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Multiscale simulations are a well-accepted way to bridge the length and time scales required for scientific studies with the
solution accuracy achievable through available computational resources. Traditional approaches either solve a coarse model
with selective refinement or coerce a detailed model into faster sampling, both of which have limitations. Here, we present
a paradigm of adaptive, multiscale simulations that couple different scales using a dynamic-importance sampling approach.
Our method uses machine learning to dynamically and exhaustively sample the phase space explored by a macro model using
microscale simulations and enables an automatic feedback from the micro to the macro scale, leading to a self-healing multi-
scale simulation. As a result, our approach delivers macro length and time scales, but with the effective precision of the micro
scale. Our approach is arbitrarily scalable as well as transferable to many different types of simulations. Our method made
possible a multiscale scientific campaign of unprecedented scale to understand the interactions of RAS proteins with a plasma
membrane in the context of cancer research running over several days on Sierra, which is currently the second-most-powerful

supercomputer in the world.

natural or artificial, requires exploration across a wide range

of spatial and temporal scales. Even with ever-increasing
computing power, computational models and simulations struggle
to cover all scales of interest at sufficient resolution. Therefore, mul-
tiscale modelling is often used to gain scientific insights by invest-
ing computational resources appropriately across scales. However,
the same properties that make multiscale simulations desirable (for
example, the different levels of detail and sizes of simulated systems)
also pose considerable challenges. Foremost among these challenges
is how to couple the different scales together'~.

Here, we present a new style of multiscale simulation that uses
a macroscale (such as dynamic density functional theory, DDFT)
model to create hundreds of thousands of microscale (such as molec-
ular dynamics, MD) simulations through a dynamic-importance
(DynIm) sampling approach based on machine learning (ML). Our
framework offers two notable contributions to the field of large mul-
tiscale simulations. First, our sampling framework is designed to
maximize multiscale interrogation by connecting each macro con-
figuration to a micro simulation that is sufficiently similar to serve
as its statistical proxy. As a result, the multiscale simulation enables
the exploration of macro length and time scales, but with the effec-
tive precision of the microscale model. Second, the dynamic nature
of our sampling automates a feedback process in which microscale
data is used to improve the parameterization of the macro model
while the simulation is running. As a result, our framework repre-
sents a self-healing paradigm in multiscale simulations.

Our DynIm sampling approach is designed to explore the phase
space of possible local configurations and compute statistical mea-
sures on the distribution of this phase space. A key distinguish-
ing characteristic of our approach is the use of ML to dynamically

l |nderstanding the nature of many scientific phenomena,

sample new configurations. Our framework rapidly explores macro
configurations as they are generated and uses ML to identify those
for which more-detailed exposition via microscale simulation is
most important, with respect to a predefined scientific hypothesis.
The specific usage put forward here focuses on enriching the sam-
pling of rare macromolecular compositions by directing microscale
simulations to explore observed macro configurations as uniformly
as possible. To this end, we consider the ‘novelty’ of a configura-
tion to be indicative of its importance and preferentially select novel
macro configurations for microscale interrogation. This approach
results in an importance distribution (the distribution of important
samples) that is wider (with better exploration of the phase space
of macro configurations) and flatter (preventing similar configura-
tions) than an unbiased, random selection of macro configurations.

The idea of importance sampling”® is often used in statistics and
for Monte Carlo sampling approaches® to estimate the properties
of a given ‘true’ distribution from a set of samples taken from from
a different ‘importance’ distribution through appropriate weight-
ing. However, there are several key differences between DynIm and
the standard importance sampling techniques. Most importantly,
(standard) importance sampling is designed to minimize the vari-
ance in the statistics estimated from the importance distribution. In
contrast, the goal of our importance sampling is the opposite: we
aim to explore data points as dissimilar as possible. Furthermore,
standard approaches typically need to know the importance dis-
tribution and/or the size of the sample set a priori. Dynamically
weighted sampling’ differs from traditional importance sampling in
that the importance weights come from a known distribution. Such
ideas have been explored to sample spatial models*’, to improve
the deep learning training process'®'’, and so on. Compared to
such techniques, our framework removes the need to predefine
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Fig. 1| ML-based Dynlm sampling framework. Our ML-based Dynlm sampling framework enables a new paradigm of multiscale simulations that explore
the phase space of a macro model (such as DDFT) as uniformly as possible using micro scale (such as MD) simulations. Using a variational autoencoder
(VAE) to project the data onto a latent space, Dynlm provides a mathematically relevant importance metric and a computationally feasible and scalable
solution to massive multiscale simulations. Dynim is designed to allow reconstruction of the true data distribution using a small number of MD samples
and can be used to create a self-healing feedback loop to improve the parameters of the macro model using insights from microscale simulation data.

importance weights or the sizes and types of distributions, lend-
ing more flexibility to the sampling process. Instead, we use ML
to dynamically evaluate arbitrary data distributions based only on
previously sampled data, correspondingly draw new samples on
demand, and create appropriate importance weights.

Our framework is highly scalable and adaptable to the size and
availability of computational resources. As a result, it can provide
arbitrary adaptivity and refinement to the resulting multiscale sim-
ulation and can be used effectively on machines with limited capac-
ity and/or systems with limited data. Furthermore, the dynamic
(re)assignment of importance allows for the reconstruction of the
true distribution of the phase space of all macro configurations and
any statistics thereof at any given time during the simulation. The
latter provides a means of aggregating the insights from ongoing
microscale simulations to facilitate an in situ feedback that updates
the parameters of the macro model, continuously driving the multi-
scale simulation towards ever-increasing accuracy. We note that the
importance of each microscale simulation may also be recomputed
with respect to an extended and/or refined macro model in a post
hoc manner, which can be useful for even larger exploration.

We apply DynIm sampling to enable a large multiscale simula-
tion that explores the interactions between RAS proteins and the
compositionally dynamic plasma membrane. RAS is part of the
signalling chain for cell growth, and mutations in RAS are impli-
cated in nearly a third of all cancers diagnosed in the USA'>". The
ultimate goal of this case study is to understand how RAS—lipid
interactions and RAS multimerization moderate cancer initiation
pathways'* (used here as a case study). To fully sample the vast
array of potential lipid environments that RAS can experience, a
macroscale simulation is required. However, the specific interac-
tions between RAS and the lipids, and the behaviour of RAS within
those lipid environments necessitate microscale simulation detail.
Thus, this system represents an ideal use case. Though beyond the
scope of this paper, the characterization of the RAS—lipid interac-
tions and RAS multimerization mechanisms may reveal potential
drug targets.

Given a macro (DDFT) model that explores large spatial and
temporal scales (microseconds and micrometres) to explore plasma
membrane compositions, we use DynIm with unsupervised ML to
encode local neighbourhoods of RAS into a reduced-dimensional
latent space, which captures the complex response of the differ-
ent types of lipids present in the plasma membrane bilayer to the
presence of RAS molecule(s) as well as the lipid—lipid dynamics.

Dynlm evaluates the importance of different lipid configurations,
interpreted based on their dissimilarity to previous selections.
When computational resources are made available, DynIm selects
the most important candidates, which are then simulated at the
micro scale (near-atomistic resolution using coarse-grained (CG)
Martini'® MD).

This scientific campaign was made possible by integrat-
ing our DynIm sampling framework as part of the Multiscale
Machine-Learned Modeling Infrastructure (MuMMI), which pro-
vides a scalable hardware/software infrastructure'® and appropri-
ate scientific modelling at the macro and micro scales'. This paper
describes our innovations within a sampling framework using the
unsupervised ML that enabled the MuMMI technology. The result-
ing multiscale simulation was run on the Sierra supercomputer’,
where MuMMI and DynIm efficiently utilized the full machine, with
thousands of central processing units and graphics processing units
(CPUs and GPUs) to conduct 119,686 MD simulations (see Fig. 1 in
Ingolfsson et al.'*), aggregating over 200 ms of RAS—lipid interac-
tions at the micro scale. Utilizing the DynIm framework described
here, a diverse sampling of local lipid environments around RAS has
been archived; this could be used to characterize lipid compositions
that drive increased/decreased RAS multimerization, RAS lipid fin-
gerprints for the different RAS membrane states, and the main lipid
driving forces for changing state dynamics'.

Results

We demonstrate our DynIm sampling (see Fig. 1) and its key char-
acteristics using the abovementioned case study of the multiscale
simulation of RAS—lipid biology as well as additional experiments
on synthetic data.

Dynamic-importance sampling. This paper introduces a
dynamic-importance sampling approach that enables a new genre
of multiscale simulations to explore the phase space as uniformly as
possible. Since the true distribution is high-dimensional and, very
likely, multimodal, sampling configurations from the macro model
randomly will lead to redundant sampling of common configura-
tions and generally ignore infrequent ones, which may yet be func-
tionally important. Furthermore, even using the macro model, only
relatively short timescales (as compared to biological timescales,
such as the lifetime of a cell) may be sampled; therefore, rare con-
figurations in the simulation could be crucial in answering critical
scientific questions. Our ML-driven approach is designed to avoid
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Fig. 2 | Patches represent concentrations of lipids on 30 x 30 nm? local neighbourhoods of RAS discretized into 5 x 5 grids. a-c, The figure shows a typical
patch containing one RAS (a) and highlights the lipids that respond strongly to the presence of RAS (the centre pixel). Using the distance metric defined

in the latent space, the figure identifies patches similar to b and dissimilar to ¢ one RAS. d, A different configuration where the patch contains three RAS
(one at the centre pixel and two below that). The plasma membrane mimic uses 8 different lipid types®, with all eight on the inner leaflet and six on the

outer leaflet. These eight lipid types include two phosphocholines (POPC and PAPC), two phosphoethanolamines (PE), one sphingomyelin (DPSM), one
phosphatidylserine (PAPS), one phosphatidylinositol (PIP2), and cholesterol (CHOL).

redundant sampling of the phase space, and therefore, favours new
and previously unseen types of configurations.

In particular, our framework keeps a record of all previously
explored configurations (previously selected samples) and selects
the next configuration (the next sample) as the most dissimilar
one. Alternatively, this can be seen as a ‘novelty’ importance metric
that ranks all samples according to how similar they are to those
already sampled.

Encoding of macro configurations. Local macro configurations are
described as ‘patches, with each patch representing 14 lipid con-
centrations (8 lipids on the inner and 6 on the outer leaflet) on a
30x30nm?* region in the plasma membrane plane, discretized
as a 5X5 subgrid (see Fig. 2). This 350-dimensional pixel space
(5% 5x 14) is challenging to sample because comparing two patches
directly in the pixel space, such as by using an £, metric, is neither
mathematically desirable nor computationally viable. First, such
per-pixel distance metrics are not meaningful because they treat
each pixel uniformly, and fail to account for any correlations across
space and different lipid types. Second, even more-sophisticated
distance metrics that directly compare patches are confronted with
major challenges because high dimensionality leads to sparseness in
the distribution. Furthermore, different lipid types exhibit different
concentration ranges. Therefore, disallowing the lipid species with
large concentrations from dominating the overall distance metric
would require appropriate weighting. Finally, the high computa-
tional cost of computing millions of distances in 350-dimensional
space prevents real-time selection by direct approaches.

To address these limitations, we use a VAE'® to encode patches
into a reduced, 15-dimensional latent representation that captures
the intrinsic dimensionality of the data and focuses on the com-
plex, nonlinear relationships within lipid configurations, while
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discarding inherent correlations. This encoding provides two key
advantages: a meaningful distance metric that captures key correla-
tions and variations in data, and greatly reduced dimensionality. By
design, the VAE maps patches with similar lipid configurations to
nearby regions in the latent space. Therefore, the Euclidean distance
between two patches in the latent space is used as an indicator to
quantify similarity (see Fig. 2).

Sampling of macro configurations. Given millions of potentially
interesting candidate patches, that is, the configurations that have
been explored by the macro model but not yet selected to simulate
at the micro scale, the next step is to sample the most important
ones. To this end, DynIm uses a farthest-sampling approach in the
space of all previously sampled configurations.

Using an efficient data structure that supports fast,
almost-real-time evaluations'>”, we track the DynIm score of all
candidate patches. The DynIm score identifies how similar a can-
didate is to previously sampled ones; it is defined as the mean dis-
tance of the candidate to its k-nearest neighbours (we use k=10) in
the set of previously sampled data in the latent space. Any time the
application demands a new sample (for example, when a new com-
putational resource becomes available), the top-ranked candidate is
selected. All tracking information and data structures are updated
correspondingly.

If the macro model simulation creates a configuration that is
consequentially different from previously selected ones, we expect
its DynIm score to be high. The selection of a patch, on the other
hand, reduces the DynIm scores of all its similar patches. In this way,
Dynlm scores continuously guide the sampling process towards
new configurations, reducing redundancy. We note that DynIm,
by design, mitigates temporal correlations in the data arising from
fine temporal sampling and, therefore, alleviates the user’s burden
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Fig. 3 | Event history of our ML-based Dynlm sampling for a period of 14 days of wall-clock time. Each grey dot is a selection event with the score of the
selected candidate mapped to the left axis. The line plots show the cumulative number of patches evaluated and selected (mapped to the right axis). Our
framework can support ‘bursts’ of selection requests (such as when computational resources become available) and is designed to balance two competing
goals: to uniformly sample the available phase space (indicated by the reduction of scores within each burst) and to steer the simulation to explore the

phase space (indicated by sharp peaks for each selection burst).

to identify a suitable temporal resolution, such as the output rate of
macro model frames.

To enable the multiscale simulation under discussion, DynIm
dynamically selected 119,686 patches out of a total of 2,061,900
evaluated candidates of potential interest. Figure 3 visualizes a par-
tial event history of our multiscale simulation with a total wall-clock
time of about 14 days, which saw the selection of 92,242 patches
out of 1,880,400 evaluated ones. Each dot in the plot represents a
selection event, with the DynIm score of the selected patch mapped
to the left axis. Selection events usually occur in chunks because
MD simulations that are started together often conclude within
short intervals of each other (MuMMTI’s MD simulations perform
consistently with little variability, 1.02 +0.002 ps per day'**'"), mak-
ing the resources available for the next batch of MD simulations.
Within each chunk of selection, the score of patches reduces pro-
gressively, consistent with the design intent of our selection algo-
rithm. We note, however, that between peaks, the score of selected
patches can increase. For about the first half of the simulation
(about 168h in the plot), an overall reduction in the height of such
peaks is observed, indicating the exploration of new data evaluated
between consecutive peaks. However, the second half of the simula-
tion, where the self-healing, feedback mechanism (discussed in sec-
tion ‘Self-healing through in situ feedback’) was used, sees a rapid
increase in the heights of the peaks, reflecting the increased novelty
of the forthcoming configurations. Figure 3 demonstrates the bal-
ancing of the two competing goals in our framework: the DynIm
sampling is designed to exhaustively search the available phase
space of macro lipid configurations, whereas increased sampling of
the macro model coupled with the self-healing mechanism may cre-
ate patches in previously unseen portions of the phase space.

Figure 3 also shows the time history of the number of patches
evaluated as well as the number of patches selected by our frame-
work mapped to the right axis of the plot. The plots also highlight
the dynamic nature of our selection process: at any instance in time,
our framework picks the most important patches among the ones
seen thus far and the rate of selection is customizable and scalable.
This dynamic nature distinguishes our work from post hoc impor-
tance sampling techniques, which may consider all data a priori to
evaluate importance.

Our ML-based DynIm selection procedure is well suited to
uniform sampling of the available phase space. We compare the
sampling quality produced by our approach against that obtained
through a random sampling of patches dynamically from 2,061,900
candidates (using a proxy resource allocation approach to simu-
late the dynamics of random selection). To visually compare the

density of all patches and the densities of sampled patches, Fig. 4
shows five pairs of two-dimensional marginal densities computed
in the 15-dimensional latent coordinates. As can be seen in Fig. 4, in
all five cases, the random selection mimics the overall distribution
of all patches, whereas DynIm sampling produces flatter and wider
distributions, implying a more uniform coverage of the phase space.

To further demonstrate the superiority of the DynIm sampling,
Fig. 4 also uses high-dimensional visualization techniques to com-
pare the resulting distributions. Figure 4 shows parallel coordi-
nate plots, which visualize the value distribution of all dimensions
simultaneously. As noted from the density in the parallel coordi-
nates, all patches and the random subset capture a similar overall
distribution, whereas the DynIm sampling has a wider and more
uniform density distribution compared to the random selection
in every dimension (vertical lines in the plot). Although parallel
coordinates are suitable to highlight the overall density pattern,
other properties, such as the smoothness of the distribution, can
be better demonstrated using topological data analysis. Through
topological analysis, we segment the high-dimensional domain
with respect to the local extrema of the density and present addi-
tional details on the distribution. Figure 4 uses topological spines
visual encoding”, which encodes the high-dimensional topology as
a two-dimensional graph, with nodes representing local maxima.
The visualization indicates that the random subset has a less com-
plex (with less stable local extrema) density function compared to
all patches, whereas the DynIm selection has fewer, flatter extrema.
A detailed discussion on the high-dimensional visualization used in
Fig. 4 was presented by Liu et al.”.

Reconstruction of the true distribution. Since our DynIm framework
is specifically designed to suppress redundant configurations in
favour of less frequent ones, the resulting selection is biased against
the modes in the original distribution. As such, recovering the true
distribution or computing statistical measures on the sampled data-
set requires debiasing through appropriate weighting.

The DynIm weight for each selected sample is defined using
a reverse nearest neighbour (RNN)* approach in the space of all
discarded samples. Samples with high weights are representative of
the regions of high density in the latent space; the density in these
regions was suppressed by selecting the representative patches and
avoiding selection of similar ones. Correspondingly, the large num-
ber of patches with small weights indicates that our selection spans
the ‘flat regions’ in the distribution. Finally, we refer back to Fig. 4,
where the last row demonstrates that DynIm weights applied on the
Dynlm selection can recover the true distribution.
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Fig. 4 | Evaluation and comparison of Dynlm sampling. Our ML-based Dynlm sampling is designed to explore the phase space of data as uniformly as
possible. Three types of visualizations are shown to demonstrate the coverage and approximation provided by Dynlm as compared to random sampling
of the given true distribution. Top left panels: topological spines?* showing the high-dimensional topology? of the data as a graph connecting the modes
of the distribution. Top right panels: 15-dimensional parallel coordinates plot, where each vertical line is a dimension and each blue line spanning across
dimensions is a single data point. Bottom panels: five pairs of two-dimensional marginal distributions of density with the zeros of the corresponding
dimensions marked. The visualizations confirm that as compared to the ‘true’ distribution of all patches, an unbiased, random sampling closely replicates
the input distribution, whereas the Dynlm sampling produces a wider and flatter distribution, indicating the desired characteristics. Finally, we show that
appropriately weighting the Dynlm sampling allows the true distribution to be recovered.
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Fig. 5 | The self-healing mechanism enabled by the in situ computation of Dynlm weights allows refinement of macro model parameters, such as RAS—
lipid RDFs, by appropriately aggregating the results of micro scale simulations. The initial RDF is compared with the improved RDF after several rounds
of feedback. Here feedback is shown for the inner leaflet PIP2, DIPE, CHOL and POPE, 4 of the 14 lipid channels in the patch (see Fig. 2).

Self-healing through in situ feedback. One of the unique charac-
teristics of our DynIm framework is its support for an in situ feed-
back loop, which enables the self-healing of the resulting multiscale
simulation. As discussed earlier, the framework can generate and
analyse tens of thousands of MD simulations by sampling the space
of lipid configurations driven by the macro simulation. This sam-
pling, however, depends upon the initial parameterization of the
macroscale model. The (initial) macro model used in the frame-
work was parameterized using previously executed MD simula-
tions. However, this preliminary data was rapidly dwarfed by the
output of the current campaign, both in the number of MD simula-
tions and the variations in sampled local environments. Although
the fidelity of a static macro model is limited by the size of the initial
training dataset, our framework provides a unique opportunity to
continuously improve model parameters and, in turn, to improve
future sampling.

We use an online feedback mechanism, in which the in situ
analysis of MD data is used to update the parameters of the macro
model. In particular, the protein-lipid parameters—the radial dis-
tribution functions (RDFs) between the proteins and all the lipids—
are computed through in site analysis in MuMMI'". These RDFs
are weighted by the prevalence of each simulation (that is, using
the DynIm weights) and the updated RDFs are used to construct
free-energy functionals to use in the macro model. As shown in
Fig. 5, this self-healing mechanism progressively refines the macro
parameters based on increasingly larger amounts of MD data,
resulting in improved accuracy of the macro model. Referring back
to Fig. 3, we focus on the intermittent spikes in the scores of selected
patches in the second half of the simulation. These spikes are cre-
ated largely by the self-healing feedback mechanism, which updates
the macro model, potentially generating macro configurations.

The DynIm framework is computationally efficient and allows
for a frequent feedback mechanism: the (re)computation of weights
with respect to hundreds of thousands of candidate patches takes
only on the order of a few minutes. Nevertheless, there may exist
computational and input/output limitations on capturing and
aggregating the statistics of interest; computing the RDFs for several
thousand simulations, reading/writing these data and aggregating
them all are likely to take substantially longer. Regardless, DynIm
can be configured to perform feedback at a user-desired frequency
and/or specific instances of time. For example, owing to computa-
tional and scheduling concerns in our scientific campaign, the feed-
back was applied only in the second half of the simulation (Fig. 5).

One limitation arises when working with the feedback mecha-
nism. In this work, we assume that the macro configurations gen-
erated after the reparameterization due to feedback can still be
encoded meaningfully as described above. Although we found
this assumption to be largely true for our experiments (that is, the

distribution of patches did not markedly digress from the origi-
nal data), asserting mathematical guarantees on the impact of
self-healing requires more work. In particular, depending upon the
application at hand, one may consider retraining the ML model
after every feedback loop to update the encoding, which, however,
raises more challenges: the computational cost of retraining ML is
likely to be prohibitive and retraining may substantially modify the
latent space, making future selections inconsistent with the past
decisions. Further investigation is needed to address these concerns.

Convergence study using synthetic data. We next establish the
flexibility, generalizability, and convergence properties of our sam-
pling approach using a synthetic dataset. As mentioned earlier, our
importance sampling approach is fundamentally different from the
usual, well-understood importance sampling techniques in that our
goal is to explore novel configurations rather than minimizing the
variance, as is the focus of typical approaches. Therefore, we instead
evaluate our technique against random sampling—a realistic and
often-used alternative.

For simplicity and interpretability, we create a synthetic
two-dimensional dataset by sampling 4,800 points from two
Gaussian distributions each and 400 points from a uniform distribu-
tion (as a proxy to some ‘rare’ configurations). We then dynamically
sample 1,000 data points using 500 sampling events of two samples
each, using both the random sampling and DynIm sampling. Figure
6 shows the density of these distributions after 250 such selection
events. This result (similar to Fig. 4) illustrates that DynIlm sam-
pling provides a substantially better coverage of the space while still
capturing the true distribution through weights.

To quantify these results, we perform this experiment 25 times,
and for each experiment, we compare the DynIm and random sam-
pling to the true distribution and the uniform distribution using
the KL divergence®, which measures how similar two distributions
are—a lower value implies more similarity. Figure 6 also shows the
trends of the KL divergence values for four comparisons: (1) ran-
dom versus uniform, (2) random versus true, (3) Dynlm versus
uniform, and (4) weighted DynIm versus true. As expected, plot
(1) shows consistently high values because random sampling fails
to provide good coverage and differs substantially from a uniform
sampling. Plot (2) also confirms the expected behaviour that the
randomly sampled distribution is very similar to the true distribu-
tion. Plots (3) and (4) demonstrate the flexibility that DynIm offers
by providing a good coverage and reconstruction of the true distri-
bution. In particular, the difference between plots (1) and (3) indi-
cate much better coverage achieved by Dynlm, whereas the narrow
gap between plots (2) and (4) show that DynIm still offers a good
way to estimate the true density. Finally, we note that plot (3)—the
dashed green line—trends upwards and overtakes plot (4)—the
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Fig. 6 | Convergence of Dynlm sampling. Given a synthetic dataset generated from the known (‘true") distribution, a random sampling approach simply
recreates the true distribution and fails to sufficiently capture outliers to provide good coverage. The Dynlm sampling instead specifically focuses on
uniformly sampling the space and provides substantially better coverage and, using the importance weights, also allows the true distribution to be
reconstructed. The left panels show the results of a sampling experiment after selecting 500 samples. Using the KL divergence as a metric to compare
two distributions (a lower value means more similar), the right-most plot demonstrates that that Dynlm sampling provides high-quality uniform

sampling (hence good coverage), especially when compared to random sampling and that the weighted Dynlm sampling is capable of capturing the

true distribution. The right panel shows the results of 25 sampling experiments with plot lines and shaded regions representing the mean and standard
deviation of the experiments. This result also identifies the crossover point (about 470 samples) where the Dynim distribution appears to have sufficiently
expanded the coverage and now begins to over-refine the modes of the distribution.

solid green line—at about 470 samples. This behaviour indicates the
nature of the dataset: since the given data is highly biased towards
its two modes and has few outliers, Dynlm is able to capture these
rare occurrences rather quickly, and any further sampling simply
provides an improved resolution into the modes. We assert that
this crossover point can be seen as a sufficiency condition in the
sampling.

Discussion

We leverage the capabilities of unsupervised ML to develop a
dynamic-importance sampling framework that draws samples
dynamically and adaptively from a partially seen data distribution.
Our framework consists of two components, an ML-based encoder
and a farthest-point sampler. In this work, these components are
designed to steer the sampling towards ‘novel’ samples (macro
configurations). The framework presented in this paper answers
a call to identify rare events, in this case, in a biological system.
Nevertheless, the sampling of rare events is often a requirement that
goes beyond the application at hand. We believe DynIm is a power-
ful tool that can be used in a wide variety of applications.

The ideas presented here are generalizable in several ways. First,
our ML model (VAE) was designed to serve a specific hypothesis
of interest'; it is straightforward to use a different ML model for
different hypotheses, different type of data, or even a different
type of scientific study. As an example, we are currently applying
our DynIm framework to connect molecular and atomistic scales
(in a similar context to RAS—membrane simulations) to enable
a three-scale simulation. This extension simply requires a way to
encode molecular configurations as dictated by the investigation
of interest. Furthermore, the farthest-point sampling in our cur-
rent work uses Euclidean distances in the latent space. However,
distance metrics—for example, based on certain scientific observ-
ables—could be designed to support alternative scientific goals. We
are currently investigating other ML techniques related to manifold
learning and metric learning that may require non-Euclidean met-
rics, but will still be easily supported by DynIm.

The dynamic nature of our sampling lends noteworthy advan-
tages to large multiscale simulations. Given sufficient computa-
tional resources, the sampling can create a large ensemble of micro
simulations, such that there exists at least one microscale simulation
that is sufficiently similar to any given macroscale configuration. As
a result, the resulting multiscale simulation can provide microscale
precision at macro length and time scales. The dynamic weights
provided by our sampling approach allows the true distribution
of macro configurations to be reconstructed, including during the
run time, which enables an automatic feedback. DynIm is highly
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scalable and can be used on small personal computers or the largest
computers on the planet.

Methods

Multiscale simulation of RAS—lipid dynamics. Here, we describe the different
scales of the target scientific study that are coupled by MuMMI using the DynIm
approach. In particular, the MuMMI multiscale simulation'* consists of a single
macroscale simulation, and hundreds of thousands of microscale simulations of
important macro configurations selected by DynIm. Each macro configuration of
interest is represented as a patch, which is also a unit of conversion between the
two scales.

The macro model. MuMMI uses a macro model to rapidly explore long time and
length scale behaviour of RAS—membrane dynamics, capturing the continuum
degrees of freedom. Specifically, the macro model uses the DDFT to describe
the lipid—lipid behaviour®. The lipid bilayer is represented as a two-dimensional
surface, whereas each protein and its conformational state on the bilayer is
represented by a single particle, which interacts with the lipids through a potential
of mean force. The input parameters to the macro model are lipid—lipid direct
correlation functions and self-diffusion constants, RAS—lipid and RAS—RAS
potentials, and RAS diffusion constants. These parameters were derived from
several hundred coarse-grained plasma membrane and RAS—plasma membrane
simulations.

MuMMI implements the macro model into the MOOSE finite-element
framework?. This implementation was coupled together with MD simulations
using ddcMD? to integrate the protein equations of motion. In this campaign,
the macro model was used to simulate a 1 X 1 pm?* plasma membrane at a
resolution of 1,200 X 1,200 cubic-order elements, with 300 RAS molecules. Using
100 computational nodes of Sierra, the macro model was able to simulate about
11.5 ps per day, where lipid concentrations were updated every 20 ns, and the RAS
particles were integrated with a 25-ps time step.

Patches: macro to micro using patches. Although the macro model simulation can
explore the phase space of local lipid configurations and the impact of RAS, it does
not provide sufficient resolution into the underlying molecular biophysics. To
deliver accurate insights into the molecular-level interactions of interest, MuMMI
uses coarse-grained MD simulations to evolve the dynamics of the ‘important’
spatiotemporally local regions of the membrane.

In particular, since the goal is to explore RAS—membrane dynamics—that
is, how RAS proteins interact with the lipids of the plasma membrane—MuMMI
extracts 30 X 30 nm? patches around each RAS for each frame of the macro
simulation. A patch captures the complex dynamics of the lipids as affected by
the protein. Although a patch is always centred around a corresponding RAS,
there may be additional RAS proteins within the specified neighbourhood, in
which case the lipid concentrations within the patch reflect the effects of more
than one RAS.

A patch is a unit of conversion from the macro model that can be mapped to a
molecular configuration. Although at the native resolution of the macro simulation
(1,000 nm = 1,200 grid points), a patch forms a 37 x 37 grid, the mapping of a
patch to a coarse-grained configuration assumes each patch to be a 5% 5 grid.
Therefore, the native resolution of a patch is aggregated into a 55X 14 image,
with each of the 14 lipid concentrations represented as a separate channel. Figure
2 illustrates four different patches by visualizing all 14 channels individually and
identifies the channels (lipids) that respond strongly to the presence of RAS.
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Over the course of the multiscale simulation, MuMMI typically generates
millions of ‘candidate’ patches, which are analysed dynamically for importance
using our DynIm framework.

The micro model. Given a patch selected using the DynIm approach, MuMMI
instantiates and equilibrates a Martini'® coarse-grained simulation using a
modified version of the insane membrane building tool”” and the GROMACS MD
package® (CPU-only version) for energy minimization, equilibration, and to pull
the proteins to the bilayer. Each coarse-grained particle system contains 3,070 + 82
lipids. The entire process takes approximately 90 min using 24 CPU cores of a
single computational node.

Once equilibrated, the particle system is shipped to ddcMD?***"** for
performing the MD simulations. MuMMI highlights the GPU capabilities in
ddcMD designed to accelerate the Martini coarse-grained force field”'. Using one
GPU per simulation, ddcMD can produce approximately 1.02 ps of trajectories per
day (of wall-clock time) at a time resolution of 20 fs.

In situ analysis of MD simulations. To support the self-healing capabilities provided
by DynImand to scale up to hundreds of thousands of MD simulations, MuMMI
performs in situ analysis of trajectories generated by ddcMD. The online analyses
to be performed are designed and chosen based on parameters of interest from
preliminary simulations and those needed for re-optimization of the macro model.
Examples of features of interest are RAS—RAS contacts, RAS—lipid contacts, RAS
orientation and lipid distributions.

DynlIm sampling. Encoding of macro configurations. In this work, we use a VAE'
implemented using a deep neural network that learns a reduced representation of
the data in an unsupervised manner. An autoencoder progressively reduces the
dimensionality of the input data until the so-called bottleneck layer is reached,
which represents a reduced, latent encoding of the input data. Using this latent
representation, which is typically a nonlinear combination of the input features,
the autoencoder then progressively increases the dimensionality to reconstruct the
input data. By minimizing the reconstruction error through the training process,
the model learns the most important features in the data, which must be preserved
for its faithful representation. When trained appropriately, suitable autoencoders
are robust to noise in the input data. Among the types of autoencoder, we choose
a VAE because it provides several favourable mathematical properties, such as

a continuous distribution in the latent space, which are important for statistical
analysis on the resulting sampling. Since each latent dimension represents an
irreducible degree of variation in the data, the resulting latent space provides a
meaningful way to compare patches by defining similarity between them, such as
using Euclidean distances.

Identifying the implicit dimensionality in the data was a key consideration
when choosing an encoder model. During the exploration, we developed several
autoencoder and VAE models, varying the number, width, and type of layers in the
model as well as different sizes of the output latent space, and evaluated them using
reconstruction loss.

To compensate for the differences in the function ranges of different lipid
concentrations, we normalized each channel independently with respect to the
dynamic range of the corresponding concentration across all training data. The
same normalization was used to transform the input data during inference.

This normalization allowed us to use the mean-squared error to evaluate the
reconstruction, along with KL-divergence of the resulting latent distribution from
the normal distribution, as is typical for a VAE.

Owing to the limited spatial resolution of the input patches, we found that
spatial convolutional filters were not suitable for our target models. However,
unsurprisingly, we noticed improvement in the accuracy of the models when we
applied one-dimensional convolutional filters across channel (lipid concentration)
as the model could capture the corresponding correlations.

Our final VAE model used a single convolutional layer (across channels)
followed by seven fully connected layers (number of nodes = 700, 350, 175, 80,

40, 20 and 15) interspersed by batch normalization layers and 20%-dropout layers,
encoding the patches into a 15-dimensional latent space. Batch normalization
layers normalize the output of previous layers and help to stabilize the network
towards faster training. Dropout layers set certain randomly selected weights

to zero and help to prevent over-fitting. The decoder used five fully connected
layers (number of nodes = 20, 40, 80, 175 and 350) to reconstruct the data. As
highlighted in Supplementary Fig. 1, we noted the quality of reconstruction to be
notably worse for lower-dimensional latent spaces. On the other hand, larger latent
spaces produced only marginally better reconstruction error, which we chose to
discard in favour of smaller dimensionality.

Supplementary Fig. 1 also shows the training history of the chosen model,
indicating that the error converged to a small value. All models were trained
using 302,100 patches generated prior to our scientific campaign using a macro
simulation that was parameterized consistently. The training was performed using
the adam optimizer (with learning rate 0.001) for about 500 epochs, until the error
converged. To account for possible rotational bias in the data, we augmented the
data by rotating the input patches by 90°, 180° and 270".

Sampling of macro configurations. Given an encoded patch, £(p), that is a
candidate for selection, we define its DynIm score, r(p), as the average distance to
its k-nearest neighbours in S, the set of all previously selected patches. Through
experimental analysis, we chose k=10, which provides robustness against

noise while maintaining computational viability. We store S using an efficient
tree-based data structure'>?’ that provides fast, approximate-nearest-neighbour
queries, allowing for almost-real-time evaluations of DynIm scores for millions of
candidate patches.

A dynamic selection infrastructure is enabled using an in-memory priority
queue, C, that contains all candidate patches ordered by their DynIm score. There
exist two types of update operation on C. First, as the macro simulation progresses,
new patches are created and encoded. In this case, the DynIm scores of new patches
are computed and the patches are inserted in C. Second, when computational
resources are available, a patch is selected (and removed) from C and added to
S. In this scenario, the ranking of all remaining candidate patches in C must be
re-evaluated as the corresponding DynIm distances in the latent space change.

If the macro simulation creates a new patch that is consequentially different
from existing configurations in S, we expect the DynIm score of the new patch
to be high. However, once added to C, by design, the DynIm score of existing
candidates cannot increase, because as new patches are added to S, the distance of
k-nearest neighbours can only decrease. Therefore, we limit C to a computationally
feasible and scientifically relevant length as the discarded patches (tail of C) will
never be selected. The choice of the the maximum length of C is guided by the size
of the computational resource, the input rate of macro patches, and the anticipated
rate of sampling. For our experiments on Sierra (about 16,000 GPUs), C was
capped at a length of 35,000.

Reconstruction of the true distribution. Since we use (approximate) k-nearest
neighbours to define the DynIm score of candidate patches, it is natural to use the
RNN* to define the DynIm weights for the selected patches.

Given two sets P and Q defined on the same space, the RNN of a point
q € Qs the set of all points p € P whose nearest neighbour in Q is q. In this
way, the RNN can be used to define the influence of q on the set P. Previously*,
RNN is defined for P=Q. Here, we require P and Q to be mutually exclusive
and, therefore, redefine RNN as RNN(q) ={p € P |Vq’ € Q such that
dist (p,q) < dist(p,q’) for q’ # q}.

Using the RNN with P=C and Q=S, we define the DynIm weight of all
selected patches as w(q) =1+ |RNN(q)|, where the self-weight of 1 has been added.

Data availability

Sample data for DynIm is also made available along with the code repository.

The data related to the multiscale simulation described in the paper will be made
available upon reasonable request; the size of all raw data is hundreds of terabytes.
For more information, please see details of the simulation'*

Code availability
The framework for DynIm has been released open source under the MIT license:
https://github.com/LLNL/dynim.
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