
High-Quality and Low-Memory-Footprint Progressive Decoding
of Large-Scale Particle Data

Duong Hoang*

SCI Institute, University of Utah
Harsh Bhatia† Peter Lindstrom†

CASC, Lawrence Livermore National Laboratory
Valerio Pascucci∗

SCI Institute, University of Utah

M
em

o
ry

 f
o

o
tp

ri
n

t

Depth-first
traversal

on k-d trees

Breadth-first
traversal on k-d trees

Reconstruction quality

Depth-first traversal
on hybrid trees

Block-adaptive traversal
on block-hybrid trees

(b) … (c)… (d)

(a) Memory-quality space (b) 138×, n = 33M at ≈ 50 MB (c) 46×, n = 106M at ≈ 50 MB (d) 23×, n = 215M at ≈ 50 MB

Figure 1: (a) Our particle compression approaches based on the proposed hybrid trees and block-hybrid trees achieve better memory-
quality trade-offs for lossy reconstruction compared to traditional approaches based on k-d trees. (b, c, d) Three approximations of
a detonation simulation dataset, compressed and then decoded with our block-hybrid tree approach (compression ratio k× and
corresponding number of particles, n, given). All three are snapshots of a single progressive decompression process, and all use a
small and constant amount of memory for decoding (only about 50 MB, measured using the maximum number of elements in the
data structures used for tree traversal with 64 bits per element). Rendering is done with OSPRay [74] after a subset of particles of
the original 968M particles is decoded in each case. The original dataset could not be rendered on our machine with 64 GB RAM
(previously rendered using 3 TB RAM [75]).

ABSTRACT

Particle representations are used often in large-scale simulations
and observations, frequently creating datasets containing several
millions of particles or more. Due to their sheer size, such datasets
are difficult to store, transfer, and analyze efficiently. Data com-
pression is a promising solution; however, effective approaches to
compress particle data are lacking and no community-standard and
accepted techniques exist. Current techniques are designed either
to compress small data very well but require high computational
resources when applied to large data, or to work with large data
but without a focus on compression, resulting in low reconstruction
quality per bit stored. In this paper, we present innovations targeting
tree-based particle compression approaches that improve the tradeoff
between high quality and low memory-footprint for compression
and decompression of large particle datasets. Inspired by the lazy
wavelet transform, we introduce a new way of partitioning space,
which allows a low-cost depth-first traversal of a particle hierarchy
to cover the space broadly. We also devise novel data-adaptive traver-
sal orders that significantly reduce reconstruction error compared to
traditional data-agnostic orders such as breadth-first and depth-first
traversals. The new partitioning and traversal schemes are used to
build novel particle hierarchies that can be traversed with asymptoti-
cally constant memory footprint while incurring low reconstruction
error. Our solution to encoding and (lossy) decoding of large particle
data is a flexible block-based hierarchy that supports progressive,
random-access, and error-driven decoding, where error heuristics
can be supplied by the user. Finally, through extensive experimenta-
tion, we demonstrate the efficacy and the flexibility of the proposed
techniques when combined as well as when used independently with
existing approaches on a wide range of scientific particle datasets.

Keywords: particle datasets, data compression, coarse approxima-
tion, progressive decompression, tree traversal, multiresolution

*{duong, pascucci}@sci.utah.edu
†{hbhatia, pl}@llnl.gov

1 INTRODUCTION

As a common form of data representation, particles are used in multi-
ple scientific applications, such as molecular dynamics and atomistic
simulations [15,23,31,38,49], fluid dynamics simulations [5,67,79],
computational cosmology [19, 24, 60, 66], scanning and imaging of
objects and environments [4, 36, 45], and plasma physics [9]. With
rapid advances in computational capabilities, simulations now can
generate trillions of particles at scale [9, 52, 60]. Although such
large-scale simulations promise immense value for understanding
complex scientific phenomena [14], the reality of relatively poor
scaling of network, memory, and disk bandwidths often limits appro-
priate utilization and analysis of the resulting data, due to its sheer
size. Compression is a promising solution to the problem of ever-
expanding data. However, most compressors in high-performance
computing (HPC) are designed for structured data [42, 70], and no
widely accepted compressors for large-scale scientific particle data
currently exist. Some initial attempts to adapt grid-based compres-
sors for particles [30, 69] have seen limited success, partly because
particle data tend to be much more random and, thus, difficult to
compress. Outside of HPC, techniques designed to compress point
clouds representing scans of objects [37,43,47,63] focus largely on
improving compression ratios, often at the expense of scalability in
performance and memory footprint, making them suitable for only
relatively small data. On the other hand, multiresolution rendering
systems [19,39,58–60,64] that can scale to very large data typically
do not target high-quality compression.

Whereas both approaches have advantages, we note a lack of
techniques that balance the two goals — high compression ratios
together with fast and low-memory-footprint data reconstruction.
Toward bridging this gap, we present novel hierarchy construction
and traversal methods. Our techniques improve on the state-of-the-
art tree-based compression techniques, and achieve, for the first
time, high-quality progressive reconstructions using an asymptoti-
cally constant memory footprint. We focus on compressing particle
positions, since they are needed in almost all applications and, in
many applications, are the only attributes needed.

Scientific particle data are difficult to compress losslessly, since
most are sparse relative to the precision of the particles, i.e., many
lower-precision bits are essentially random. Nevertheless, valuable
trade-offs can be made in the space of lossy compression and pro-
gressive, partial decompression, in which the decompression can
be paused at any point to obtain an approximation, and resumed
to refine such approximations by consuming more bits. This prop-
erty is useful since instead of waiting for a long decompression
process, users can always work with (lossy) reconstructions of data,
at improving quality levels that adapt to the available computational
resources and time. Here, reconstruction quality depends greatly
on the order in which the particle position bits are decoded, which
also affects the costs of keeping a state in memory for resuming
the decompression. Achieving a balance between decoding costs
and reconstruction quality often manifests as a choice between (1)
spatially limited but complete representation of particles and (2)
quantized but uniform coverage of space — or, in a way, between
a depth-first (DT) and a breadth-first traversal (BT) of a particle
hierarchy. We explore this trade-off from the perspectives of both
tree traversal and tree construction.
Contributions. Our specific technical contributions are:
• We present a new mechanism to partition space, the odd-even

splits (Section 3.1), which can be used in conjunction with the
standard k-d splits (i.e., splits that create a k-d tree) to selectively
convert a DT of a subtree into a BT of the corresponding space.

• We propose a particular way of combining odd-even and k-d splits
to create hybrid trees (Section 3.2) that allows a low-memory-
footprint DT to also have the power of BT (high-quality recon-
struction), while being conducive to compression.

• We introduce an adaptive traversal (AT) (Section 4.1) that allows
better dynamic guiding of tree refinement and with respect to a
given error metric; we propose two such metrics by heuristics.

• We combine the strengths of both k-d trees and hybrid trees in
block-hybrid trees (Section 3.3), which can be traversed with
block-adaptive traversal (BAT, 4.2), for improved memory-quality
trade-off and error-guided, spatially progressive refinement with
random access of large, compressed particle data.

2 BACKGROUND AND RELATED WORK

We give an overview of the literature on particle data management,
then discuss the method of Devillers and Gandoin [13] (DG), which
serves as a base upon which our technical contributions are built.
Particle hierarchies. One of the most common ways to introduce
structure to a particle dataset – to facilitate compression – is to
impose a spatial hierarchy (a tree) on the particles. Many state-
of-the-art compressors follow this approach, where the tree can
be one of many types, e.g., binary trees [21], quadtrees [62], oc-
trees [2, 6, 20, 27, 39, 43, 47, 50, 55, 61, 63], k-d trees [12, 13], and
bounding-volume hierarchies [59]. A hierarchy helps compression
in two ways. First, the higher position bits are “distributed” into
coarser tree levels and shared among particles in the form of coarse
tree nodes. Thus, in finer nodes, one needs to store only the lower
order bits for the particles within, possibly with truncation [26, 28].
Second, regions with no particles (empty space) are quickly identi-
fied and carved away, further reducing the number of bits needed to
accurately locate particles — a key property that helps both compres-
sion and rendering [60, 75, 76]. An octree where each node stores
the occupancy of its children is by far the most common approach,
and it has been noted [55, 57] that at coarse levels, occupancy-based
octrees are better than the k-d tree used by DG [13], since encoding
the number of particles in child nodes often requires several bits
compared to at most one bit for occupancy. However, here we show
that knowing the number of particles in each node can help drive a
traversal to make better decisions as to where to refine next.
Level-of-detail. Although a tree naturally provides a progressive

coarse-to-fine structure, from which representative particles can be
decoded and viewed [19, 59], some techniques generate levels of
detail through subsampling [21, 27, 58, 64, 71, 78], which requires
no data duplication at coarse levels, and is often faster to compute.
Random subsampling [21, 64, 71] may seem a reasonable choice,
but leads to suboptimal compression because the bounding volumes
for coarse particle subsets are not easily bounded. This is not the
case with our lazy wavelet inspired odd-even subsampling, which
exactly halves the bounding volume at each level. Wavelet-based
downsampling is common for compressing mesh vertices [32,44,73].
When a mesh is not readily available, connectivity can be introduced
by building a graph [11], local graphs [65,77], or a resampled signed
distance field [35] from the particles. Instead, we use a regular grid,
which is simple and fast to compute.

Error-guided tree construction and traversal. Minimizing ap-
proximation error can be cast as a (hierarchical) clustering problem,
where, at each level, particles are clustered and represented with
points chosen to minimize some error metric [18,22,26,27,41,53,54].
More data-adaptive hierarchies reorder child nodes based on their
predicted occupancy [2], or make planes of k-d divisions adaptive to
local variations [12]. The trade-off between quantization (imprecise
particles) error and discretization (low particle count) error has been
studied both in theory [34] and practice [40, 72] for triangle meshes,
where refinement heuristics are given based on geometric distor-
tion measures, including a progressive reconstruction that ranks
octree nodes by a priority value [56]. Our adaptive traversal instead
assumes no connectivity information and works on generic parti-
cle data. For reconstructing point-sampled geometry, DT has been
shown to be memory efficient whereas BT gives better progressive
reconstruction [8]. In fact, BT is by far the more preferred traversal
order in the literature. However, we show that the reconstruction
quality of DT can be vastly improved through our odd-even decom-
position of space. Finally, some studies have focused on task-based
error metrics for point clouds beyond PSNR [6, 16]. Our block-
adaptive traversal also facilitates a user-specified error heuristic at
decoding time independently of how the data are encoded.

Large-scale and out-of-core techniques. Techniques that handle
large data usually organize the data into blocks, so that each block
can be randomly accessed and decoded independently as needed [60,
64]. Multilevel hierarchies that treat subtrees as blocks are also not
uncommon [10,17,19,33], but previous approaches traverse both the
coarse-level tree and the fine-level subtrees (blocks) using BT, which
restricts the traversal to a single progressive order, where blocks
are traversed one by one with potential memory reuse in between.
In contrast, by using DT within the blocks, our block-hybrid trees
allow for simultaneous, independent, and progressive decoding of
all blocks (i.e., not one block at a time). This approach provides
excellent computational gains because the DT puts a hard bound on
the memory footprint of traversal.

Standard k-d tree coder. The DG’s k-d-tree-based coder [13] (im-
plemented in Google’s Draco [1]) has competitive compression
ratios while being very fast and general. This method constructs
a k-d tree where each node stores the number of particles, n, en-
capsulated by a bounding box, B. A given node (B,n) is split into
two children (B1,n1) and (B2,n2), with B1 and B2 formed by split-
ting B exactly in the middle along one of the dimensions, and n1
and n2 being the numbers of particles bound by B1 and B2. By
construction, only n1 needs to be encoded at each node, since n2,
B1, and B2 can be inferred. Furthermore, n1 can be encoded using
approximately log2 (n+1) bits (since 0≤ n1 ≤ n), which becomes
smaller toward the leaf level (n decreases). The tree can be implicitly
built, traversed, and encoded at the same time, by having the encoder
partition an array of particles in-place, following a certain traversal
order, which the decoder also follows. In this paper, the term k-d
tree always refers to a tree constructed with this method.

3 TREE CONSTRUCTION

Most tree-based compression techniques work by encoding tree
nodes that implicitly give quantized particle positions, having both
the encoder and decoder follow the same traversal order. When
run to completion, all tree nodes are visited (in different orders
depending on the traversal strategy). Large trees, however, are often
only partially decoded to support the task at hand. Algorithm 1
gives a general template for a decoder that can be stopped at any
point to produce an approximation to the original particles. The
inputs include the total number of particles n0, an initial bounding
box B0, and a bitstream Bs storing the encoded bits. A data structure
C, supporting PUSH and POP operations (e.g., a stack or queue),
keeps track of nodes at the traversal front. In each iteration, a node
(B,n) is popped from C, and a callback is invoked. If the node is a
leaf (as determined by ISLEAF on line 8), a LEAFCALLBACK (line
9) can append B (now a single point) to a list of output particles. If
the node is an inner node, an INNERCALLBACK (line 12) can be
used to reconstruct the tree in memory, although this is not needed
for decoding. For inner nodes, n1 (the number of particles in the
left child) is decoded from Bs using the knowledge of n (line 14). B
is then split into two halves using a SPLIT procedure (line 16); the
resulting two children nodes (B1,n1) and (B2,n2) are pushed back
into C, and the process continues until either C is empty or when
DONE(Bs) is true (e.g., when enough bits have been read).

When data is reconstructed approximately, the shape of the tree
can profoundly affect the quality of reconstruction. For example, on
a traditional k-d tree constructed with the typical k-d split, which
splits a node along a certain dimension (one of x,y,z in 3D), BT
often gives coarse representations of the whole space whereas DT
reconstructs a spatial region perfectly but completely misses the rest.
A k-d split thus offers two contrasting choices: high-cost and coarse
reconstructions for both children (with BT), or low-cost and perfect
reconstruction for one child but none of the other (with DT). Cost
mostly means memory footprint, but a high memory footprint often
translates to lower cache utilization and accordingly lower speed.
To alleviate this problem, we introduce new ways of constructing a
hierarchy that is better suited for a DT than a k-d tree, by allowing
the SPLIT procedure on line 16 to be either a regular k-d or an
odd-even split, which we describe next.

Algorithm 1 Generic traversal framework for a tree-based decoder

Require: n0 particles in bounding box B0, bitstream Bs, node con-
tainer C (e.g., stack, queue), stopping criteria DONE, leaf criteria
ISLEAF, callbacks LEAFCALLBACK, and INNERCALLBACK

1: function DECODETREE
2: C.PUSH((B0,n0)) . push the node (B0,n0) into C
3: while not DONE(Bs) and not C.ISEMPTY do
4: (B,n)←C.POP
5: if n = 0 then
6: continue
7: end if
8: if ISLEAF(B,n) then
9: LEAFCALLBACK(B,n) . callback for leaf nodes

10: continue
11: else
12: INNERCALLBACK(B,n) . callback for inner nodes
13: end if
14: n1← DECODE(n, Bs) . particles in the left child
15: n2← n−n1 . particles in the right child
16: B1,B2← SPLIT(B) . left and right bounding boxes
17: C.PUSH((B1,n1))
18: C.PUSH((B2,n2))
19: end while
20: end function

3.1 Odd-Even Splits
An odd-even split interleaves the child boxes B1 and B2 of a box
B by having each contain many disjoint “slices” instead of being
a whole contiguous region. This scheme is inspired by multires-
olution techniques invented for regular grids, such as hierarchical
indexing [51] and the lazy wavelet transform [68]. To realize the
odd-even splits, we impose (but do not build) a regular grid on top
of the particles by recursively subdividing the bounding box of the
particles in the longest dimension, and stop when every cell contains
at most one particle. This is the same grid as would be implied by a
full k-d tree built over the particles, but here we need the grid dimen-
sions up front before tree construction. To avoid an infinitely large
grid and potential numerical floating-point issues caused by particles
being too close, we first quantize the particle positions if they are
initially expressed in floating point. The full grid, G∗, is associated
with the root node, and all other nodes are associated with a different
subgrid G of G∗ as well as the particle subset contained in G. If G
is of dimensions Gx×Gy×Gz, we index its cells from (0,0,0) to
(Gx−1,Gy−1,Gz−1), with the directions of the three axes fixed
throughout. In between the cells of a node (G,n), there may be cells
of its ancestor or sibling nodes (i.e., G has strides greater than 1), but
we do not consider those for indexing or splitting of G. An odd-even
split decomposes a node (G,n) into two child nodes (Ge,ne) and
(Go,no), such that (Ge,ne) contains the even-indexed grid cells in
G (along the dimension of splitting) along with the ne particles occu-
pying those cells, and (Go,no) contains the odd-indexed cells which
hold the rest of the particles (no = n−ne). When used exclusively
for tree construction, the odd-even splits result in an odd-even tree,
illustrated in Fig. 2 in contrast to a regular k-d tree.

Besides facilitating the odd-even splits, an underlying grid allows
us to effectively encode not only sparse particle sets (relative to
the size of the grid) but also dense ones. Whenever the number of
particles, n, is greater than half the number of cells in G, we can
switch from encoding the number of particles in the left child (n1) to
encoding the number of empty cells in the left child, i.e., |G|/2−n1,
and thus more quickly bound the values to be encoded further down
the tree. In the extreme case where every cell contains a particle,
our method simply stops after encoding the number of particles at
the root node, since the number of empty cells is now 0, whereas
DG [13] keeps refining this dense grid until the individual cells.

Picking either the odd or the even subgrid can also be viewed
as a sampling method. For odd-even sampling, the subgrids Go
and Ge are half the size of G (unlike for random sampling), which
is important for locating the particles using fewer bits. Still, any
subsampling method potentially compromises compression quality.
An odd-even tree, which consists entirely of odd-even splits, is not
conducive to compression since the density of particles for many
datasets is sparse relative to the imposed grid cells (i.e., most grid
cells are empty). In such cases, empty cells are “distributed” into
the odd and even subtrees, effectively increasing the number of tree
nodes to be coded to locate the particles. Instead, a k-d split could
be used to quickly cull away whole empty subtrees. In practice, we
have seen an almost 100% increase in compressed size with odd-
even trees compared to regular k-d trees. We discuss next how to
use both split types to build a hybrid tree that facilitates high-quality
reconstructions with DT and is also conducive to compression.

3.2 Hybrid Trees
To reduce the adverse impact of odd-even splits on compression,
we can restrict the application of odd-even splits to only one type
of child node (left or right). Here, we borrow a technique from
the wavelet literature, where multiresolution decomposition is done
by recursively transforming only the low-pass filtered subband in
every iteration. Similarly for hybrid trees, without loss of generality,
odd-even splits are used recursively only on the left child node, and
k-d splits exclusively on the other. Furthermore, once a k-d split is

11

6 5

3 3 3 2

1 2 1 2 2 1

1

1 1

1 1 1 1 1 1 1 1 0 10 00 1 0

x

x

y

y

a f g d i j b e h c k

y

x x x

yyyyyyy

a b

c

d

e

f

g

h

i

j k

11

5 6

3 2 3 3

1 2 1 1 2 1

1

2 1

1 1 1 1 1 1 1 1 1 10 00 0 0

x

x

y

y

a b c d e f g h i j k

y

x x x

yyyyyyy

k-d tree odd-even tree

Figure 2: An example dataset with 11 particles (denoted a to k) on a 4×4 grid, from which we build a k-d tree (left) and an odd-even tree consisting
of purely odd-even splits (right). Our odd-even splits partition space by interleaving odd-indexed and even-indexed grid cells at each tree level.

11

5 6

3 2 3 3

1 2 1 1 2 1

1

2 1

1 1 1

1 1

1

1

1 1 1

1

1 1

1 1

1

1

0 1

0

0 0

0

1 1

0

0

0

0 0 0 1

0 00 0 0

x

x

y

y

a b c d e f g h i j k

a b

c

d

e

f

g

h

i

j k
y

x x x

yyyyyyy

(a) A hybrid tree with three resolution levels, created with two
odd-even splits (at the root and its left child)

11

6 5

3 3 3 2

1 2 1 2 2 1

1

1 1

1 1 1

1 1

1

0

1 1 0

1

1 0

0

1

1

0 1

0

0 0

1

0 1

0

0

0

0 1 1

0 00 1 1

1

0
a f i g d j b c h e k

Block 1 Block 2

(b) A block-hybrid tree with two blocks, each of which is a hybrid
tree with three resolution levels

Figure 3: (a) A hybrid tree created using a particular combination of odd-even splits (with different colored child nodes) and the standard k-d splits
(same colored child nodes). (b) A block-hybrid tree created by exclusive uses of k-d splits at shallow depths and hybrid trees further down. Both
trees are constructed for the same 11-particle in Fig. 2, with additional (conceptual) tree nodes for in-cell refinement bits, shown in gray.

used, subsequent descendant splits are all k-d splits. We also use
the convention that the left child contains the even-indexed cells
of a parent’s grid (i.e., it is (Ge,ne)). From top to bottom, every
odd-even split creates a new, coarser resolution level, which consists
of nodes in the even-indexed subtree. We build a hybrid tree by
applying the odd-even splits for a sequence of exactly R−1 nodes
(on R−1 depth levels) by traversing down the left child R−2 times
from the root, resulting in R resolution levels in total (see Fig. 3a
for an example with R = 3). In practice, R can be automatically set
so that the chain of odd-even splits ends when no particles are left
in the last left child, or when it contains one particle located to full
quantized precision. Constructed this way, the impact of our hybrid
trees on compression is minimal; in the worst case, we have noticed
only a 5% increase in compressed size compared to k-d trees.

By design, a DT on a hybrid tree visits the resolution levels
from coarse to fine (assuming that left children are always visited
first), which now produces not a depth-first walk but a breadth-
first sampling of space, still at the same memory footprint as a
DT on a k-d tree. Although hybrid trees are designed with DT in
mind, they also support BT (see Fig. 6), noting that BT is best used
only within each resolution level and not across resolution levels
(note that nodes at the same depth level may belong to different
resolution levels, see e.g., Fig. 3a). Our proposed hybrid tree is also
only one of the many possible combinations of k-d and odd-even
splits, and perhaps different combinations may be useful for different
purposes. Although hybrid trees with DT work well in providing
a low-cost sampling of space, they still require the encoder and
decoder to follow the same steps, which, if applied to the whole tree,
can hinder task-oriented, random-access, and parallel decoding, all
important when working with large data. We next discuss a solution
for decoupling the encoder and decoder to support all the above.

3.3 Block-Hybrid Trees
Here, we combine k-d splits and odd-even splits across the depth of
the spatial hierarchy to create a block-hybrid tree, which contains
a coarse portion (several k-d splits at the top), a medium portion
(several hybrid trees, or blocks), and a fine portion (refinement bits).
After the coarse and medium portions, no cell of the full grid G∗

contains more than one particle. The inner-cell refinement bits fur-
ther locate individual particles within the respective cells. These bits
are technically also present for the hybrid tree previously described,
but we discuss them here since they are not relevant to odd-even
splitting. We start by building a k-d tree from the top, but only to
a certain depth. The leaves of this coarse k-d tree create multiple
subtrees (blocks); for each leaf, we build a local hybrid tree. Al-
though a k-d tree can also be made block-based, our block-hybrid
tree enables low-cost DT of the blocks by turning each block into
a hybrid tree. Fig. 3b shows an example of how a block-hybrid is
built for our running example with 11 particles in 2D.

At encoding time, the compressed bitstream for the coarse portion
is stored once. The bitstreams for individual blocks are stored and
indexed separately (see Fig. 4) so that at decoding time we can freely
pause and jump to any of them to continue decoding/traversal, which
enables random, parallel access as well as task-oriented decoding.
Unlike the coarse and medium portions, the in-cell refinement bits
are stored verbatim since they are more random and difficult to com-
press. Even though these fine bits can conceptually be considered
part of the tree (as depicted in Fig. 3a), we treat them separately. We
store the fine bits last in a block’s bitstream and in bit plane order
(i.e., BT order), where each bit plane contains one refinement bit
for each particle in the block, in the order that a medium-phase DT
visits the particle. The fine bits are not stored depth-first as linear
chains following respective particles, since a DT on such chains
can have a high coding cost when the input particles are sparse but
specified with high precision (thus, a majority of bits are fine bits),
which is common for scientific data (see e.g., molecule in Fig. 8).

To decode a particle’s position by traversing a tree is to reconstruct
the bits of its quantized integer coordinates. Assuming the coordinate
bits in x,y,z are interleaved into a Morton code, with a k-d tree, the
bits are reconstructed from left to right (MSB to LSB, see Fig. 5).
Indeed, a DT on a k-d tree is well known to correspond to sorting or
indexing the particles by their Morton codes. If we ignore the fine
bits that locate particles within individual cells, a DT on an odd-even
tree corresponds to indexing the particles by their reversed Morton
codes (LSB to MSB), because we use the LSB, which determines
whether a particle is “odd” or “even”, to assign it to a resolution

fi
n
e

coarse stream

Block
stream 1

Block
stream 2

Block
stream 3

b
it
 p

la
n
es

Figure 4: A schematic depiction of our block-hybrid tree, with subtrees
colored by resolution level (left). The blocks’ bitstreams are stored
separately to support independent decoding of blocks (right).

level. When its chain of odd-even splits is carried to the end, a
hybrid tree corresponds to Hierarchical-Z (HZ) indexing, proposed
by Pascucci and Frank [51] and generalized by Hoang et al. [25].
In this scheme, the position (from the right) of the least significant
one-bit indicates the particle’s resolution level, and the bits to its
left constitute its index within the level. Finally, a block-hybrid tree
performs HZ indexing but only for the medium portion.

4 TREE TRAVERSAL

Once a tree is constructed, the space of possible traversal strate-
gies contains many valuable trade-offs (e.g., the one between BT
and DT as discussed). We introduce adaptive traversal (AT) and
block-adaptive traversal (BAT), both of which improve qualities of
partial reconstruction by being more adaptive than BT and DT. AT
is primarily designed for k-d trees but works also for hybrid trees,
whereas BAT is specifically designed for block-hybrid trees.

4.1 Adaptive Traversal
Although universally used, both BT and DT are static traversal
orders that do not take into account the actual node values. To
achieve better reconstruction, the traversal should be more adaptive,
i.e., nodes with a potentially low cost of traversal (in terms of number
of bits to decode) and high gains (in terms of reduction of error)
ought to be prioritized. We therefore generalize the container used
for traversal (C in Algorithm 1) from a stack (for DT) or a queue
(for BT) to a priority queue, which allows prioritizing nodes that
are more important for traversal with respect to some error metric
and coding cost. That is, the priority queue allows us to perform
rate-distortion optimization during traversal.

Our framework is agnostic to different metrics; here we use a
heuristic that assigns an importance score to a given node based on
how “densely packed” the node is (in number of particles) and how
many bits are required to decode the node. Concretely, given a node
(B,n) (see Section 2), we define its importance score as

n(d/2)2

log2 (n+1)
, (1)

where d is the length of B along the axis of splitting at the given node.
The denominator captures the cost of decoding the node (B,n), and
the (d/2)2 term captures the (squared) error reduction per-particle
obtained by decoding this node, assuming the extreme case where
all n particles fall into either the left or the right child. Intuitively,
given the same number of nodes, larger nodes (in terms of B) are
traversed first; conversely, given the same bounding box size, denser
nodes are prioritized (because errors are reduced for more particles).
We expect AT with this heuristic to work best (compared to BT)
when the particles are highly nonuniformly distributed and therefore
the importance scores of same-depth nodes are notably different.

Our importance score is simple yet works well in practice to
improve the rate-distortion trade-off over BT for a wide range of
datasets (see Section 5). Regardless, this score is still a heuristic and
thus is not guaranteed to work for all datasets. We also demonstrate
modifications (see Fig. 6) to the importance function by reducing the

0 1 0 1 1 0 0 0 0
0 1 0 1 1 0 0 0 0

0 1 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0 0

0 1 0 1 1 0 0 0 0
0 0 1 0 1 0 1 0 0

0 1 0 1 1 0 0 0 0

coarse fine
0 1 0 0 1 1 0 0 0

medium

k-d tree (forward Morton)

odd-even tree (backward Morton)

hybrid tree (HZ indexing)

block-hybrid tree

Figure 5: A tree implies an indexing of particles by manipulating Mor-
ton codes. Input and output Morton codes are at the top and bottom,
with arrows indicating directions of the output bits. K-d trees and
odd-even trees use forward and backward Morton codes. Hybrid trees
use HZ indexing [51] where the position of the least significant 1-bit
(underlined) indicates the resolution level. Block-hybrid trees replace
forward Morton codes with HZ indexing for the medium portion.

emphasis on node density (i.e., by removing n from the numerator),
which we have observed to work better for particles representing a
surface. We anticipate that in future work, many more importance
functions can be devised depending on the data and task at hand,
but all should be supported by AT. Although AT improves on BT in
reconstruction quality, it has a similarly high memory footprint in
practice (see Section 5.3). Furthermore, AT works with individual
nodes and not blocks, so it cannot be used as is to efficiently traverse
a block-hybrid tree. In the next section, we generalize AT to block-
adaptive traversal (BAT), which is still data-adaptive but works with
entire blocks instead of individual nodes, and has asymptotically
constant memory footprint similarly to that of DT.

4.2 Block-Adaptive Traversal
For a block-hybrid tree, both the encoder and the decoder completely
traverse the coarse portion (using BT or AT) before starting on the
medium portion. For the medium portion, our decoder ranks blocks
using a global heap, where each element represents a block and each
block’s priority can be dynamically updated. For each block, we
also keep a stack so that decoding of any block (with DT) can be
paused and resumed as needed. BAT happens in multiple iterations;
in each iteration, the block at the top of the heap is traversed for
either a certain number of decoded bytes or a certain number of
particles. At the end of an iteration, the priority of the current
block is updated using a scoring function. We find it nontrivial to
generalize the scoring function designed for AT (Formula 1), since
the front of each block (a single node) contains too little information
to estimate either the reconstruction error or the remaining coding
cost for the entire block. Although it may be possible to estimate
this rate-distortion trade-off by combining the information stored
at all nodes of each stack, a thorough investigation is left for future
work. Instead, we opt for a simpler criterion to rank blocks during
traversal, which works well in practice. Given two partially decoded
blocks, we always prioritize the one at a coarser resolution level.
If two blocks are at the same resolution level, we prioritize the
one with a smaller value of n∗l /nl , where nl is the total number of
particles in the block on level l, and n∗l is the number of those already
visited by the per-block DT. By construction, nodes on the same
resolution level have subgrids with the same strides (i.e., spacing
between neighboring cells). Since the distance between two particles
in the same subgrid is bound by its stride, the stride itself is a good
proxy for the error of the reconstruction. Therefore, forcing the
blocks to refine to the same resolution level (with subgrids of the
same stride) effectively forces approximately the same bound for
reconstruction error everywhere. Once the blocks are at the same
resolution level, the ratio n∗l /nl indicates how much of the given
level has been traversed. Compared to the simple hybrid tree, our
block-hybrid tree thus distributes error more uniformly (see Fig. 8).

Pseudocode for BAT is given in Algorithm 2. B denotes the
current block being traversed, with B.l being the block’s resolu-
tion level, B.n its total number of particles and B.n∗ its number of
visited particles, as described above. In the TRAVERSECOARSE

and TRAVERSEMEDIUM functions, Node denotes the current node
being traversed, with Node.l storing its resolution level and Node.n
its number of particles. It may seem that, to support progressive
decoding of the fine bits, we need to maintain an array of particle
positions per block (B.particles on line 38) that get refined with
each coming bit. However, these extra states are not required if
only medium-phase decoding is needed. To decode the fine bits
for very large datasets, regardless of the approach, special care has
to be taken at the application (not decoder) level regarding how to
work with a large set of output particles with limited memory. Ex-
amples include out-of-core techniques such as streaming, caching,
or memory mapping. For these reasons, we do not consider any data
structures used for storing the output particles as part of the internal
memory footprint for our progressive decoder.

Given a tree of height L, the memory footprint of BAT is con-
trolled by Lc, the height of the coarse k-d tree. Since there are at
most 2Lc−1 blocks and each block contains a stack of size at most
L−Lc, the number of elements in the different containers is bound
by 2Lc−1 (queue) +2Lc−1(L−Lc) (stacks) + 2Lc−1 (heap). In con-
trast, the memory footprint for BT, if used exclusively for the whole
hierarchy, is bound by 2L−1, which is often several orders of magni-
tude larger, since a typical Lc is only half of L. In practice, the Lc
chosen should be large enough so that the error is more uniformly
distributed and that random access is more fine-grained, but also
small enough to not turn BAT into BT and also to not create too
many blocks, which require extra indexing bits for random access.
32 bits are needed to keep track of the number of particles n in
the node, provided Lc is chosen so that each block has at most 232

particles. A node’s grid G and its resolution level l can be deduced
from the path connecting it to the tree’s root, which can be stored
once per block using at most 32 bits. The encoder would also need
to keep track of the range of particles that each node encompasses,
for a total of 64 additional bits per node. As mentioned in Section 3,
we do not explicitly construct the tree in memory, as node values
are simply encoded to and decoded from a bitstream, following a
certain traversal order. Therefore, only the size of the data struc-
tures used for traversal, and not that of the tree itself, count toward
our memory footprint. Nevertheless, the INNERCALLBACK and
LEAFCALLBACK functions can be used to construct the tree itself
in memory, which might serve as an acceleration data structure for
tasks such as ray tracing.

In contrast to any previously discussed traversal order, with BAT,
the encoder and decoder need to follow the same traversal order only
for the coarse portion (i.e., BT or AT for the k-d subtree) and for
each of the blocks (i.e., DT within each hybrid subtree). Otherwise,
the scoring function for ranking blocks can be supplied at decoding
time, and different scoring functions may be used depending on the
task at hand. For example, a renderer may prioritize blocks closer to
the camera; another example is when the user specifically wants to
refine a block because it contains a feature of interest.

5 EVALUATION AND RESULTS

We evaluate the efficacy of our proposed solutions through various
experiments. Here, we quantify the reduction in data as bits-per-
particle (bpp), measured by dividing the number of bits decoded
by the total number of particles in the original dataset. All datasets
discussed here have 96 bpp when uncompressed; each particle is
originally specified using 32-bit floating point coordinates, which
are then quantized to 32-bit integers prior to experiments. We also
use the notation |C| to refer to the size of container(s) used for
traversal, in terms of number of elements. We use both the standard
peak-signal-to-noise ratio (PSNR) and rendered images, when ap-
propriate, to assess the quality of partial reconstructions. To generate
an approximation when a traversal stops midway, we output one
(random) particle within a node’s bounding grid (G) for each node
in the traversal front (in container C). Finally, both “BT on k-d tree”

Algorithm 2 Functions for block-adaptive traversal

Require: Heap, Stacks, CoarseStream, BlockStreams, BitsRead,
MaxBits are global variables

1: function TRAVERSEBLOCKADAPTIVE
2: if Heap.EMPTY then . still in coarse phase
3: TRAVERSECOARSE(CoarseStream)
4: end if
5: while BitsRead < MaxBits and not Heap.EMPTY do
6: B← Heap.POP . now traverse block B at Heap’s top
7: S← Stacks[B.Id] . block B’s current stack
8: Bs← BlockStreams[B.Id] . block B’s bitstream
9: if B.n∗ < B.n then . not all particles visited

10: TRAVERSEMEDIUM(B, S, Bs)
11: Heap.PUSH(B)
12: else . all particles in B visited, do fine phase traversal
13: TRAVERSEFINE(B, Bs)
14: if not Bs.EMPTY then
15: Heap.PUSH(B)
16: end if
17: end if
18: end while
19: end function
20:
21: function TRAVERSECOARSE

. This is Algorithm 1 with a queue container, stopping criteria
BitsRead ≥MaxBits, bitstream CoarseStream, and the follow-
ing LEAFCALLBACK

22: B.l← 0; B.n←Node.n; B.n∗←0
23: Heap.PUSH(B) . push leaf block B into Heap
24: S← empty stack; S.PUSH(Node.le f t); S.PUSH(Node.right)
25: Stacks[B.id]← S
26: end function
27:
28: function TRAVERSEMEDIUM(B, S, Bs)

. This is Algorithm 1 with the stack S as container, stopping
criteria BitsRead ≥MaxBits, bitstream Bs, and the following
LEAFCALLBACK

29: B.n∗← B.n∗+1; B.n∗l ← B.n∗l + 1 . a new particle visited
. and the following INNERCALLBACK

30: if Node.l 6= B.l then . reaching a finer resolution level
31: B.l← Node.l; B.nl ← Node.n . update current level
32: B.n∗l ← 0 . reset particle count for current level
33: end if
34: end function
35:
36: function TRAVERSEFINE(B, Bs)

. For simplicity, always read an entire bit plane of B from Bs
37: for each particle P ∈ B.particles do
38: Bit← READONEBIT(Bs)
39: P← REFINE(P, Bit, B)
40: BitsRead← BitsRead + 1
41: end for
42: B.l← B.l +1
43: end function

and “DT on k-d tree” are the baseline DG [13] methods; all other
traversal-tree combinations are contributions of this paper.

5.1 Adaptive Traversal of k-d Trees
AT (with the proposed scoring heuristic, Formula 1) on k-d trees
improves the rate-distortion trade-off over BT on k-d trees for a wide
range of datasets (see Fig. 7, left). We do not include DT in the same
figure since the root-mean-square error for DT is often exceptionally
high due to whole regions missing, rendering L2-norm-based quality
metric such as PSNR less meaningful. Here, PSNR is computed
from the mean-square point-wise distance between every particle

(a) 51,214,252 particles (b)0.3 bpp, 66.39 dB (c) 0.3 bpp, 62.56 dB (d)0.3 bpp, 63.15 dB (e) 0.3 bpp, 66.24 dB (f)0.3 bpp, 64.12 dB

co
al

Reference	
(96	bpp)

AT	
on	k-d	tree

Alternative	AT	
on	k-d	tree

BT
on	k-d	tree

Per-resolution	BT
on	hybrid	tree

Alternative	AT
on	hybrid	tree

Figure 6: Reconstruction results for alternative combinations of traversal orders and trees, including the use of an alternative scoring function for
AT to obtain a better reconstruction visually (c), even at a lower PSNR. All reconstructions are at 0.3 bpp. Although not canonical, BT and AT on
hybrid trees are very possible combinations, which may sometimes be preferable than BT on k-d trees, as is perhaps the case here.

coal
soldier

cosmic web

san migueladaptive
breath-first

0.0 0.5 1.0 1.5 2.0 2.5
bits per particle (bpp)

0

25

50

75

100

125

de
co

de
 ti

m
e

(s
)

BT on k-d tree
AT on k-d tree
DT on k-d tree
DT on hybrid tree
BAT on block-hybrid tree

0.0 0.5 1.0 1.5 2.0 2.5
bits per particle (bpp)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

m
em

or
y

fo
ot

pr
in

t,
|C

| BT on k-d tree
AT on k-d tree

BAT on block-hybrid tree

DT on k-d tree
DT on hybrid tree

Figure 7: Left: Rate-distortion curves demonstrate that AT outperforms BT. Middle and right: decode time and memory footprints for combinations
of trees and traversal methods, plotted for the detonation-small dataset. DT and BAT achieve constant memory footprint and linearly scaled
decode time in number of bits, whereas AT and BT require orders of magnitude more memory, and also much faster growing decode time.

in the reference and the closest particle in the reconstruction, with
the signal range being the maximum dimension of the bounding box
for the reference particles. Visual demonstration of the differences
between low-bit-rate reconstructions using BT and AT is provided
in Fig. 8 (see the first green-highlighted column pair). We render
at low bit rates the outputs of the various traversal and tree combi-
nations with OSPRay [74]. The bit rates are chosen so that visual
differences among the combinations are most apparent. For the girl
dataset, AT (a3) provides a better covering of space compared to BT
(a2), which follows a strict order on each tree depth level, creating a
visible seam where the resolution changes. The same phenomenon
happens for fissure (comparing b2 and b3). For soldier, although less
noticeable, AT (d3) generates a smoother surface as well. For cosmic
web, AT (f3) captures the points of interest — clusters of particles
(galaxies) — better by favoring densely packed nodes. Overall, by
being more data-adaptive, AT can provide significant improvements
over BT, both visually and quantitatively (in PSNR).
Alternative AT. Our default scoring function for AT (Formula 1)
does not always work well for all datasets. For example, the ren-
dering of the coal dataset (which contains simulated coal particles)
in Fig. 6 contains occlusion because particles on the “surface” are
given more importance. Because of occlusion, however, the majority
of particles in dense tree nodes are hidden from view, but these are
also nodes that our scoring function deems important. To improve
visual quality, we instead use an alternative scoring function, re-
moving n from the numerator, to prevent an overemphasis on dense
nodes. The result is a reconstruction with lower PSNR but improved
visual quality (i.e., more similar to the reference, compare Fig. 6b
and Fig. 6c), indicating that PSNR does not always capture visual
quality. For datasets where the particles are intended to be viewed
as surfaces, our alternative scoring function often produces better
visualizations, because nodes containing surface particles are given
higher priority, even though they tend to be more sparse.

5.2 Traversals of Hybrid and Block-Hybrid Trees
Fig. 8 shows that DT on our hybrid tree is able to recover coarse
reconstructions of the whole space instead of very fine reconstruc-
tions of only parts of the data, as is the case with DT on a k-d tree
(see the second green-highlighted column pair). A specially difficult
case for DT on hybrid tree is molecule, where the distribution is very

sparse (few but precise particles). In such cases, precisely refining a
coarse subset of particles is not useful (see Fig. 8 (c5)). In general,
BAT on block-hybrid tree often improves upon DT on hybrid tree
visually by distributing error more uniformly throughout space. This
observation is most visible when comparing (a5) with (a6), (c5)
with (c6), and (e5) with (e6). Note that in terms of PSNR, BAT on
block-hybrid tree tends to perform worse than BT or AT on k-d trees
and sometimes even DT on hybrid trees. Visually, however, BAT
typically outperforms all other methods (most strikingly in the case
of molecule), often producing a less blocky look on densely sampled
surfaces compared to BT or AT (see girl or soldier). We also note
the case where BAT fails visually (cosmic web) compared to DT
on hybrid tree (see (f5) and (f6)) because when dense regions are
clearly preferred over sparse ones, aiming for uniform refinement (in
terms of gaps between grid cells) is not a good strategy. Finally, we
note that our hybrid and block-hybrid trees can often generate sig-
nificantly fewer particles at the same bit rate compared to BT on k-d
trees (see fissure, dam break, and cosmic web), which should greatly
benefit downstream processing tasks (e.g., rendering) because fewer
particles often means faster speed.

5.3 Speed and Memory Footprint
Fig. 7 (right) shows that DT on any tree and BAT on block-hybrid
tree achieve a constant memory footprint, whereas AT and BT re-
quire orders of magnitude more memory. Compared to DT and
BAT, BT and AT also become slower very quickly. Compared to
BT, our AT requires the same memory footprint and is slower, but
can improve reconstruction quality by a good margin (as discussed
in Section 5.1). The decode time for BAT grows faster than that of
DT (on both k-d and hybrid trees) and its memory footprint is also
higher, while still being asymptotically constant (Fig. 7, middle).
The trade-off is higher reconstruction quality (Fig. 8). Notwith-
standing its lack of features compared to BAT on block-hybrid tree,
perhaps the best trade-off is had with DT on hybrid tree, which
vastly improves reconstruction quality over DT on k-d tree almost
for free. Based on these results, we recommend AT on k-d trees for
small data and BAT on block-hybrid trees for large data, with AT
limited to only the coarse k-d portion at the top.

We also test the scalability of BAT on block-hybrid tree against the
state-of-the-art octree compressor, MPEG [63], using the TMC3 [3]

Reference	
dataset

(96 bpp)
BT	on	

k-d	tree	(DG)
Proposed	AT	
on	k-d	tree

DT	on	
k-d	tree	(DG)

DT	on	proposed	
hybrid	tree

Proposed	BAT	on
block-hybrid	tree

(a1) n = 729,133
particles

(a2) 49.78 dB; 0.04s
|C| = 113K, n = 113K

(a3) 60.83 dB; 0.07s
|C| = 126K, n = 126K

(a4) N/A; 0.03s
|C| = 24, n = 217K

(a5) 62.24 dB; 0.03s
|C| = 26, n = 157K

(a6) 63.17 dB; 0.08s
|C| = 450, n = 172K

(c1) n = 742,614
particles

(c2) 52.06 dB; 0.28s
|C| = 725K, n = 725K

(c3) 53.06 dB; 0.69s
|C| = 742K, n = 742K

(c4) N/A; 0.13s
|C| = 24, n = 540K

(c5) 41.56 dB; 0.11s
|C| = 24, n = 550K

(c6) 50.45 dB; 0.30s
|C| =580, n = 504K

(d1) n = 4,001,754
particles

(d2) 60.31 dB; 0.06s
|C| = 149K, n = 149K

(d3) 60.87 dB; 0.12s
|C| = 121K, n = 121K

(d4) N/A; 0.06s
|C| = 34, n = 236K

(d5) 59.96 dB; 0.06s
|C| = 34, n = 168K

(d6)	59.84 dB; 0.18s
|C| = 5.2K, n = 164K

(e1) n = 8,054,368
particles

(e2) 64.80 dB; 1.99s
|C| = 5.6M, n = 5.6M

(e3) 64.44 dB; 4.42s
|C| = 6.4M, n = 6.4M

(e4) N/A; 1.03s
|C| = 57, n = 721K

(e5) 54.27 dB; 1.04s
|C| = 57, n = 706K

(e6) 53.94 dB; 2.56s
|C| = 280K, n = 640K

(f1) n = 51,214,252
particles

(f2) 62.22 dB; 4.35s
|C| = 12M, n = 12M

(f3) 63.82 dB; 12.44s
|C| = 13M, n = 13M

(f4) N/A; 2.67s
|C| = 59, n = 2.1M

(f5) 54.62 dB; 2.73s
|C| = 59, n = 1.9M

(f6) 54.37 dB; 7.02s
|C| = 810K, n = 1.6M

co
sm

ic
	w
eb
			
			
			
			
			
			
			
			
			
			
			
		d
am

	b
re
ak
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
	s
ol
d
ie
r	
			
			
			
			
			
		

m
ol
ec
u
le
			
			
			
			
			
			
			
			
			
			
			
			
			
			
	�i
ss
u
re
			
			
			
			
			
			
			
			
			
			
			
			
			
	

gi
rl

Comparison of traversals for the same tree Comparison of trees for the same traversal

(b1) n = 4,788,858
particles

(b2) 53.21 dB; 0.56s
|C| = 1.8M, n = 1.8M

(b3) 53.08 dB; 0.99s
|C| = 1.4M, n = 1.4M

(b4) N/A; 0.25s
|C| = 30, n = 726K

(b5) 50.41 dB; 0.25s
|C| = 30, n = 726K

(b6) 50.37 dB; 0.75s
|C| = 14K, n = 715K

Figure 8: Visual comparison of the different traversal-tree combinations (columns) discussed in this paper for six datasets (rows). The reduced
datasets are shown at 1.1 bpp (girl), 1.3 bpp (fissure), 4.4 bpp (molecule), 0.4 bpp (soldier), 3.1 bpp (dam break), and 1.3 bpp (cosmic web).

0 50 100 150 200 250 300
Number of particles (Million)

0

500

1000

1500
Ti

m
e

(s
ec

on
d)

MPEG time
Our time

0

10

20

30

M
em

or
y

fo
ot

pr
in

t (
GB

)

MPEG memory
Our memory

Figure 9: Our block-based encoder is almost 5× to 7× less expensive
than MPEG’s [63] and the costs also grow at much slower rates.

reference implementation. We encode eight datasets in increasing
numbers of particles (the largest one has about 400 M particles)
and record the encoding time and memory usage of both methods.
Fig. 9 shows that our block-based encoder is several times faster than
MPEG’s encoder and, at the same time, uses an order of magnitude
less memory for the larger datasets. Furthermore, our method’s
time requirement and memory footprint grow at much slower rates.
For decoding, a fair comparison is difficult to obtain since MPEG
decodes and outputs one block at a time, whereas we maintain all the
states necessary for simultaneous progressive decoding of all blocks
(important for cross-block bit allocation). Nevertheless, MPEG
crashes while decoding the largest dataset here.

5.4 Lossless Compression Ratio
For completeness, we compare lossless compression ratios among
four methods: DG [13], our block-hybrid tree, MPEG [63], and
LASZip [29] for several datasets in Table 1. For lossless compres-
sion of point clouds, LASZip is an industry standard, and MPEG
represents the state-of-the-art in compression ratio. Table 1 shows
that our block-based tree achieves practically the same lossless com-
pression ratios against that of DG (with differences of at most 5%),
which means our use of the odd-even splits does not degrade com-
pression significantly. Note that while being comparable with DG
in lossless compression ratio – which matters most for storage –
our method achieves much better data quality for lossy reconstruc-
tion with better overall memory-quality trade-offs (e.g., as shown
in Fig. 8). Both DG and our method compress significantly better
than LASZip in most cases, and MPEG compresses the best with its
sophisticated context modeling, although for many cases its com-
pression ratio is no better than ours. Three datasets deserve further
comments: soldier, detonation-small, and random-80. Unlike the
other high-precision scientific datasets, soldier is a densely sampled
scanned surface, a case that MPEG is specifically designed for, so it
unsurprisingly performs well here. detonation contains highly regu-
lar, repeating particle arrangements (see Fig. 1), which MPEG and
LASZip (to a lesser extent) take advantage of, while ours and DG’s
do not. However, with further dictionary compression applied on top
of our compressed bitstream, our compression ratio increases from
3.13 to 10.3, which is the same as that of LASZip’s. Finally, random-
80 is a synthetically generated dataset where 80% of the grid cells
contain particles. Since our grid-based approach scales gracefully
from sparse to dense data by switching to coding empty cells when
there are relatively more particles (see Section 3.1), it compresses
twice better than DG’s and four times better than LASZip, whereas
MPEG simply crashes. Most particle datasets in practice are sparse
relative to the grid size, but future data will likely become denser as
more particles are captured and simulated.

6 CONCLUSION AND FUTURE WORK

We have presented novel tree construction and traversal techniques
that achieve a better balance between data quality and resource

datasets # particles DG Ours MPEG LASZip

crystal [49] 16,384 2.10 2.08 2.44 1.56
molecule [75] 742,614 2.19 2.18 2.18 1.64
salt [5] 1,832,808 2.36 2.36 2.33 1.51
fissure [75] 4,788,858 2.54 2.54 3.50 2.13
*soldier [36] 4,001,754 13.70 13.40 21.00 5.56
san miguel [46] 3,693,102 3.36 3.20 3.46 2.02
dam break [67] 8,054,368 2.71 2.69 2.69 1.85
coal [48] 27,693,140 3.45 3.42 3.36 2.20
cosmic web [75] 51,214,252 3.17 3.12 3.06 1.72
*detonation-small [7] 180,426,240 3.08 3.13 24.20 10.30
*random-80 1,678,152 42.70 95.50 CRASHED 27.40

Table 1: Comparison of lossless compression ratios across four com-
pression methods for the several datasets used in our experiments.
We give further comments in the text for the datasets marked with *.

requirements compared to other state-of-the-art particle compres-
sors. Our adaptive traversal approach improves over the static
breadth-first traversal with respect to a user-defined error heuris-
tic. Compared to k-d trees, our hybrid trees enable high-quality
depth-first traversal. The block-hybrid tree allows not only indepen-
dent, low-footprint encoding and decoding of blocks, but also higher
reconstruction quality compared to all other approaches. Our block-
adaptive traversal approach allows flexible, error-guided reconstruc-
tions at decoding time independent of how data is compressed. All
of our proposed techniques benefit equally the encoder and decoder.
Working together, our contributions amount to a highly flexible and
scalable particle compression system, which compares favorably to
the state-of-the-art MPEG standard in memory and speed, both in
absolute terms and in rates of growth.

Our method uses the same low-level node encoding scheme as
DG’s [13] and does not take advantage of global redundancy. It
therefore does not improve lossless compression ratios. To realize
the odd-even splitting scheme, we need to quantize particle positions
to avoid inaccuracy caused by floating-point operations, but there
may exists techniques that maintain accuracy without quantization.
We also do not tackle compression of attributes other than posi-
tions, although odd-even splitting – being based on the lazy wavelet
transform – might suggest a wavelet-based compression scheme
for attributes. We see opportunities for more in-depth studies of
the trade-offs between odd-even and k-d splits, as well as between
various possible combinations of tree and traversal types. The idea
of odd-even splits may be generalized to octrees, although perhaps
with different trade-offs. In this paper, we assume particles are de-
compressed into an output buffer to be consumed by downstream
visualization or analysis tasks. However, our inherent tree structures
can also be used to accelerate certain tasks such as nearest-neighbor
queries, occlusion culling, or empty-space skipping in rendering.
There, it remains to be seen how our odd-even splitting mecha-
nism affects such application-level concerns, and more generally,
to what extent our hybrid and block-hybrid trees can be used for
noncompression purposes. Finally, it is also important to study task-
oriented error metrics/heuristics and their utility to drive either tree
construction, tree traversal, or both.

ACKNOWLEDGMENTS

This research is supported in part by the U.S. Department of Energy
(DOE) under Award Number(s) DE-FE0031880 and the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the DOE
Office of Science and the National Nuclear Security Administration.
This work is supported in part by NSF OAC award 1842042, NSF
OAC award 1941085, and NSF CMMI award 1629660. This work
was also performed under the auspices of the DOE by Lawrence Liv-
ermore National Laboratory under Contract DE-AC52-07NA27344
and supported by the LLNL-LDRD Program under Project No. 17-
SI-004. LLNL release number: LLNL-CONF-821057.

REFERENCES

[1] Draco: Geometric coding for dynamic voxelized point clouds. https:
//github.com/google/draco. Accessed: 2021-03-31.

[2] A generic scheme for progressive point cloud coding.
[3] MPEG-PCC-TMC13: Geometrybased point cloud compression.
https://github.com/MPEGGroup/mpeg-pcc-tmc13. Accessed:
2021-03-31.

[4] OpenTopography. https://portal.opentopography.org/

datasets. Accessed: 2021-03-31.
[5] Scientific visualization contest 2016. https://www.uni-kl.de/
sciviscontest/. Accessed: 2021-03-31.

[6] E. Alexiou and T. Ebrahimi. On the performance of metrics to predict
quality in point cloud representations. In Applications of Digital Image
Processing XL, volume 10396, page 103961H, 2017.

[7] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey,
Q. Meng, J. Schmidt, and C. Wight. Extending the uintah framework
through the petascale modeling of detonation in arrays of high explosive
devices. SIAM Journal on Scientific Computing, 38(5):S101–S122,
2016.

[8] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality
rendering of point sampled geometry. In Eurographics Workshop on
Rendering, EGRW ’02, pages 53–64, 2002.

[9] S. Byna, A. Uselton, D. Knaak, and H. He. Trillion particles, 120,000
cores, and 350 TBs: Lessons learned from a hero I/O run on Hopper.
In Cray User Group conference, CUG ’13, 2013.

[10] K. Cai, Y. Liu, W. Wang, H. Sun, and E. Wu. Progressive out-of-core
compression based on multi-level adaptive octree. In ACM Interna-
tional Conference on Virtual Reality Continuum and Its Applications
in Industry, VRCIA ’06, pages 83–89, 2006.

[11] S. Chen, D. Tian, C. Feng, A. Vetro, and J. Kovačević. Fast resampling
of three-dimensional point clouds via graphs. IEEE Transactions on
Signal Processing, 66(3):666–681, 2018.

[12] G. Cirio, G. Lavoué, and F. Dupont. A Framework for Data-Driven Pro-
gressive Mesh Compression. In International Conference on Computer
Graphics Theory and Applications, GRAPP ’10, pages 5–12, 2010.

[13] O. Devillers and P.-M. Gandoin. Geometric compression for interactive
transmission. In IEEE Visualization, VIS ’00, pages 319–326, 2000.

[14] F. Di Natale, H. Bhatia, T. S. Carpenter, C. Neale, S. K. Schumacher,
T. Oppelstrup, L. Stanton, X. Zhang, S. Sundram, T. R. W. Scogland,
G. Dharuman, M. P. Surh, Y. Yang, C. Misale, L. Schneidenbach,
C. Costa, C. Kim, B. D’Amora, S. Gnanakaran, D. V. Nissley, F. Stre-
itz, F. C. Lightstone, P.-T. Bremer, J. N. Glosli, and H. I. Ingólfsson. A
massively parallel infrastructure for adaptive multiscale simulations:
Modeling RAS initiation pathway for cancer. In International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, SC ’19, pages 1–16, 2019.

[15] J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka. Large scale
molecular dynamics simulations of homogeneous nucleation. The
Journal of Chemical Physics, 139(7):074309, 2013.

[16] O. Dovrat, I. Lang, and S. Avidan. Learning to sample. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR ’19,
pages 2755–2764, 2019.

[17] Z. Du, P. Jaromersky, Y. Chiang, and N. Memon. Out-of-core progres-
sive lossless compression and selective decompression of large triangle
meshes. In Data Compression Conference, DCC ’09, pages 420–429,
2009.

[18] Y. Fan, Y. Huang, and J. Peng. Point cloud compression based on
hierarchical point clustering. In Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference, APSIPA ’13,
pages 1–7, 2013.

[19] R. Fraedrich, J. Schneider, and R. Westermann. Exploring the
millennium run - scalable rendering of large-scale cosmological
datasets. IEEE Transactions on Visualization and Computer Graphics,
15(6):1251–1258, 2009.

[20] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L. d. Queiroz.
Geometry coding for dynamic voxelized point clouds using octrees and
multiple contexts. IEEE Transactions on Image Processing, 29:313–
322, 2020.

[21] E. Gobbetti and F. Marton. Layered point clouds: a simple and efficient

multiresolution structure for distributing and rendering gigantic point-
sampled models. Computers & Graphics, 28(6):815–826, 2004.

[22] P. Goswami, F. Erol, R. Mukhi, R. Pajarola, and E. Gobbetti. An
efficient multi-resolution framework for high quality interactive ren-
dering of massive point clouds using multi-way kd-trees. The Visual
Computer, 29(1):69–83, 2013.

[23] S. Grottel, P. Beck, C. Müller, G. Reina, J. Roth, H. Trebin, and T. Ertl.
Visualization of electrostatic dipoles in molecular dynamics of metal
oxides. IEEE Transactions on Visualization and Computer Graphics,
18(12):2061–2068, 2012.

[24] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vishwanath, Z. Lukić,
S. Sehrish, and W.-k. Liao. HACC: Simulating sky surveys on state-
of-the-art supercomputing architectures. New Astronomy, 42:49–65,
2016.

[25] D. Hoang, B. Summa, H. Bhatia, P. Lindstrom, P. Klacansky, W. Usher,
P. Bremer, and V. Pascucci. Efficient and flexible hierarchical data
layouts for a unified encoding of scalar field precision and resolu-
tion. IEEE Transactions on Visualization and Computer Graphics,
27(2):603–613, 2021.

[26] M. Hopf, M. Luttenberger, and T. Ertl. Hierarchical splatting of scat-
tered 4D data. IEEE Computer Graphics and Applications, 24(4):64–
72, 2004.

[27] M. Hosseini and C. Timmerer. Dynamic adaptive point cloud streaming.
In Packet Video Workshop, PV ’18, pages 25–30, 2018.

[28] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The quantized kd-tree:
efficient ray tracing of compressed point clouds. In IEEE Symposium
on Interactive Ray Tracing, RT ’06, pages 105–113, 2006.

[29] M. Isenburg. LASzip: lossless compression of LiDAR data. Pho-
togrammetric Engineering & Remote Sensing, 79(2), 2013.

[30] S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and J. P.
Ahrens. Understanding GPU-based lossy compression for extreme-
scale cosmological simulations. In IEEE International Parallel &
Distributed Processing Symposium, IPDPS ’20, pages 105–115, 2020.

[31] K. Kadau, T. C. Germann, and P. S. Lomdahl. Large-scale molecular-
dynamics simulation of 19 billion particles. International Journal of
Modern Physics C, 15(01):193–201, 2004.

[32] J. E. S. Khalil, A. Munteanu, L. Denis, P. Lambert, and R. V. d. Walle.
Scalable feature-preserving irregular mesh coding. Computer Graphics
Forum, 36(6):275–290, 2017.

[33] T.-J. Kim, B. Moon, D. Kim, and S.-E. Yoon. RACBVHs: random-
accessible compressed bounding volume hierarchies. IEEE Transac-
tions on Visualization and Computer Graphics, 16(2):273–286, 2010.

[34] D. King and J. Rossignac. Optimal bit allocation in compressed 3D
models. Computational Geometry, 14(1):91–118, 1999.

[35] M. Krivokuća, P. A. Chou, and M. Koroteev. A volumetric approach
to point cloud compression – Part II: Geometry compression. IEEE
Transactions on Image Processing, 29:2217–2229, 2020.

[36] M. Krivokuća, P. A. Chou, and P. Savill. 8i voxelized surface light field
(8ivslf) dataset. ISO/IEC JTC1/SC29 WG11 (MPEG) input document
m42914, pages 61–70, 2018.

[37] S. Lasserre, D. Flynn, and S. Qu. Using neighbouring nodes for the
compression of octrees representing the geometry of point clouds. In
ACM Multimedia Systems Conference, MMSys ’19, pages 145–153,
2019.

[38] M. Le Muzic, L. Autin, J. Parulek, and I. Viola. cellVIEW: a tool for
illustrative and multi-scale rendering of large biomolecular datasets.
VCBM ’15, pages 61–70, 2015.

[39] H. Lee, M. Desbrun, and P. Schröder. Progressive encoding of complex
isosurfaces. ACM Transactions on Graphics, 22(3):471–476, 2003.

[40] H. Lee, G. Lavoué, and F. Dupont. Rate-distortion optimization for
progressive compression of 3D mesh with color attributes. The Visual
Computer, 28:137–153, 2012.

[41] P. Lindstrom. Out-of-core construction and visualization of multireso-
lution surfaces. In Symposium on Interactive 3D Graphics and Games,
I3D ’03, pages 93–102, 2003.

[42] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2674–
2683, 2014.

[43] H. Liu, H. Yuan, Q. Liu, J. Hou, and J. Liu. A comprehensive study

https://github.com/google/draco
https://github.com/google/draco
https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://portal.opentopography.org/datasets
https://portal.opentopography.org/datasets
https://www.uni-kl.de/sciviscontest/
https://www.uni-kl.de/sciviscontest/

and comparison of core technologies for MPEG 3D point cloud com-
pression. IEEE Transactions on Broadcasting, 66(3):701–717, 2020.

[44] A. Maglo, C. Courbet, P. Alliez, and C. Hudelot. Progressive compres-
sion of manifold polygon meshes. Computers & Graphics, 36(5):349–
359, 2012.

[45] O. Martinez Rubi, S. Verhoeven, M. van Meersbergen, M. Schütz,
P. Oosterom, R. Goncalves, and T. Tijssen. Taming the beast: Free
and open-source massive point cloud web visualization. In Capturing
Reality Forum, 2015.

[46] M. McGuire. Computer graphics archive. https:

//casual-effects.com/data. Accessed: 2021-03-31.
[47] R. Mekuria, K. Blom, and P. Cesar. Design, implementation, and

evaluation of a point cloud codec for tele-immersive video. IEEE
Transactions on Circuits and Systems for Video Technology, 27(4):828–
842, 2017.

[48] Q. Meng, A. Humphrey, and M. Berzins. The UINTAH framework:
a unified heterogeneous task scheduling and runtime system. In SC
Companion: High Performance Computing, Networking Storage and
Analysis, SCC ’12, pages 2441–2448, 2012.

[49] A. Metere, S. Sarman, T. Oppelstrup, and M. Dzugutov. Formation of a
columnar liquid crystal in a simple one-component system of particles.
Soft Matter, 11(23):4606–4613, 2015.

[50] S. Park and S. Lee. Multiscale representation and compression of 3D
point data. IEEE Transactions on Multimedia, 11(1):177–183, 2009.

[51] V. Pascucci and R. J. Frank. Global static indexing for real-time
exploration of very large regular grids. In International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’01, pages 45–45, 2001.

[52] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić,
V. Roytershteyn, M. J. Anderson, Y. Yao, Prabhat, and P. Dubey. BD-
CATS: big data clustering at trillion particle scale. In International
Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’15, pages 1–12, 2015.

[53] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-
sampled surfaces. In IEEE Visualization, VIS ’02, pages 163–170,
2002.

[54] J. Peng, Y. Huang, C.-C. J. Kuo, I. Eckstein, and M. Gopi. Feature
oriented progressive lossless mesh coding. Computer Graphics Forum,
29:2029–2038, 2010.

[55] J. Peng and C. C. J. Kuo. Octree-based progressive geometry encoder.
In Internet Multimedia Management Systems IV, volume 5242, pages
301–311, 2003.

[56] J. Peng and C.-C. J. Kuo. Geometry-guided progressive lossless 3D
mesh coding with octree (OT) decomposition. In ACM International
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’05, pages 609–616, 2005.

[57] J. Peng and C.-J. Kuo. Progressive geometry encoder using octree-
based space partitioning. In IEEE International Conference on Multi-
media and Expo, ICME ’04, pages 1–4, 2004.

[58] S. Rizzi, M. Hereld, J. Insley, M. E. Papka, T. Uram, and V. Vish-
wanath. Large-scale parallel visualization of particle-based simulations
using point sprites and level-of-detail. In Eurographics Symposium on
Parallel Graphics and Visualization, PGV ’15, page 1–10, 2015.

[59] S. Rusinkiewicz and M. Levoy. QSplat: a multiresolution point ren-
dering system for large meshes. In ACM International Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’00,
pages 343–352, 2000.

[60] K. Schatz, C. Müller, M. Krone, J. Schneider, G. Reina, and T. Ertl.
Interactive visual exploration of a trillion particles. In IEEE Symposium
on Large Data Analysis and Visualization, LDAV ’16, pages 56–64,
2016.

[61] R. Schnabel and R. Klein. Octree-based point-cloud compression. In
Eurographics Conference on Point-Based Graphics, SPBG’06, pages
111–121, 2006.

[62] R. Schnabel, S. Möser, and R. Klein. A parallelly decodeable com-
pression scheme for efficient point-cloud rendering. SPBG ’07, pages
214–226, 2007.

[63] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou,
R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis,

and V. Zakharchenko. Emerging MPEG standards for point cloud com-
pression. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 9(1):133–148, 2019.

[64] M. Schütz, S. Ohrhallinger, and M. Wimmer. Fast out-of-core oc-
tree generation for massive point clouds. Computer Graphics Forum,
39(7):155–167, 2020.

[65] J. M. Singh and P. J. Narayanan. Progressive decomposition of point
clouds without local planes. In Indian Conference on Computer Vision,
Graphics and Image Processing, ICVGIP’06, pages 364–375, 2006.

[66] S. W. Skillman, M. S. Warren, M. J. Turk, R. H. Wechsler, D. E. Holz,
and P. M. Sutter. Dark sky simulations: Early data release. arXiv
e-prints, page arXiv:1407.2600, 2014.

[67] S. Slattery, C. Junghans, D. L-G, rhalver, G. Chen, S. Reeve, ascheinb,
C. Smith, and R. Bird. ECP-copa/Cabana: Cabana version 0.2.0, 2019.

[68] W. Sweldens. Wavelets and the lifting scheme: A 5 minute tour.
Journal of Applied Mathematics and Mechanics, 76:41–44, 1996.

[69] D. Tao, S. Di, Z. Chen, and F. Cappello. In-depth exploration of single-
snapshot lossy compression techniques for N-body simulations. In
IEEE International Conference on Big Data, pages 486–493, 2017.

[70] D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving
lossy compression for scientific data sets based on multidimensional
prediction and error-controlled quantization. In IEEE International
Parallel and Distributed Processing Symposium, IPDPS ’17, pages
1129–1139, 2017.

[71] W. Usher, X. Huang, S. Petruzza, S. Kumar, S. R. Slattery, S. T. Reeve,
F. Wang, C. R. Johnson, and V. Pascucci. Adaptive spatially aware I/O
for multiresolution particle data layouts. In IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’21, pages 547–556,
2021.

[72] S. Valette, R. Chaine, and R. Prost. Progressive lossless mesh com-
pression via incremental parametric refinement. Computer Graphics
Forum, 28(5):1301–1310, 2009.

[73] S. Valette and R. Prost. Wavelet-based progressive compression scheme
for triangle meshes: wavemesh. IEEE Transactions on Visualization
and Computer Graphics, 10(2), 2004.

[74] I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,
J. Gunther, and P. Navratil. OSPRay - a CPU ray tracing framework
for scientific visualization. IEEE Transactions on Visualization and
Computer Graphics, 23(1):931–940, 2017.

[75] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E.
Papka. CPU ray tracing large particle data with balanced P-k-d trees.
In IEEE Visualization, VIS ’15, pages 57–64, 2015.

[76] I. Wald and H.-P. Seidel. Interactive ray tracing of point-based models.
In Eurographics Symposium on Point-Based Graphics, SPBG’05, pages
9–16, 2005.

[77] M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray, and S. Würmlin.
Progressive compression of point-sampled models. In Eurographics
Symposium on Point-Based Graphics, SPBG’04, pages 95–103, 2004.

[78] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and K. Heit-
mann. In-situ sampling of a large-scale particle simulation for in-
teractive visualization and analysis. In Eurographics Conference on
Visualization, EuroVis’11, pages 1151–1160, 2011.

[79] D. Z. Zhang, Q. Zou, W. B. VanderHeyden, and X. Ma. Material point
method applied to multiphase flows. Journal of Computational Physics,
227(6):3159–3173, 2008.

https://casual-effects.com/data
https://casual-effects.com/data

	Introduction
	Background and Related Work
	Tree construction
	Odd-Even Splits
	Hybrid Trees
	Block-Hybrid Trees

	Tree traversal
	Adaptive Traversal
	Block-Adaptive Traversal

	Evaluation and Results
	Adaptive Traversal of k-d Trees
	Traversals of Hybrid and Block-Hybrid Trees
	Speed and Memory Footprint
	Lossless Compression Ratio

	Conclusion and Future Work

