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ABSTRACT
In this paper, we present a complete framework for modeling
and analysis of Mobility in Wireless Sensor Networks using
OQNs with GI/G/1 nodes and single-class customers. We
formalize and present three variations - gated queues, inter-
mittent links and intermittent servers. We suitably modify
and use the Queuing Network Analyzer (QNA) to study per-
formance measures including: throughput, average waiting
time (end-to-end delay), and packet loss probability. The
results are verified by simulation in OMNeT++.

General Terms
Performance, Theory

Keywords
Unreliable servers, squared coefficient of variation, Poisson
process, Rayleigh and exponential distributions

1. INTRODUCTION
Open queuing networks (OQNs) have been widely used

as efficient tools to analyze the performance measures in
computer and communication systems ([2], [6], [8], [9]). For
many classes of OQNs, elegant and efficient solution meth-
ods exist. Well known closed product-form solutions are
available for simplified networks such as Jackson and BCMP
networks under a number of restrictions ([14],[5]). These
networks, however, do not always apply in practice.
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In wireless sensor networks with mobile nodes – we refer
them as Mobile Wireless Sensor Networks (MWSNs) – the
link between any two nodes will be either available or un-
available due to node mobility. Node unavailability is caused
by poor node signal strengths due to low battery, weather
conditions or both, or when the node is out of radio-range.
In [11], the authors have developed a random walk based
mobility model for a MWSN and have derived the probabil-
ity distributions of link availability between any two nodes.
In [4], the authors had used a queuing network for delay
analysis of wireless ad hoc networks in which static nodes
are distributed uniformly and independently over a torus of
unit area. In this network, the transition probabilities for
forwarding packets from one node to another node are con-
sidered as functions of communication area of nodes of ad
hoc networks.

The mobility of nodes in a MWSN can be captured in
terms of gated queues, intermittent links or intermittent
servers of the queuing networks under investigation with im-
mobile nodes. Hence, in this paper we analyze three types
of OQNs with GI/G/1 immobile nodes and single-class cus-
tomers - one with gated nodes, second with intermittent
links and third with intermittent servers. We use appropri-
ate distributions for the time durations for gate open/close,
link up/down, and server up/down. We also suitably mod-
ify the Queuing Network Analyzer (QNA), a method pro-
posed by Kuhn [10], and later expanded by Whitt [16] to
approximate performance measures of large OQNs with gen-
eral inter-arrival and general service distributions; to study
the performance measures of networks under investigation
with general distributions for the time duration of gate open
and close, link up and down, and server up and down. The
performance measures include throughput, average waiting
time (end-to-end delay), customer loss probability and path
availability.

The paper is structured as follows. Section II introduces a
general OQN and its performance measures. In section III,
the QNA method is discussed. In sections IV, V and VI, we
modify the QNA method for OQNs with gated nodes, with
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interrupted links and with interrupted servers, respectively.
In section VII, we briefly outline the validation of our results
and present out conclusions.

2. GENERAL OQN
A queuing network is a natural extension of a collection of

interactive queuing systems, referred to as nodes. Consider
an OQN with M single-server and infinite buffer nodes. Let
μi denote the mean service rate and λ0i denote the mean
external arrival rate at node i. Let pij , i, j = 1, 2, . . . , M ,
denote the transition probability by which customers finish-
ing service at node i will join node j. The matrix P =
(pij) is the sub-stochastic matrix such that with probabil-

ity 1 −PM
j=1 pij customers finishing service at node i will

leave the network. The average arrival rate λj and the de-
parture rate λj0 of customers at node j are given as follows
for j = 1, 2, . . . , M ,

λj = λ0j +
MX

i=1

pijλi; λj0 =

 
1 −

MX
i=1

pji

!
λj . (1)

For an acyclic network (where customers are not allowed
to revisit the nodes) with Poisson external arrivals and ex-
ponential service times, the total arrivals at node i follow a
Poisson process with rate λi given by (1). For cyclic net-
works, due to dependency amongst the arrival streams, the
total arrivals at node i do not follow Poisson process though
the external arrivals and service times are Poisson and expo-
nential, respectively, in all nodes. The Jackson and BCMP
networks are examples of cyclic networks [14]. For these
networks, the steady-state joint probability distribution of
number of customers in all the nodes of the network admits
product-form solution and hence leading to closed-form so-
lutions for performance measures like average wait times for
customers in the network.

For networks with GI/G/1 nodes, finding closed-form so-
lutions for performance measures is more subtle. To over-
come this difficulty, the QNA method is used to find approx-
imate solutions for the performance measures of OQN with
GI/G/1 nodes. We discuss this method in more detail in
section 3.

For the queuing networks under investigation in sections
4, 5 and 6, one can analyze the performance measures like
throughput, customer loss probability, and average waiting
time. These measures are defined as follows.

The throughput T of the network is given by

T =

MX
j=1

λj0, (2)

where λj0 is given by (1).
The customer loss probability PL is given by

PL =
γ − T

γ
, with γ =

MX
j=1

λ0j . (3)

where γ is the total inflow to the network. The average
waiting time Ws of a customer in the network (end-to-end
delay) is given by

Ws =
MX

j=1

Wsj , with Wsj = Wqj +
1

μj
, (4)

where Wsj , Wqj and μj are the average waiting time, aver-
age queuing time and average service rate at node j, j =
1, 2, . . . , M . In this paper, we find analytical formulas for
Ws of the proposed queuing-theoretic framework.

3. QNA METHOD
The QNA is an approximation technique and a software

package developed at Bell Laboratories to calculate approx-
imate congestion measures of a network of queues [16]. It is
a powerful tool to analyze general queuing networks. The
most important feature of the QNA is that the external ar-
rival processes need not be Poisson, and the service-time
distributions need not be exponential. The QNA can pro-
vide a fast approximate solution for large networks.

The QNA has been used extensively in many theoretical
and practical applications and the results have been com-
pared with simulation results and/or the results of other
techniques ([15], [7], [13]). The low relative error percentage
makes QNA one of the most important tools for analyzing
general networks.

The input to QNA comprises of the number of nodes M ,
mean arrival rate λ0i and squared coefficient of variation
(SCV) c2

0i for external arrivals at node i, i = 1, 2, . . . , M ,
mean service rate μi and SCV c2

si for service time at node
i, i = 1, 2, . . . , M , and the transition (routing) probabilities
pij , i, j = 1, 2, . . . , M .

The total arrival rate at node i is given by (1). The traffic
intensities or utilization of node i is given by ρi = λi/μi. The
arrival rate from node i to node j is given by λij = pijλi.
The proportion of arrivals to node j from node i is given by
qij = λij/λj , i = 0, 1, . . . , M . The SCV of the total arrivals
at node j is calculated as follows [16]:

c2
aj = aj +

MX
i=1

bijc
2
ai, (5)

where aj and bij are derived after considering merging and
splitting of traffic streams and are given as follows:

aj = 1 + wj{(q0jc20j − 1)

+

mX

i=1

qij

ˆ
(1− pij) + (pijρ2

i xi)
˜} (6)

and bij = wjpijqij(1− ρ2
i ), xi = max1≤i≤M (c2

si, 0.2), wj =ˆ
1 + 4(1 − ρi)

2(vj − 1)
˜−1

, and vj =
ˆPm

i=0 qij

˜−1
. The

SCV c2
aj can also be calculated as follows [16, eqn. (41)]:

c2
aj = 1 − wj + wj

MX
i=1

pijc
2
ij , (7)

where c2
ij is the SCV of the traffic flow from node i to node

j and is given by

c2
ij = qij [1 + (1 − ρ2

i )(c
2
ai − 1)

+ρ2
i (c

2
si − 1)] + 1 − qij . (8)

The expressions in (6) and (8) are obtained by setting m =
1 (number of servers in each node) and vij = 0 in equations
(25) and (41) of [16], respectively. The approximate formula
for the average waiting time of a customer at node j is then
given by [16]

Wqj =
λj(c

2
aj + c2

sj)gj

2(1 − ρj)
, (9)
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where gj is a function of ρj , c
2
aj and c2

sj , such that gj = 1 for

c2
aj ≥ 1. On substituting (9) in (4) we get the end-to-end

delay Ws.

4. OQN WITH GATED NODES
We consider an OQN as discussed in section 2 with the

following modifications: each node has a gate which goes
on and off with rates α and β with variances von and voff ,
respectively. When the gate is on, the customers are allowed
to enter the queue, otherwise they are lost including the
external arrivals as shown in Figure 1.
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Figure 1: 3-node OQN with gated nodes

Let λ′
j denote the mean arrival rate of the interrupted ar-

rival process, due the presence of on-off gate, at node j. The
total arrival rate λj at node j due to external and internal

traffic flows at node j is given by λj = λ0j +
PM

i=1 pjiλ
′
i.

Theorem 1. The mean arrival rate λ′
j = ponλj and SCV

c
′2
aj of the interrupted arrival process at node j, due to pres-

ence of the on-off gate, is given by

c
′2
aj = c2

aj + kλj , (10)

where pon is the probability that the gate of node j is on and
is given by

pon =
β

α + β
, and (11)

k =
α(vonα2 + voffβ2)

(α + β)2
. (12)

Proof: In [3], the author has analyzed switched general
process (SGP), denoted by A, wherein the arrivals to the
queuing system switches between two general renewal pro-
cesses A1 and A2 with rates λ1 and λ2 according to a general
renewal switching (on-off) periods V1 and V2 with rate α and
β, respectively. The author has derived the effective mean

arrival rate λ′ and SCV C(A) of A as

λ′ =
λ1E[V1] + λ2E[V2]

E[V1] + E[V2]
,

C(A) =
λ1C(A1)E[V1]

λ′(E[V1] + E[V2])
+

λ2C(A2)E[V2]

λ′(E[V1] + E[V2])

+
(λ1 − λ2)2

ˆ
E[V1]2V ar[V2] + E[V2]2V ar[V1]

˜

λ′(E[V1] + E[V2])3
,

where E[Vi] and V ar[Vi] are the mean and variance of
Vi, i = 1, 2, respectively.

Since in our network, arrivals are not allowed to enter a
node when its gate is closed, we have λ2 = 0 = C(A2).
Setting λ1 = λ, E[V1] = 1/α, E[V2] = 1/β, V ar[V1] = von

and V ar[V2] = voff , we get

λ′ =
β

α + β
λ, (13)

C(A) = C(A1) + λ
α(vonα2 + voffβ2)

(α + β)2
. (14)

Since λj is the total arrival rate at node j of the queuing
network with gated nodes, the mean arrival rate λ′

j and SCV

c
′2
aj of the effective arrival process at this node j are obtained

by replacing λ′ by λ′
j , λ by λj , C(A) by c

′2
aj and C(A1) by

c2
aj in (13) and (14). Hence the theorem. Q.E.D
The utilization at node j is given by ρj = λ′

j/μj and the
arrival rate from node i to node j is given by λ′

ij = λ′
ipij .

The proportion of arrivals from node i to node j is given
by qij = λ′

ij/λj , i ≥ 0. Customers from node j leave the
network with rate

λj0 =

 
1 −

MX
i=1

pji

!
λ′

j , j = 1, 2, . . . , M. (15)

Substituting (15) in (2) and in (3), the throughput T and
customer loss probability PL(N) can be calculated, respec-
tively.

The c2
aj in (10) is computed as follows: For j = 1, 2, . . . , M ,

c2
aj = aj +

MX
i=1

bijc
2
ai + k

MX
i=1

bijλi, (16)

where k is given by (12). By replacing λj by λ′
j and c2

aj by

c
′2
aj , we can use the QNA method (modified) presented in

section 3 to compute the Wqj , j = 1, 2, . . . , M of this gated
OQN.

5. OQN WITH INTERMITTENT LINKS
We consider an OQN as discussed in section 2 with the

following modifications: the link connecting between any
two nodes goes on and off with rates α and β with variances
von and voff , respectively. When the link is on between
nodes i and j, the customers departing node i are allowed
to enter the queue of node j with probability pij as shown in
Figure 2. In the model discussed in previous section, when
the gate of a node is off, then the node is disconnected from
the entire network since no other node can send customers to
this node. This is, however, an unrealistic assumption model
as for as its application to MWSNs are concerned because in
MWSNs, a link between two nodes may be down, but these
nodes may still be connected to other nodes in the network.
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Figure 2: 3-node OQN with intermittent links

Theorem 2. The mean arrival rate λj and SCV c
′2
aj of

the interrupted arrival process, due to presence of the on-off
links, at node j of the network is given by

λj = λ0j + pon

MX

i=1

λij , (17)

c
′2
aj = 1− wj(1−

MX

i=1

pijc2ij − k

MX

i=1

pijλij), (18)

where pon is the probability that the link between two nodes
is on and is given by (11) and wj is the same as the one
given in (6) and k is given by (12).

Proof: Due to the presence of on-off links between nodes
i and j, the mean arrival rate λ′

ij between these nodes is
obtained by simply replacing λ by λij and λ′ by λ′

ij in (14).
That is,

λ′
ij = ponλij . (19)

Similarly, the SCV c2
ij of the traffic flow between node i and

node j is obtained by replacing C(A) by c
′2
ij , C(A1) by c2

ij

and λ by λij in (14). That is,

c
′2
ij = c2

ij + kλij , (20)

where k is given by (12).
The total arrival rate at node j is given by λj = λ0j +PM
i=1 λ′

ij . On substituting for λ′
ij from (19) in this equation,

we get (17).
The SCV c2

aj of the total traffic flow to node j is obtained

by replacing c2
ij by c

′2
ij in (7). That is,

c2
aj = 1 − wj + wj

MX
i=1

pijc
′2
ij , (21)

On substituting (20) in (21) yields (18). Hence the theo-
rem. Q.E.D.

Using (17), (2) and (3), we can compute the T and PL.
Using (18) and (9) we can compute Wqj at node j for j =
1, 2, . . . , M .

6. OQN WITH INTERMITTENT SERVERS
We consider an OQN as discussed in section 2 with the

following modifications: the server in each node goes on and
off with rates α and β, respectively. When the server of
node j is on, the customers are served at the rate μj and
the server is off, the customers will wait in the queue until
the server becomes on. A 3-node network with intermittent
servers is shown in Figure 3.
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Figure 3: 3-node OQN with intermittent servers

Theorem 3. For the network under investigation, the mean
service rate μ′

j = ponμj and the SCV of the effective service
time distribution is given by

c
′2
sj = c2

sj + kμj , (22)

where pon is the probability the server at node j goes on
and is given by (11) and the constant k is given by k =

αp2
on

(1+c2off )

β2 with c2
off being the SCV of the server off dis-

tribution.

Proof: This model falls under the category of the unreli-
able server models. In [1, section 10.2.2], the authors have
given the first two moments of the effective service time dis-
tribution for an unreliable server with general service and
general up and down time distributions as follows1:

E[G] = E[B](1 + ηE[D]) (23)

E[G2] = E[B2](1 + ηE[D])2 + E[B]ηE[D2], (24)

where G is the random variable denoting the effective service
time of an interrupted server whose down time is given by
the random variable D. E[B] and E[B2] are the first and
second moments of the processing time of this unreliable
server when it is up and η is its expected up time. Though
the second moment result is proved with the assumption that
the arrivals follow Poisson process, it can be proved that it
holds even for general arrival process when the arrivals are
renewal processes. Dividing (24) by square of (23) yields

c
′2
s = c2s +

η(1 + c2off )

E[B]E[D]2(1 + ηE[D])2
, (25)

1Reproduced here for ease of reading and completeness.
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where c
′2
s , c2

s and c2
off are the SCVs of the effective ser-

vice time, processing time and server off time distributions,
respectively.

For node j of the queuing network under investigation we

have E[B] = 1/μj , E[D] = 1/β, E[G] = 1/μ′
j , η = α, c

′2
s =

c
′2
sj , c2

s = c2
sj . Hence the theorem is proved on substituting

these in (23) and (25). Hence the theorem. Q.E.D.
Since there are no changes in the arrival process and its

moments, the inflow of customers is equal to the outflow as
we do not lose any customers and hence PL = 0. We can
get other performance measures by simply replacing μ by

μ′, c2
sj by c

′2
sj in the standard QNA.

7. NUMERICAL RESULTS
To verify the analytical results, we simulated these three

types of queuing network models. The stopping criterion for
the simulation guaranteed a maximum relative error of 5%.
The relative error in the simulation was computed from the
associated confidence interval, which was obtained through
the usual normal distribution approximation.

We used OMNeT++ [12], a discrete-event simulation pack-
age to perform all the simulations. In the simulation, the fol-
lowing inputs were given depending on the type of networks.
For all the three types of networks: External arrival distribu-
tions and the corresponding rates λ0j , j = 1, 2, . . . , M . Ser-
vice time distributions and the corresponding rates μj , j =
1, 2, . . . , M . For the gated nodes network: On-off distribu-
tions of M gates and the corresponding rates α and β. For
the intermittent links network: On-off distributions of links
and the corresponding rates α and β. For the intermittent
server network: On-off distributions of servers and the cor-
responding rates α and β.

WsNode j 1/μj λ0j
QNA Simulation

Error

1 0.0400 2.0 0.0711 0.0682 4.0925
2 0.0400 2.0 0.1422 0.1365 4.0127
3 0.0400 2.0 0.1196 0.1137 4.9038
4 0.0400 2.0 0.2915 0.2965 1.7307
5 0.0400 2.0 0.1030 0.0979 4.9087
6 0.0400 2.0 0.2248 0.2219 1.2865
7 0.0400 2.0 0.0756 0.0723 4.3541
8 0.0400 2.0 0.1025 0.0996 2.8141
9 0.0400 2.0 0.0722 0.0690 4.3974
10 0.0400 2.0 0.0648 0.0622 3.9498

Table 1: Network with 10 gated nodes

We did not use any other information like SCV and dis-
tribution of internal arrivals. In each simulation we com-
puted the following statistics: mean and standard deviation
of inter-arrival times, Wsj for each node, the customer loss
probability and Ws of the network.

In Tables 1 - 3, we have compared both analytical and
simulation results for queuing networks with specific distri-
butions for on-off durations of gates, links and servers and
service time of servers. In all the examples, the external
arrivals to the networks are assumed to follow Poisson pro-
cesses.

In Table 1, we considered a network with 10 gated nodes,
deterministic service, and Rayleigh on and off times with
rates α = 0.7181, β = 0.0319. In Table 2, we considered
a network with 10 nodes connected by intermittent links,
exponential service, and exponential on and off times with
rates α = 10/9, β = 25. In Table 3, we considered a net-

work with 10 intermittent server nodes, deterministic ser-
vice, Rayleigh on and off times with rates α = 0.7181, β =
0.0319.

WsNode j 1/μj λ0j
QNA Simulation

Error

1 0.0400 2.0 0.0724 0.0719 0.7026
2 0.0400 2.0 0.1029 0.1026 0.3236
3 0.0400 2.0 0.0962 0.0950 1.2475
4 0.0400 2.0 0.1222 1.1207 1.2520
5 0.0400 2.0 0.0902 0.0885 1.8765
6 0.0400 2.0 0.1173 0.1159 1.2080
7 0.0400 2.0 0.0750 0.0746 0.4724
8 0.0400 2.0 0.0896 0.0881 1.6272
9 0.0400 2.0 0.0781 0.0762 2.3851
10 0.0400 2.0 0.0679 0.0675 0.5775

Table 2: 10-node Network with intermittent links

The simulation values match with the analytical values
given by QNA with very less relative error. In most of the
cases, the relative error (last columns in all tables) is ap-
proximately 1%.

WsNode j 1/μj λ0j
QNA Simulation

Error

1 0.0511 2.0 0.0504 0.0485 5.0933
2 0.1415 2.0 0.1423 0.1544 9.0869
3 0.1036 2.0 0.1043 0.1047 1.0618
4 0.0653 2.0 0.6283 0.0626 4.1172
5 0.0832 2.0 0.0833 0.0812 2.3861
6 0.4423 2.0 0.4494 0.4051 8.4119
7 0.0546 2.0 0.0544 0.0524 4.0811
8 0.0823 2.0 0.0825 0.0808 1.7634
9 0.0516 2.0 0.0514 0.0491 4.8271
10 0.0450 2.0 0.0449 0.0432 3.8929

Table 3: Network with intermittent server nodes

8. CONCLUSION
The research work presented in this paper provides a queuing-

theoretic framework to model and analyze MWSNs by means
of a mechanism that leverages the power of QNA. While
QNA is an approximation technique, the results show that
it results in very less error; and its use is highlighted by its
applicability to model and analyze the vagaries of complex
real-world networks. The paper is an attempt to analyt-
ically address this emerging need in this area; and hence
we have made some realistic assumptions. Our current re-
search is directed towards relaxing some of these assump-
tions, finding various other parameters - such as incorpo-
rating finite buffers, varying battery levels of a node and
prevailing weather conditions; and identifying appropriate
statistical distributions for such parameters.

Acknowledgment
This work is based in part, upon research supported by
the National Science Foundation (grant nos. CNS-0619069,
EPS-0701890 and OISE 0650939), National Board of Higher
Mathematics, India (grant no. 48/5/2004/R&D-II/2120),
NASA EPSCoR Arkansas Space Grant Consortium (grant

252



no. UALR 16804), and Acxiom Corporation (contract no.
281539). Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the funding
agencies.

9. REFERENCES
[1] I. Adan and J. Resing. Course note on queueing

theory. http://www.win.tue.nl/ iadan/que/, 2003.

[2] D. Bertsekas and R. Gallager. Data Networks. Pearson
education, 2006.

[3] V. N. Bhat. Renewal approximations of the switched
Poisson processes and their applications to queueing
systems. Journal of the Operational Research Society,
45(3):345–353, 1994.

[4] N. Bisnik and A. Abouzeid. Queueing network models
for delay analysis of multihop wireless ad hoc
networks. In Proceeding of the 2006 international
conference on Communications and mobile computing,
pages 773–778, Vancouver, British Columbia, Canada,
2006. IWCMC’06.

[5] E. Gelenbe and G. Pujolle. Introduction to Queueing
Networks. John Wiley and Sons, 1987.

[6] G. Giambene. Queueing Theory and
Telecommunications – Networks and Applications.
Springer, 2005.

[7] B. R. Haverkort. Approximate analysis of networks of
PH/PH/1/K queues with customer loss: Test results.
Annals of Operations Research, 9:271–291, 1998.

[8] B. R. Haverkort. Performance of Computer
Communication Systems – A Model-Based Approach.
Wiley, 1999.

[9] F. J. Hayes and T. V. Ganesh Babu. Modeling and
analysis of telecommunications networks.
Wiley-Interscience, Hoboken, New Jersey, 2004.

[10] P. Kuhn. Approximate analysis of general queueing
networks by decomposition. IEEE Transactions on
Communications, 27(1):113–126, 1979.

[11] A. B. McDonald and T. Znati. A mobility-based
framework for adaptive clustering in wireless ad hoc
networks. IEEE Journal on Selected Areas in
Communications, 17(8):1466–1487, 1999.

[12] OMNeT++. http://www.omnetpp.org/index.php,
2007.

[13] G. Schneider, M. Schuba, and B. R. Haverkort.
QNA-MC: A performance evaluation tool for
communication networks with multicast data streams.
In R. P. et al., editor, Tools’98, 1469, pages 63–74,
Spain, 1998. Universitat de les Illes Balears, Lecture
Notes in Computer Science, Springer-Verlag.

[14] J. Walrand. An Introduction to Stochastic Modeling.
Academic Press, 3rd edition, 1998.

[15] W. Whitt. Performance of the queueing network
analyzer. The Bell System Technical Journal,
62(9):2818–2843, 1983.

[16] W. Whitt. The queueing network analyzer. The Bell
System Technical Journal, 62(9):2779–2815, November
1983.

253




