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Figure 1: Edge maps enable new views of vector field stability, illustrated with a vector field on this wavy surface. Top row (middle right): A
visualization of some colored regions where flow shares the same source (green spheres) and sink (red spheres) is augmented to show how
these regions overlap when error is introduced. Bottom row (middle right): Streamwaves (colored green to red as they grow) show the advection
of a single particle. In the presence of error, waves can widen and narrow, and bifurcate or merge.

ABSTRACT

Robust analysis of vector fields has been established as an im-
portant tool for deriving insights from the complex systems these
fields model. Many analysis techniques rely on computing stream-
lines, a task often hampered by numerical instabilities. Approaches
that ignore the resulting errors can lead to inconsistencies that may
produce unreliable visualizations and ultimately prevent in-depth
analysis. We propose a new representation for vector fields on sur-
faces that replaces numerical integration through triangles with lin-
ear maps defined on its boundary. This representation, called edge
maps, is equivalent to computing all possible streamlines at a user
defined error threshold. In spite of this error, all the streamlines
computed using edge maps will be pairwise disjoint. Furthermore,
our representation stores the error explicitly, and thus can be used to
produce more informative visualizations. Given a piecewise-linear
interpolated vector field, a recent result [15] shows that there are
only 23 possible map classes for a triangle, permitting a concise
description of flow behaviors. This work describes the details of
computing edge maps, provides techniques to quantify and refine
edge map error, and gives qualitative and visual comparisons to
more traditional techniques.
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1 MOTIVATIONS

Vector fields are a common form of simulation data appearing in a
wide variety of applications ranging from computational fluid dy-
namics (CFD) and weather prediction to engineering design. Vi-
sualizing and analyzing the flow behavior of these fields can help
to provide critical insights into simulated physical processes. How-
ever, achieving a consistent and rigorous interpretation of vector
fields is difficult, in part because traditional numerical techniques
for integration do not preserve the expected invariants of vector
fields.

To better understand this inherent issue of traditional numerical
techniques, we start with a description of a common way to store
vector fields. Both a discretization of the domain of the field (often
in the form of a triangulated mesh) as well as a set of sample vec-
tors (defined at the vertices of the mesh) are required. The vector
field on the interior of a triangle is approximated by interpolating
vector values from the samples at the triangle’s corners. Computing
properties that then require integrating these vector values presents
a significant computational challenge. For example, consider com-
puting the flow paths (streamlines) of massless particles that travel
using the instantaneous velocity defined by the field. Naı̈ve inte-
gration techniques may violate the property that every two of these
paths are expected to be pairwise disjoint (i.e. the uniqueness of the
solution of an ordinary differential equation). Figure 2 gives one
such example, where a fourth-order Runge-Kutta integration tech-
nique creates two crossing streamlines.

Despite these problems, many of the standard techniques used
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Figure 2: Left: Two streamlines are seeded traveling clockwise
around this sink in a domain [−1,1]× [−1,1]. Bottom: Initially, the
magenta streamline is seeded outside of the blue streamline. Top:
After integration with a step size of 0.025 the streamlines cross, now
the magenta streamline is inside the blue streamline.

for vector fields rely on variants of Runge-Kutta methods. Conse-
quently, robustly computing flow becomes a formidable task. Inte-
gration is confounded by numerical errors at each step, in particular
near unstable regions where the flow bifurcates or spirals slowly.
These errors can compound quickly to produce inconsistent views
of the vector field. The resulting visualizations and analysis can
cause inaccurate interpretations of the field.

Apart from the obvious problem of potentially including an un-
known structural error in the analysis, traditional techniques can
cause a more subtle yet equally important problem. By hiding the
errors inherent in the numerical integration these techniques create
the perception of certainty. The user is presented with crisp lines
and clean segmentations which imply a false level of accuracy. In-
stead, a more nuanced approach that clearly indicates which infor-
mation is known and where possible instabilities might arise would
provide a more candid view of the data.

Considering these motivations, we propose a new data structure
to represent vector fields called edge maps. Edge maps provide an
explicit representation of flow by mapping entry and exit points of
flow paths on the edges of the triangle. Thus, they encode the prop-
erty most often needed by common analysis tools to compute visu-
alizations and topological decompositions. We show how to com-
pute many of the same primitives robustly and directly on the edge
maps themselves. Moreover, the edge map data structure encodes
numerical error, allowing the presentation of a more complete view
of the data illuminating the major features that demonstrate where
numerically unstable regions exist. By quantifying this error, we
can refine the maps to bound the amount of error incurred by this
representation.

While a method is required to compute the initial flow within
each triangle, any subsequent computation assumes the edge map
to be ground truth. Such a strategy is akin to recent techniques that
robustly compute scalar field topology. Gyulassy et al. [10], for
example, convert a scalar field into a discrete gradient from which
global properties such as the topology can be extracted consistently.
In both scalar and vector fields the initial conversion can create dis-
cretization artifacts. However, the net gain is significant. Using
edge maps, we can carry the error through while performing com-
putation. Where discretization artifacts have occurred, we show
these unavoidable errors explicitly to the user. Consequently, in-
stead of providing a black box representation of the data that ig-
nores the impact of discretization, we can provide analysts a visu-
alization of the data that accounts for these artifacts and indicates
how errors may have affected the apparent flow behavior.

Contributions
This paper describes a new data structure for storing the flow behav-
ior of a vector field that does not rely on numerical integration. This
structure is complementary to the traditional way of storing vector
fields as piecewise linear interpolations over a mesh. Each triangle
stores a map which encodes the inflow/outflow behavior over the
boundary of the triangle. This allows us to replace the notion of in-
tegration with a different primitive: map lookup. Our contributions
include:

• The definition of edge maps for triangulated 2D vector fields,
and an algorithm to compute the approximate edge maps;

• Quantification of error bounds with this approximation;

• A refinement procedure for reducing mapping error; and

• New visualizations of flow instabilities using edge maps.

A more detailed discussion on the mathematical properties of
edge maps and the possible configurations of flow within each tri-
angle appeared in a recent technical report [15].

2 RELATED WORK

Since vector-valued data is a natural way to represent fluid flow
in simulations as well as other dynamical systems [13], analyz-
ing vector fields has received a significant amount of attention in
the visualization community. In addition, computer graphics re-
searchers have used vector fields for applications ranging from tex-
ture synthesis and non-photorealistic rendering [5, 32] to mesh gen-
eration [1, 22]. Regardless of the application, there is a universal
need to represent large, complex fields concisely. A reliable visu-
alization must encode the important features of the field and ensure
that the methods used do not create contradictory views.

Kipfer et al. [17], following the lead of Nielson and Jung [21],
proposed a local exact method (LEM) to trace a particle on lin-
early interpolated vector fields defined on unstructured grids. LEM
solves an ODE representing the position of the particle as a function
of time, starting at a given position. Consequently, it removes the
need to perform step-wise numerical integration, and hence is free
from the cumulative integration error and is as accurate as numeri-
cal precision. Given an entry point of a particle to a simplex, LEM
gives its exit point from the simplex. We use this exact method
during the construction of edge maps, which removes the need for
on-the-fly numerical integration.

Consistency is particularly desirable when computing structural
properties of vector fields. Helman and Hesselink [12] compute a
vector field’s topological skeleton by segmenting the domain of the
field using streamlines traced from each saddle of the field along its
eigenvector directions. The nodes of the skeleton are critical points
of the vector field and streamlines that connect them are called sep-
aratrices. Subsequently, the skeleton extraction has been extended
to include periodic orbits [31]. Three dimensional variants of the
topological skeleton have also been proposed [9, 16, 28, 30]. The
readers should refer to [8, 19, 27] for more detailed surveys.

However, it is well known that computing the topological skele-
ton can be numerically unstable due to errors inherent in the inte-
gration of separatrices and inconsistencies among neighboring tri-
angles [3, 7, 14, 21, 25, 28]. As a result, some of the fundamen-
tal topological invariants of a vector field may not be preserved,
such as, the Poincare-Hopf formula or the fact that streamlines are
pair-wise disjoint. Consequently, computing the topological skele-
ton numerically is adequate for visualizing the resulting structures
but less suitable for further analysis. A number of techniques have
been proposed to extract the topological skeleton in a stable and
efficient manner. Chen et al. [2] introduce the ECG (Entity Con-
nection Graph) as a more complete topological representation of
vector fields on piece wise linear manifolds. By detecting closed
streamlines, Wischgoll and Scheuermann [31] propose a technique
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to detect limit cycles in planar vector fields. Scheuermann et al. [26]
look for the areas of non-linear behavior in the field, and use higher
order methods so that the features are not destroyed under linear
assumption.

Recent work of Reininghaus and Hotz [23] construct a combina-
torial vector field based on Forman’s discrete Morse theory [6]. Us-
ing combinatorial fields allows the extraction of a consistent topo-
logical structure. However, combinatorial vector fields were limited
by their high complexity, leading to later improvements to the al-
gorithm [24]. While provably consistent, it is unclear how close
the combinatorial field is to the original field. By comparison, this
work proposes an integration technique that is both consistent and
has error bounded with respect to the LEM.

3 EDGE MAPS

To address the issues of inconsistency, we propose an alternate rep-
resentation callededge maps. In the following, we define edge
maps and describe the elements that go into their construction.

3.1 Foundations

Let~V : M →R
2 be a 2-dimensional vector field defined on a man-

ifold M . ~V is represented as the set of vector values sampled at the
vertices of a triangulation ofM . Specifically, each vertexpi has
the vector value~V(pi) associated with it. The vector values on the
interior of each triangle∆ with vertices{pi , p j , pk} in the triangula-
tion are interpolated linearly using~V(pi),~V(p j ),~V(pk). Figure 3(a)
depicts the field defined in this way for a single triangle.

Given a vector field~V, we can define theflow x(t) of~V. Treating
~V as a velocity field, the flow describes the parametric path that
a massless particle travels according to the instantaneous velocity
defined by~V. x(t) can be defined as the solution of the differential
equation:

dx(t)
dt

=~V(x(t)).

The pathx(t) with x(0) = x0 is called thestreamlinestarting atx0.
Since the analytic form of the vector field is unavailable, solving
this differential equation for a single streamline is typically accom-
plished using numerical integration such as Euler or Runge-Kutta
methods.

For a piecewise linear vector field defined by the three vector
samples at the vertices of a triangle, we begin with assuming that:
(1) the vectors at all the vertices of the triangle are non-zero, (2) the
vectors at any two vertices sharing an edge are not antiparallel, and
(3) the vectors at two vertices on an edgeeare not both parallel toe.
Any such configuration violating one of these conditions is unsta-
ble, and can be avoided by a slight perturbation. This perturbation
ensures that no critical point lies on the boundary of the triangle,
which significantly simplifies the analysis of edge maps.

3.2 Definition

Let ∆ be a triangle with boundary∂∆. To understand and represent
the flow behavior through∆, we first summarize the formal defi-
nitions given in [15]. Anorigin-destination (o-d) pairis a pair of
points(p,q), where bothpandq lie on∂∆ and there exists a stream-
line between them which lies entirely in the interior of∆. We callp
an origin point andq a destination point. LetP be the set of all the
origin points on∂∆, andQ be the set of all the destination points on
∂∆. Theedge map of∆, ξ : P→ Q, is defined as the point-to-point
mapping between the boundary of the triangle, such thatξ (p) = q
if (p,q) is an o-d pair.q is called the image ofp underξ . If there
exists a critical point on the interior of the triangle, some points on
∂∆ will not be a part of any o-d pair, since they flow to or emerge
from the critical point.

Edge maps provide a point-to-point mapping of endpoints of
streamlines through a triangle. To efficiently represent the edge
maps, we merge adjacent origin points that have destination points

which also adjacent. This merging helps approximate the point-
to-point mapping as a mapping between connected subsets of the
boundary of a triangle, calledintervals. The interval obtained after
merging adjacent origin points is called theorigin interval, while
the interval obtained by merging their respective destination points
is called thedestination interval. Pairing up of an origin and its cor-
responding destination interval forms alink. A link is an interval-
interval map, representing a region of unidirectional flow. Fig-
ure 3(b) depicts the results of this merging process.

(a) (b) (c)

Figure 3: Edge map for a triangle. (a) Within a triangle, the vector
is represented by interpolating three vectors at its vertices. (b) Our
representation subdivides the boundary into a set of intervals, which
map inflow to outflow for a triangle. (c) Given an entry point to a
triangle, its corresponding exit point can be obtained by approximat-
ing the map linearly, thus replacing streamline integration with a step
across the triangle.

3.3 Edge Map Generation
For practical purposes, we extend the definition of an edge map,
to include critical points in the map. Such an extension facilitates
streamline integration using edge maps, as discussed later. We de-
fine a (forward) edge mapξ+ : P → ∆ such that given a pointp
where a streamline enters the triangle, the map gives us the unique
point where it exits the triangle. If a critical point exists within the
triangle, the flow may never exit, hence the range ofξ+ can include
the interior of the triangle. On the points on the boundary, where
flow does not enter the triangle, but instead, exits it, we define a
backward edge mapξ− : Q→ ∆. For a pointq on the boundary of
∆, ξ−(q)describes the unique point where flow entered the triangle
on its path toq.

We note that the edge mapξ as defined in [15] is a bijection and
its inverseξ−1 represents the edge map of inverted flow. However,
according to the definition presented here,ξ+ (or ξ−) is a bijection
only if there is no critical point present in the triangle. For such tri-
angles,ξ− = (ξ+)−1, since for pointsp,q∈ ∂∆, ξ+(p) =q if and
only if ξ−(q) = p. As for triangles with critical point, this inverse
relationship does not hold becauseξ+ (or ξ−) is no more a one-
to-one map. In either case, for a triangle∆, ξ+ andξ− completely
describe the behavior of the flow through∆.

An edge map (forward and backward) can be encoded concisely
as a collection of links of a triangle, such that the intervals are non-
intersecting other than at their end points, and covers the entire
boundary of the triangle (see Figure 3(c)). If there is a critical point
present in the triangle, some links may include the critical point as
a source or destination interval. Thus, to store the edge map for a
triangle, we only need to encode a collection of pairs of intervals.

As discussed in Section 3.2, intervals are constructed by merging
adjacent origin points whose destinations are also adjacent. At the
maximum level of merging, the intervals are bounded by either: (i)
verticesof the triangle; (ii) images of vertices (Figure 4(a)); (iii)
transition points: points where the flow changes between inflow
and outflow (Figure 4(b)); (iv) images of transition points and (v)
sepx points, where the separatrices of a saddle exit or enter (Figure
4(c)).

Figure 6 gives the algorithm for computing the edge map for
a triangle without a critical point. The advection of vertices and
transition points are done using LEM [21]. When the triangle has a
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Figure 5: The 23 equivalence classes of edge maps for piecewise linear flow.They are ordered left-to-right, top-to-bottom by the number of links
that exist in each edge map. Each link is assigned a different color.

(a) (b) (c)

Figure 4: Splitting of the boundary into intervals: (a) A triangle with a
forward vertex image (grey dot) of the lower right vertex; (b) A triangle
with a single transition point (white circle) from internal flow and its
forward and backward image (grey dots); (c) A triangle with a saddle
point (black dot), its four sepx points (grey dots), and a transition point
from external flow (white square). Note that in most case vertices
also act as external transition points.

critical point (detected using [20]), the algorithm is similar except
that there can be additional cuts (from separatrices) and the critical
point itself can act as an interval.

ConstructEdgeMap(∆):

1. Identify the transition points on∂∆. If necessary ad-
vect it forward and backward to find its images.

(There can be at most 6 transition points in a triangle:
1 per edge and 1 per vertex. [15])

2. Advect any vertices of∆ that are not transition points
forward (resp. backward) to find their images.

(The transitions points, vertices, and their images cut
∂∆ into intervals of unidirectional flow.)

3. Using the direction (inflow/outflow), and connectivity
implied by advecting, pair intervals to form links.

(Collection of these links compose the edge map.)

Figure 6: Algorithm for creating the edge map for a triangle.

3.4 Streamline Integration using Edge Maps

The encoding of flow as edge maps ultimately allows us to deter-
mine structural properties of the flow through the triangle in a fast
manner. Consequently, this leads to computing flow-based proper-
ties efficiently. For example, we can query the edge maps to deter-
mine destinations of points under the flow by trivially performing
lookup and composition on the maps. At each lookup, we have
preserved the property that origin intervals are going to the same
destination intervals they would have in the original piecewise lin-
ear flow.

In particular, particle trajectories can be approximated on a per-
link level by linearly interpolating between the source and destina-
tion intervals. As a result, this approach gives a method to approx-
imate streamlines. As Figure 3(c) shows, for a point on any source
interval, we can approximate the path to its destination by linearly
interpolating where it lies in the origin interval and projecting that
point to the same coordinate in the destination interval.

Using the precomputed edge maps, any numerical integration to
calculate the streamlines or particle propagation (such as the sim-
plest Euler integration) given by

xn+1 = xn+(tn+1− tn) ·~V(xn)

can be replaced by a simple lookup

xn+1 = ξ+(xn)

Hence, edge maps are faster, and as discussed in Section 4.1, have
a bounded error that can be explicitly computed.

3.5 Equivalence Classes of Edge Maps

In a companion report [15], we show that there exist 23 equivalent
classes of edge maps for linearly varying flow, see Figure 5. Here,
equivalence is defined as invariance under rotation of triangle and
inversion of flow. Exploiting the fact that piecewise linear flow can
switch between inflow and outflow only once per edge, one can
show that the boundary of a triangle can be broken up into at most
eleven intervals, with a potential critical point acting as a twelfth
interval. To understand topological equivalence, splits caused by
vertices and their images (see Figure 4(a)) are discounted. The lin-
earity of the flow implies that these intervals may connect them-
selves into, only in a limited number of ways to create a valid edge
map. For a more descriptive discussion on equivalence, and to un-
derstand the rules for validating edge maps based on the properties
of linear vector fields, the reader is encouraged to refer to [15].
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Since the number of classes is limited, the overhead for storing
the edge maps of a single triangle is both bounded and relatively
low. We observe that only four of the classes do not contain a crit-
ical point. Therefore, the vast majority of triangles in our experi-
ments could be classified as one of these four types.

4 ERROR PROPAGATION USING EDGE MAPS

The most common approach for tracing streamlines is numerical
integration. From a given starting point these techniques repeat-
edly take small steps to approximate the next position in the path.
The resulting error is controlled only indirectly by choosing a step
size [11]. Since typically the true streamline is not known, this er-
ror cannot be quantified explicitly. While some schemes are more
accurate than others and highly sophisticated techniques exist to lo-
cally adapt the step size, the indirect control over an unknown error
represents a fundamental restriction. On the contrary, edge maps
represent and control the error explicitly and do not require setting
a step size.

Furthermore, integrating streamlines numerically can also lead
to inconsistencies, such as intersecting streamlines and significant
differences between forward and backward traced lines. Edge maps
replace the integration with a one dimensional barycentric map-
ping that guarantees non-intersecting streamlines and consistency
between forward and backward traces up to the floating point pre-
cision of the linear interpolation.

4.1 Mapping Error

As explained in Section 3.3, the vertices, saddle separatrices, and
transition points are advected to split the triangle perimeter into in-
tervals. Since we use the LEM for this advection, the end-points
of the intervals are accurate up to the floating point precision of the
system. These intervals are paired into links to construct the edge
map. Since the edge map approximates the true exit pointq of a
point p by linearly interpolating within the link asq′, it incurs some
error. This error can be calculated as the deviation of the exit point
given by the map, from that given by the exact method (‖q−q′‖).
We have derived the expression for this mapping error in a link,
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Figure 7: Mapping error in edge maps. The red and green error
curves in (b) show the mapping error in red and green links of the
triangle in (a). The mapping error is drawn as a function of arc-length
parameter of the triangle, α, counter-clockwise from the bottom left
vertex. For 2.0< α < 3.0, there is no mapping error, since this seg-
ment of the triangle is acting as a destination. The average edge-
length of the triangle in consideration is 0.025. A refined map (c)
contains much smaller mapping error (d) when refined to δ = 0.0025
as compared to the basic map. During refinement, both links in (a)
get split into two links each.

e(λ ), shown as Equation 1 in Appendix A (as a function of the arc
length parameter of the link,λ ).

Figure 7 shows one such graph of the mapping error as a func-
tion of the arc-length parameter of the triangle,α . We use the max-
imum error value of error in a link as themapping error of the link,
ε. An upper limit to this mapping error can be imposed by a user
parameter,δ . If for a link, ε > δ , we split the link to improve the
accuracy of the map. We call this processrefinement of edge maps.
Figure 7(c) shows refined map of the flow in Figure 7(a) flow with
δ = 0.0025.
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Figure 8: An example of a map with bimodal error (in green link).
Note that the x-axis has been scaled to range 1.4≤ α ≤ 2.0 to illus-
trate the mapping error. For other values of α, the error is zero, since
those segments are destinations.

In our experiments, we found that typically the error is unimodal
in a link. However, the error can also be bimodal, as shown in Fig-
ure 8. Unsurprisingly, the mapping error is zero in the absence of
divergence, since there is no linear expansion of flow, in the direc-
tion orthogonal to the flow. Figure 10 corroborates this intuition by
testing the edge map propagation in a purely rotational flow. Hence,
in the absence of mapping error, the propagation using edge maps
is as accurate as the underlying method for advection used for map
generation.

4.2 Expansion of Exit Points

Figure 9: Expansion
of exit points represents
error as a range of pos-
sible destinations.

We have been using the forward (ξ+)
and backward (ξ−) edge maps as
tools to look up the streamline of in-
dividual particles. However, we can
also represent the mapping error ex-
plicitly by redefining the edge maps
as a one-to-many map.

ξ+(p,ω) = Q

where, for an entry pointp, instead
of a single exit pointq the map gives
a range of possible exit points, a seg-
ment Q, under theexpansion factor
ω. This is illustrated in Figure 9. The
length of the segmentQ is directly proportional to the expansion
factor. Thus, we callQ theexpansionof the exit pointq.

The mapping errorε for p encodes the deviation of its exit point
q̃ defined by the edge map from the true exit pointq. Therefore, the
expansion of the exit pointQ calculated usingω = ε provides an
upper bound on the possible exit points ofp. Furthermore, since the
streamlines at the endpoints of the links are accurate, the expansion
can not span across links and thus is truncated at the endpoints of
the link containing bothp andq.

4.3 Streamwaves

Under the consideration of mapping error, edge maps no longer
describe a one-to-one, but a one-to-many mapping. We define a
streamwaveas set of possible destinations that a massless particle
may reach at least once when accounting for possible errors. Al-
ternatively, a streamwave can be seen as the expansion of a stream-
line due to mapping uncertainties. In the current work, we quantify
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Figure 10: Comparison between propagation using RK45 (blue)
and edge maps (magenta) on a vector field defined by a counter-
clockwise orbit seeded at the same point (yellow). The magenta and
blue lines overlap in the beginning but a substantial deviation in RK45
streamline is observed after only one revolution around the critical
point (purple). In the absence of mapping error, the mapped lines
are accurate to floating-point precision.

and visualize the mapping error as streamwaves propagate. How-
ever, any other kind of error can be modeled as the expansionω for
streamwaves.

Using the edge maps, we can compute the streamwaves as fol-
lows

Xn+1 = ξ+(Xn,ω)

whereX0 = {xo} represents the seed point of the wave andXn the
set of points currently at the front of the wave. Note that, in this
form the speed of the wave is determined by the number of trian-
gles that are processed rather than the velocity of the flow. Us-
ing traditional techniques to compute streamwaves as a collection
of streamlines can become computationally expensive and requires
delicate processing in regions of high divergence. Using edge maps,
however, propagating a wave is only as expensive as the number of
triangles currently at the front and independent of the flow com-
plexity within each triangle.

Furthermore, if there exist no bifurcations in a triangle, then only
extremes of the range of exit pointsXn+1 are of interest, and all
the intermediate points are handled implicitly. For triangles with
bifurcation, a streamwave may split into two streamwaves, each of
which can be propagated independently.

As shown in Figure 11, a streamwave is the superset of a single
streamline, so analyzing only the streamline in the presence of error
is an incomplete analysis. Since expansion of a streamwave in the
presence of error may cause it to revisit a certain region, we trun-
cate the streamwave so as to avoid going into infinite flow loops.
This is consistent with our definition of streamwave since we only
want to visualize the region that can be visited (at least once) by the
streamwave. The color of the streamwave progresses from green to
red as it propagates forward in time, as an indication of the speed
of the streamwave.

Streamwaves also present a method to visually show error
bounds of other integration techniques. For example, Figure 12
shows the integration of a streamline connecting a source to a sink
using three different techniques. By showing a streamwave, whose
expansion is set larger than the maximum error for Euler integra-
tion, we can visually show a comparison between Euler integration,
fourth-order Runge-Kutta, and the local exact method.

5 VISUALIZATION OF FUZZY TOPOLOGY

Topological structures in vector fields, such as their topological
skeleton [12], are one of the key features used to analyze vector
field data. Traditionally, the skeleton is computed by tracing four
separatrices out of each saddle (two forward and two backward)
by computing streamlines starting in the directions of the eigen-

Figure 11: Visualizations of streamwaves. Top left: original vector
field visualized with IBFV [29]. Top right: two streamlines, one near
a saddle’s separatrix. Bottom: Two images show streamwaves at dif-
ferent levels of error. Streamwaves are colored from green to red,
showing distance the flow has propagated as a measure of the num-
ber of maps the streamwave has travelled through. Note that the
error levels have been exaggerated to illustrate expansion and bifur-
cation of streamwaves.

vectors of all the saddles. These separatrices terminate when they
arrive at another critical point or leave the boundary of the domain.
However, this approach faces challenges since compound integra-
tion error can cause the trace to end at an incorrect critical point.
In particular, unstable topologies, such as when a pair of saddles is
connected by a separatrix, suffer from this form of inconsistency.

We can use the streamwave construction to study the robustness
of topological representations. By growing a streamwave in the
forward direction from all sources and in the reverse direction from
all sinks we can perform a partial topological decomposition of a
vector field that is analogous to stable and unstable manifolds in
scalar field topology [4]. These streamwaves are initiated from the
boundary of the triangles containing the critical points. While we
cannot yet account for centers, streamwaves can provide important
information about the structure of the flow. In particular, in the
absence of closed orbits, the union of the forward and backward
streamwaves creates a covering of domain similar to the segmen-
tation induced by traditional vector field topology. However, in
our construction each point in the domain may be part of several
streamwaves creating a notion offuzzytopology as shown in Fig-
ure 1. Figure 13 shows an additional example of fuzzy topology
computed on a diesel engine dataset, indicating the swirling struc-
ture around its surface. This provides important information about
any potential instabilities in the topological segmentation. In par-
ticular it provides users with an intuitive measure of how certain a
given structure is.

To illustrate the new concept of fuzzy topology we compare
streamwaves with traditional scalar field techniques, see Figure 14.
Laney et al. [18] use topological analysis on the interface surfaces
between heavy and light fluids in aRayleigh-Taylor instability. In
particular, the unstable manifolds of the height function segment
the surfaces into bubbles, the primary feature of interest. Similarly,
we can compute the gradient field of the same dataset, and construct
the manifolds using streamwaves. Both techniques provide a simi-
lar view of the data but our representation is richer by also showing
the inevitable inconsistencies at the boundaries of the bubbles.
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Figure 12: A streamline using RK4 (black dashed) using stepsize
∆t = 0.005, Euler (black dotted) using stepsize ∆t = 0.005 and local
exact method (LEM) (white solid), and a streamwave using edge
maps with δ = 0.0001 were seeded at the same point. Consider-
ing the local exact method to be the ground truth, some deviation is
observed in Euler and RK4 streamlines. It is also observed that the
streamwave, centered around the LEM streamline, bounds the two
erroneous streamlines at all the times.

Figure 13: Topology of the diesel engine dataset. Top row: An IBFV
rendering of the flow (left) and visualization of the topology (right).
Bottom row: the stable and unstable manifolds.

6 DISCUSSION AND FUTURE WORK

Edge maps establish a novel way to represent and analyze sampled
vector fields. Compared to traditional interpolation schemes they
have several attractive properties: (1) numerical integration (and
thus all error accumulation) is confined to the map construction; (2)
unavoidable errors accumulated during integration or inherent in
the representation can be explicitly encoded; and (3) flow informa-
tion extracted from the maps is guaranteed to be consistent. These
advantages translate into a number of useful visualization and anal-
ysis tools such as streamwaves and the notion of fuzzy topology.
The edge map representation can also reproduce published results
(using integration schemes), as well as provide richer interpreta-
tions that are not possible using existing techniques.

Nevertheless, edge maps have some disadvantages, most notably
the storage overhead per triangle. Furthermore, applying texture-
based flow visualization techniques for edge maps, such as IBFV,
requires some additional effort. Extending the edge map construc-

Figure 14: Visualizations of a Rayleigh-Taylor instability. Top row: We
reproduce the results from Laney et al. [18] (left) side-by-side with our
edge map computation of the unstable manifolds (right). Bottom row:
when the error factor is increased (left) we can observe the emerging
overlaps (right).

tion to volumetric domains could pose a significant challenge given
the number of potential map classes per tetrahedral element.

In this work, we have presented edge maps for triangulated do-
mains, however, as a general concept, the idea of edge maps is ap-
plicable to other kinds of surface domains as well. For example,
for structured grids and unstructured quadrilaterals edge maps can
be created between the boundaries of the cells. In these domains,
different interpolations of the interior of cells will be required and
the types of flow behaviors shown in [15] will need to be rede-
fined. However, on a conceptual level of replacing integration with
a boundary mapping, the idea of edge maps is both extendible as
well as applicable to different discretizations of domain.

There exist some interesting opportunities to exploit the consis-
tency and discrete nature of edge maps. One such potential appli-
cation of edge maps is in vector field simplification. Because the
flow can be represented discretely and error can be encoded explic-
itly, we can merge edge maps to reduce the complexity of the flow
fields, or to perform domain simplification keeping the error in the
flow bounded.
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APPENDIX

A MAPPING ERROR

In [17], the motion of a particle under a linear vector field~V(x) =
Ax + o is defined as

x(t) = e(t−t0)Ax0+(e(t−t0)A− Id)A−1o

where,x0, t0 give the particle’s initial position and time, andx(t)
gives the position after timet. A is a 2×2 matrix,o is the translation
vector, and Id is the identity matrix.

Consider a link, in which origin interval(a,b) flows to destina-
tion interval(c,d). Pointa flows to pointc in time t(a). Similarly,
point d is calculated as the true destination of pointb, reached in
time t(d).

c(a,t(a)) = et(a)Aa+(et(a)A− Id)A−1o

d(b,t(b)) = et(b)Ab+(et(b)A− Id)A−1o

Now, consider a pointx on the src interval, whose true destination
is given byy.

y(x, t(x)) = et(x)Ax+(et(x)A− Id)A−1o

Suppose,x = λa+(1−λ )b. We can interchangebly usey(x) and
y(λ ), andt(x) andt(λ ).

The map givesx′s destination asy′, and the mapping error is
calculated ase(λ ) = y′(λ )−y(λ ). The map interpolates the desti-
nation interval to approximate the destination ofx.

y′(λ ) = λc+(1−λ )d

= λet(a)A(a+A−1o)+(1−λ )et(b)A(b+A−1o)− Id A−1o

Calculating the deviation between the two,

e(λ ) = y′(λ )−y(λ )

= λet(a)A(a+A−1o)+(1−λ )et(b)A(b+A−1o)− Id A−1o

− {et(x)Ax+(et(x)A− Id)A−1o}

= λet(a)A(a+A−1o)+(1−λ )et(b)A(b+A−1o)

−et(x)A(x+A−1o)

= λet(a)A(a+A−1o)+(1−λ )et(b)A(b+A−1o)

− et(λ )A(λa+(1−λ )b+A−1o) (1)

The maximum length of this deviation ofe(λ ) over every link is
assigned as the mapping error of the link

ε = max0≤λ≤1 ||e(λ )||2
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