricky A common (in-camera or post-processing) lech-
nique for performing white point adjustment is 1o Lake a picture of a white piece of paper and
to adjust the RGB values of an image to make this a neutral color.

1. Describe how you would adjust the RGB values in an image given a sample “white
color” of (Ry, Guw, By) to make this color neutral (without changing the exposure 100
much).

2. Does your transformation involve a simple (per-channel) scaling of the RGB values or
do you need a full 3 x 3 color twist matrix (or something else)?

3. Convert your RGB values to XYZ. Does the appropriate correction now only depend
on the XY (or xy) values? If so, when you convert back to RGB space, do you need a
full 3 x 3 color twist matrix (o achieve the same effect?

4. If you used pure diagonal scaling in the direct RGB mode bul end up with a twist if you
work in XYZ space, how do you explain this apparent dichotomy? Which approach is
correct? (Or is it possible that neither approach is actually correct?)

If you want to find oul what your camera actually does, continue on lo the next exercise.

Ex 2.10: In-camera color processing—challenging If your camera supports a RAW pixel
mode, take a pair of RAW and JPEG images, and see if you can infer what the camera is doing
when il converts the RAW pixel values 1o the final color-corrected and gamma-compressed
eight-bit JPEG pixel values.

1. Deduce the pattern in your color filter array from the correspondence beiween co-
located RAW and color-mapped pixel values. Use a color checker chart at this slage
if it makes your life easier. You may find it helpful 1o split the RAW image into four
separate images (subsampling even and odd columns and rows) and to treal each of
these new images as a “virtual” sensor.

2. Evaluate the quality of the demosaicing algorithm by taking pictures of challenging
scenes which conlain strong color edges (such as those shown in in Section 10.3.1).

3. If you can 1ake the same exact picture after changing the color balance values in your
camera, compare how these setlings affect this processing.

4. Compare your results against those presenied by Chakrabarti, Scharstein, and Zickler
(2009) or use the data available in their database of color images.”®

2% http:/fvision.middlebury.edu/colory/.
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