
BHATIA et al.: AMM: ADAPTIVE MULTILINEAR MESHES 1

AMM: Adaptive Multilinear Meshes
Harsh Bhatia, Duong Hoang, Nate Morrical, Valerio Pascucci, Peer-Timo Bremer, and Peter Lindstrom

Abstract—Adaptive representations are increasingly indispensable for reducing the in-memory and on-disk footprints of large-scale
data. Usual solutions are designed broadly along two themes: reducing data precision, e.g., through compression, or adapting data
resolution, e.g., using spatial hierarchies. Recent research suggests that combining the two approaches, i.e., adapting both resolution
and precision simultaneously, can offer significant gains over using them individually. However, there currently exist no practical
solutions to creating and evaluating such representations at scale. In this work, we present a new resolution-precision-adaptive
representation to support hybrid data reduction schemes and offer an interface to existing tools and algorithms. Through novelties in
spatial hierarchy, our representation, Adaptive Multilinear Meshes (AMM), provides considerable reduction in the mesh size. AMM
creates a piecewise multilinear representation of uniformly sampled scalar data and can selectively relax or enforce constraints on
conformity, continuity, and coverage, delivering a flexible adaptive representation. AMM also supports representing the function using
mixed-precision values to further the achievable gains in data reduction. We describe a practical approach to creating AMM
incrementally using arbitrary orderings of data and demonstrate AMM on six types of resolution and precision datastreams. By
interfacing with state-of-the-art rendering tools through VTK, we demonstrate the practical and computational advantages of our
representation for visualization techniques. With an open-source release of our tool to create AMM, we make such evaluation of data
reduction accessible to the community, which we hope will foster new opportunities and future data reduction schemes.

Index Terms—Adaptive Meshes; Wavelets; Compression Techniques; Multiresolution Techniques; Streaming Data; Scalar Field Data.
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1 INTRODUCTION

A S scientific datasets continue to grow in size and
complexity, adaptive representations have become key

to enabling interactive analysis and visualization [1]. Such
representations can reduce the memory footprint and pro-
cessing costs of large-scale data by orders of magnitude,
often without perceptible degradation of visualization qual-
ity or analysis results [2]. However, existing approaches
are limited to either compressed representations of regular
grids [3], [4] or multiresolution structures, such as octrees
and k-d trees [5], [6]. The former typically provide little
spatial adaptivity and, thus, do not benefit from the sparsity
that is common in scientific datasets, where often only small
portions of space are of interest. With few exceptions [4],
data is usually stored uncompressed in memory, limiting the
overall grid resolution. Spatially adaptive structures over-
come this problem by selectively refining regions of interest,
resulting in a smaller memory footprint. However, many
multiresolution representations imply structural constraints,
causing unnecessary refinement in unimportant regions,
especially for odd-sized domains like skinny rectangles or L-
shapes. Finally, both approaches are limited to their respec-
tive notions of fidelity, adapting either numerical precision
or spatial resolution.

The recent work of Hoang et al. [7], [8] has demonstrated
that combining both concepts — adapting both resolution
and precision simultaneously — can provide significant
advantages in reduced storage and/or improved accuracy.
Unfortunately, there currently exists no data structure that
can easily exploit this idea, as precision-based compression
methods do not provide spatial adaptivity, whereas mul-
tiresolution grids do not generally adapt in precision.
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Given a lossy data reduction scheme, we address the
challenge of representing the resulting data faithfully and
without further loss of information, while minimizing the
number of cells and vertices in the representation as well as
the number of bits to store for each vertex. Unlike existing
multiresolution approaches, we enable varying the precision
spatially, e.g., features of interest can be represented with
more precision bits than the rest. Unlike common com-
pression techniques, we allow adaptive spatial refinement,
i.e., prevent representation of large regions of uninteresting
space. In this way, our framework leverages both types of
reduction to provide gains in the memory footprint not
realizable by either type of approach individually.

Furthermore, our approach aims not necessarily for the
best compression ratio, but rather for the flexibility of gen-
erating, storing, and accessing data at reduced resolution
and precision. Since future data will likely increase much
more in resolution than in precision, we anticipate that
these unique capabilities of our framework will become
increasingly more essential to the design, evaluation, and
comparison of different data reduction strategies. This work
offers an important step toward a potential synergy between
resolution adaptivity and precision adaptivity in the future.

The ability to “incrementally” update the reduced rep-
resentation through streaming of partial data (e.g., in a
client-server setting or simply choosing when to stop) of-
fers significant benefits. First, downstream processing can
start without waiting for a potentially long decompression
step. Second, with fewer vertices and fewer bits per vertex,
such downstream tasks can be performed with improved
memory efficiency and, thus, can finish significantly faster
to provide the user with approximate results that converge
over time. Therefore, we focus on scalar fields defined on
uniform grids and introduce an adaptive mesh that can be
constructed incrementally from arbitrarily ordered datastreams
(sequences of complete or partial values).
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Fig. 1: Adaptive Multilinear Meshes (AMM) are a resolution-precision-adaptive representation of uniformly sampled scalar
fields. AMM facilitates a flexible spatial hierarchy — to adapt in space — and mixed-precision storage — to adapt
in precision. AMM allows creating and comparing data reduction through arbitrary resolution-precision streams and
facilitates interfacing with state-of-the-art tools for visualization and analysis. The figure visualizes data reduction after
ingesting 8 MB of data through two streams, Slcf and Scen. The smaller renderings on the sides visualize the types of cells
(top; type-1 in green and type-2 in pink) and depths of cells (bottom; deeper cells are darker) in AMM’s spatial hierarchy.

Built upon a new type of tree, our representation —
Adaptive Multilinear Meshes (AMM), see Fig. 1 — utilizes
rectangular cuboidal cells to represent multilinear data.
AMM does not require a complete global coverage of space
but performs minimal refinement to allow isolated regions
of interest without needing all surrounding elements, which
minimizes the size of the representation. AMM representa-
tions can be created using an easy-to-use, open-source tool
and exported to the community-standard VTK [9] meshes,
making it straightforward to adopt for commonly used
visualization and analysis tasks, e.g., with standard and
generic tools, such as Paraview [10] and VisIt [11], or with
specific rendering approaches [12], [13], [14].

AMM can be constructed through superpositioning
piecewise multilinear C0 fields in overlapping subgrids.
Specifically, we build upon the recent work by Weiss and
Lindstrom [15], who use an octree-based approach to encode
data using tensor products of linear B-spline wavelets [16],
where the basis functions are defined on piecewise multilin-
ear, spatially overlapping stencils. Compared to their work,
our representation uses a more-flexible spatial hierarchy that
further reduces the mesh considerably, represents vertex
values using a mixed-precision scheme, and supports pro-
gressive refinement. AMM can also be created by directly
reading in arbitrary axis-aligned multilinear cells with val-
ues at the corresponding corners, representing continuous
as well as discontinuous functions.

Finally, AMM can be constructed through incremental
updates using datastreams that update the representation
with additional resolution, additional precision, or both. A
key novelty in AMM is that it ingests datastreams with
arbitrary orderings. Prior work [7] has shown that different
analysis tasks may prefer different types of datastreams —
some may need more resolution (e.g., gradient computa-
tion) whereas others more precision (e.g., histogram com-
putation). All such datastreams, and others that arbitrarily
combine resolution and precision, are supported by our
representation. In this way, AMM offers a framework to
evaluate in a consistent manner the impact and performance
of different data reduction strategies (see Fig. 1).

Contributions. We present AMM, a new resolution-
precision-adaptive representation that can ingest arbitrary data
orderings and provide an interface to existing tools and algo-

rithms. Specifically, we make the following contributions:
• AMM is a compact, adaptive representation of piecewise

multilinear scalar fields. AMM reduces the number of
cells and vertices by supporting (1) arbitrary axis-aligned
splits through the center to create rectangular cuboidal cells,
and (2) incomplete splitting of cells and their optimal reso-
lution with lazy updates. Using a tensor-product wavelet
basis, we extend the work of Weiss and Lindstrom [15]
and reduce the size of equivalent representations.

• AMM uses a mixed-precision, block-based encoding of
values at the vertices, providing superior data reduction
than spatial adaptivity alone.

• AMM is the first-of-its-kind adaptive representation that
can be updated progressively using arbitrarily ordered
datastreams, offering new opportunities to explore dy-
namic and hybrid data reduction strategies [7], [8].

• For wavelet transforms that require boundary conditions
or are defined only for square grids of certain dimensions,
we present a novel linear-lifting method to extrapolate the
data to avoid discontinuities and artificially large coeffi-
cients at the domain boundary, preventing unnecessary
mesh refinement.

• We present an open-source implementation of the tool
to create and export AMM to standard VTK meshes
(github.com/llnl/amm), allowing for its wider adoption
and use with state-of-the-art tools.

2 BACKGROUND AND RELATED WORK

Tree-based hierarchies, such as k-d trees [17], [18] and
octrees [19], are among the most popular spatial-subdivision
schemes due to their simplicity. Octrees, in particular, have
found widespread adoption across diverse domains. They
are especially useful when the data contains sparse details,
so the smooth-varying regions can be stored at coarser
octree levels, thereby reducing storage, e.g., using sparse
voxel octrees [20], [21], [22]. Recent approaches have made
modifications to traditional octrees to leverage modern
computational architectures. For example, OpenVDB [23]
increases the tree branching factor to ensure that sibling
nodes are stored contiguously in a cache-friendly layout;
SPGrid [24] stores octree levels separately as sparse and
nonoverlapping grids, taking advantage of virtual memory
handling capacities in modern operating systems. Similar to

https://github.com/llnl/amm
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SPGrid, we store per-level vertices separately and aggregate
them on demand, but use hash tables instead of the OS’s
virtual memory to handle sparsity.

Adaptive mesh refinement (AMR) [25], [26] is another
popular class of multiresolution schemes, especially for sim-
ulations. In structured AMR, each resolution level consists
of a set of nonoverlapping uniform grids. As the grids can
be placed arbitrarily, fine-resolution grids can be used to
quickly resolve fine details. An AMR mesh can be either
vertex-centered or cell-centered, depending upon where the
data points are stored. Although the cell-centered approach
is more common, visualizing the resulting mesh requires
preprocessing steps, such as remeshing and stitching [27],
[28] and ad hoc interpolation [29], [30]. In contrast, our
representation is vertex-based, with a principled method for
(multilinear) interpolation.

Wavelets provide a rigorous framework for multiresolution
decomposition that is also amenable for data reduction and,
thus, is commonly used in visualization frameworks for
large data [31], [32], [33], [34]. There also have been works
that study data simplification and approximation using
wavelet-based subdivision schemes [35], [36], as well as
representing multilinear functions using a minimal number
of mesh elements to reduce memory footprints [15], [37].

Linsen et al. [37] subdivide cubes into simplices and use
linear interpolation for function reconstruction. Weiss and
Lindstrom [15] later demonstrated that using multilinear
interpolation produces superior quality meshes with respect
to approximation error. Conceptually, our representation is
most similar to Weiss and Lindstrom’s approach, although
AMM is a more general representation. In particular, our
framework utilizes rectangular cuboidal cells as opposed
to cube-shaped cells (of a standard octree hierarchy) exclu-
sively, thereby significantly reducing memory requirements.

We use linear B-spline wavelets [16] to populate AMM,
since multilinear interpolants are at the foundation of
many visualization techniques [38], [39], [40], [41]. Sparse
grids [42], [43], a common solution for circumventing the
curse of dimensionality when solving partial differential
equations, also form a piecewise multilinear multiresolution
basis and would fit into our hierarchical framework.

Compression techniques. Beside hierarchical decomposi-
tion, data compression is effective at reducing data sizes.
Prominent compression methods for scientific data, such
as ZFP [4], SZ [44], and TTHRESH [45], focus more on
reducing data precision through transform/prediction steps
followed by quantization of the resulting coefficients or
residuals. Compression techniques that reduce resolution
have also been investigated. Recently, Ainsworth et al. [46],
[47] presented a multigrid approach that offers compression
at different levels of the hierarchy. Zhao et al. [48] introduced
a multilevel spline-based approach for lossy compression.
However, these techniques can support only a one-shot
data reduction whereas AMM is designed to handle arbi-
trary datastreams and incremental updates. Wavelet-based
compression [8], [49], [50], [51], [52], [53] often produces
progressive bitstreams that improve the data resolution as
well as precision. However, such ideas do not provide
any adaptive in-memory representation that could be con-
structed from such streams. This gap is filled by AMM,

which complements these wavelet coders by offering a
compact in-memory representation for data approximations
constructed from compressed bitstreams.

It is not meaningful to directly compare compact meshes,
such as the one by Weiss and Lindstrom [15] or AMM, with
pure compression techniques, since the former have over-
heads of embedded data structures needed to support reso-
lution adaptivity, and they also need to put more emphasis
on data access speed instead of data reduction alone. Rather
than focusing on providing unbalanced comparisons, we
consider AMM and compression to be complementary ap-
proaches and highlight the flexibility offered by AMM that
may be used to leverage compression in the future.

2.1 Octree and Regular Refinement

AMM is based on an advanced tree representation that
builds upon the idea of regular refinement of octrees, which
are a common way of defining a spatial hierarchy over
regular grids. With a slight abuse of notation, we use octree
to refer to both octrees (in 3D) and quadtrees (in 2D). An
octree is a spatial hierarchy defined on a d-dimensional
space; it is defined as a collection of d-cubes, which form
the nodes of the tree. Under regular refinement, a parent node
(a d-cube) is decomposed into 2d child nodes (also d-cubes),
by splitting each dimension in half. The root node covers the
entire domain. The nodes that have no children are referred
to as leaf nodes, whereas all others are internal nodes. The
number of refinements needed to obtain a given node from
the root node defines the depth (also referred to as the level)
of the node. An adaptive representation can be obtained by
selectively refining the nodes of interest. When an octree is
defined over a regular grid, such that the vertices of the grid
form the corners of the d-cubes, standard representations
require the size of the domain (number of vertices in each
dimension) to be 2L + 1, where L defines the maximum
depth of the hierarchy; the size of a node at depth ` is given
by s` = 2L−` + 1. The midpoints of the parent node and its
facets (i.e., edges, faces) form the vertices of the child nodes,
and each child contains one of the vertices of the parent
node. Given a regular cubical mesh defined by an octree, we
refer to the k-dimensional faces of the tree as primal cubes,
and to the axis-aligned (d− k)-cubes defined by connecting
the centers of their adjacent d-cubes as dual cubes.

2.2 Multilinear Tensor-Product Wavelets

Wavelet transforms create multiscale data representations.
Such representations are defined by translations and dila-
tions of a wavelet basis function, W, which extracts the detail
at a given scale, and a scaling basis function, S, which captures
the coarse representation after removing the details. Here,
W is a high-pass filter whereas S is a low-pass filter that
represents the wavelet bases across all remaining scales.
Lifting scheme for linear B-spline wavelet transform.
Given a 1D uniform grid of length 2L + 1, (discrete)
wavelet transforms are often implemented in the form
of lifting schemes. The forward lifting transform associ-
ated with linear B-spline wavelets consists of two phases.
The first phase, the w-lift, defines the wavelet coeffi-
cient for every odd-indexed vertex on the grid as the
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prediction residual of the average of its two immedi-
ate neighbors from the given function value. The sec-
ond phase, the s-lift, is then optionally applied to pre-
serve the mean of the function. The s-lift updates the
values of the even-indexed vertices by adding a weighted
sum of the values obtained in the w-lift. Mathematically,
w-lift is f̂(v2i+1) = f(v2i+1)− 1

2 [f(v2i) + f(v2i+2)], and

s-lift is f̂(v2i) = f(v2i) +
1
4

[
f̂(v2i−1) + f̂(v2i+1)

]
, where, f

denotes the input function, f̂ the wavelet (odd-indexed)
and scaling (even-indexed) coefficients, and vi denotes the
indexed vertex in the grid. Multiple resolutions of wavelet
transforms are obtained by recursively applying lifting steps
to the even-indexed vertices at each level. The inverse
wavelet transform simply inverts these operations.

When only the w-lift step is performed, the resulting
wavelet bases satisfy the Lagrange property, leading to
an interpolation of the function, and the corresponding
wavelets are commonly called interpolating wavelets. On the
other hand, using both the w-lift and the s-lift leads to
approximating wavelets. The wavelet synthesis bases for the
interpolating and approximating wavelets correspond to
piecewise-linear spatial stencils with nodal values WI =
[0, 1, 0] and WA = 1

8 [0,−1,−2, 6,−2,−1, 0], respectively,
whereas the stencil corresponding to the scaling function
for both types is S = 1

2 [0, 1, 2, 1, 0]. Wavelet transforms
exhibit the two-scale relation [54], i.e., both the scaling and
the wavelet functions at a given scale can be expressed in
terms of (translated and dilated) scaling functions at the
next finer scale. When combined with the piecewise linear
nature of the basis functions, the spatial stencils described
above produce a hierarchical representation in terms of a
regular grid, i.e., a stencil at a given level can be described
in terms of the vertices at the next (finer) level.
Multilinear tensor-product wavelets in 2D and 3D. These
ideas can be generalized to higher dimensions by taking
the tensor product of the basis functions. Shown by Weiss
and Lindstrom [15], a basis function defined by the tensor
product of k wavelets and d − k scaling functions (for a d-
dimensional regular grid) is associated with the midpoint
of a k-cube in the d-dimensional grid. For example, refer
to Fig. 5 and note that in 2D the tensor product scaling
functions SxSy are associated with the vertices of the grid,
the wavelets SxWy and WxSy with the midpoints of edges,
and the wavelets WxWy with midpoints of the square
cells. Since the scaling functions for linear B-spline wavelets
correspond to linear interpolation, their tensor product cor-
responds to multilinear interpolation.

3 ADAPTIVE MULTILINEAR MESHES

AMM provides flexible adaptivity in representing uni-
formly gridded scalar data through a new type of spatial
hierarchy that supports more-general splitting operations as
compared to existing tree-based hierarchies, such as octrees
and k-d trees. Our data structure enables significant reduc-
tion of the size of the representation through two novelties:
(1) rectangular cuboidal cells, which ensure a tree node is split
only along the axes required, and (2) improper nodes, which
facilitate partial splitting and representation of a node.

We draw a distinction between nodes of the tree, which
define the spatial hierarchy, and cells of the resulting mesh,
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Fig. 2: AMM’s tree supports flexible axis-aligned split con-
figurations, which avoids artificially deep hierarchies (like
with k-d trees), or an excessive number of subdivisions
(like with quad/octrees), which leads to redundant cells and
vertices. In this example, the leaf nodes (shaded) in all three
trees represent the same partitioning of space.

which are the leaf nodes of the tree after resolving improper
nodes (discussed in Section 3.1.3 and Section 4.2.4) that lie
partially or completely inside the given domain (as dis-
cussed in Section 3.1.1, the tree may cover a larger spatial ex-
tent than that of the given data). The corners of nodes/cells
form the vertices of the tree/mesh and are associated with
function values. The function can be reconstructed any-
where using multilinear interpolation of vertices.

3.1 Spatial Adaptivity Using a New Tree Data Structure
Spatial hiearchies are commonly created as octrees or k-d
trees. For the former, each node (a d-cube) is either a leaf
node (i.e., no child nodes) or is fully refined along d axes
(i.e., 2d child nodes). Hence, octrees provide only one degree
of freedom: no refinement or full refinement. Similarly, k-d
trees, which split a spatial region along a hyperplane, also
offer only a binary, axis-based hierarchy, usually alternating
through the splitting dimension. Both types of hierarchy are
limited in their spatial adaptivity to two configurations only.

In contrast, AMM creates a spatial hierarchy that sub-
divides a d-cube through its center with respect to any
arbitrary combination of axes. Hence, the subdivision is
restricted neither to a single axis (as in a k-d tree) nor to
all axes (as in an octree). This subdivision flexibility facil-
itates many types of refinement configurations, ultimately
allowing us to reduce size of the resulting mesh (see Fig. 2).

3.1.1 Sizes of the Tree and Nodes
Similar to standard approaches, we enforce our spatial
hierarchy to sizes that are powers of two plus one and
require the root node to represent a d-cube, i.e., equal sizes
in all dimensions. Given data extents [X × Y × Z] in
3D, the spatial extent of the tree and the size (number of
vertices in each dimension) of the root node are 2L + 1,
where L = dlog2 (max(X,Y, Z))e is the maximum depth of
the tree. We also borrow the regular refinement operation
from octrees, which splits a node (a d-cube) with size
s` = 2L−` + 1 is split into child nodes that are also d-cubes
of size s`+1. Recall that ` is called the depth of the node.

The overhead associated with expanding the spatial
extent is negligible, since when properly constructed (see
Section 4.2), the regions outside the original domain contain
a small number of nodes. Furthermore, the expansion offers
opportunities for efficient storage and representation of the
tree (discussed in Section 3.1.4). Finally, using 2L + 1 sizes
also offers a way to avoid the boundary artifacts, where oth-
erwise arbitrary refinement can happen near the boundary
of the data domain (see Section 4.3).
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3.1.2 Rectangular Cuboidal Leaf Nodes

Toward the goal of creating as few cells as possible, AMM’s
leaf nodes are allowed to be rectangular cuboidal in shape
whenever possible (i.e., as large as they can be). On the other
hand, internal nodes are required to have equal sides (i.e.,
d-cubes only) to favor simplicity and efficiency of traversal.
Specifically, as illustrated in Fig. 3, there can be 8 and 26
types of leaf nodes in 2D and 3D, respectively, as compared
to 4 and 8 types of “regular” child nodes (d-cubes) for the
2D and 3D cases (quadtrees and octrees). Intuitively, the
types of rectangular nodes can be enumerated by fixing k
dimensions that are not split and splitting the remaining
d − k dimensions and counting the combinations of axes
that are split and not split. Here, k can be used to categorize
the type of nodes. AMM leaf nodes can be type-0 (all d
sides equal to s`+1), type-1 (one side, s`, longer than the
other d − 1 sides, s`+1), and type-2 (two equal sides, s`,
longer than the third, s`+1); type-2 does not exist in 2D.
Formally, a penultimate level node in AMM (a d-cube) may
have 2d + d

∑d−1
k=1 2

d−k types of child nodes. Here, the first
term, 2d, represents the regular child nodes (d-cubes of size
s`+1), and the term in the summation captures child nodes
that have k “long” dimensions (cuboids).

A valid node configuration is a subdivision of a node into
a set of nonoverlapping child nodes of the same or different
types. For example, in 2D, child ids {0,1,2,3} (all type-0)
and {1,3,6} (type-0 and type-1), and in 3D, {10,11,12,13}
(all type-1) and {0,4,18,25} (type-0, type-1, and type-2),
are all valid configurations. Additionally, a leaf node’s
configuration, {} (i.e., no subdivision), is also counted as
valid. In this context, octrees and k-d trees support only
two valid configurations each — either no refinement or
full refinement, whereas AMM allows n2 = 8 in 2D and
n3 = 146 in 3D unique valid configurations. Both numbers
can be derived as nd = 2 +

(
d−

∑d−1
p=1 2

−p
)
n2
d−1, with the

base case of n0 = 0. Here, n2
d−1 enumerates the possible

combinations of child nodes when a node is split along a
single axes, the multiplication by d accounts for all d axes,
the expression in the summation subtracts the redundan-
cies, and the constant “2” adds the two configurations for
full refinement and no refinement (which get subtracted
while removing redundancies). The expression holds true

{0, 1, 2, 3, 4, 5, 6, 7}

{20, 21} {22, 23} {24, 25}

{8, 9, 10, 11} {12, 13, 14, 15} {16, 17, 18, 19}
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Fig. 3: AMM provides flexible spatial adaptivity through
arbitrary combinations of axis-aligned subdivisions of a
spatial cube (nodes of the underlying tree). The figure shows
the different types of child nodes (spatial subdivisions) in
2D and 3D, and their color-corresponded ids. AMM can
support any combination of nonoverlapping child nodes,
referred to as a valid node configuration, e.g., {0,4,18,25}
and {10,11,12,13} in 3D, and, thus, represent more-general
configurations of cells, reducing the memory footprint.

for n1 = 2 as well, i.e., for a 1D binary hiearchy, which has
only two configurations — refinement and no refinement.

During the construction of AMM, rectangular cuboidal
leaf nodes are created whenever possible. In addition to the
regular refinement that splits a node into child nodes, AMM
also allows splitting rectangular cuboidal leaf nodes into
smaller sibling nodes, when needed. For example, when a
3-cube is split along x axis, only two leaf nodes, 24 and
25, are created, whereas, if the node is split along x and
y axes, four leaf nodes, {16, 17, 18, 19}, are created. If the
refinement next requires creating leaf node 0, only leaf node
16 is split (along z), and the remaining leaf nodes are left
untouched, giving the new configuration as {0,4,17,18,19}.
Each rectangular leaf node is handled independently, thus
preventing any unnecessary splits.

Furthermore, the two halves {24,25} of the node can be
split along y and z, respectively, leading to the configuration
{13,15,16,18}. By allowing creation only of the cells explic-
itly needed for the representation, AMM’s flexible spatial
hierarchy reduces collateral memory usage Fig. 2). Finally,
whereas creating similar decomposition using k-d trees is
conceivable, k-d trees allow splitting only one dimension at
a time, artificially deepening the hierarchy.

3.1.3 Improper Internal Nodes

Although rectangular cuboidal nodes provide highly flexi-
ble spatial adaptivity, these additional degrees of freedom
may lead to nonessential cells. For example, referring to
Fig. 4, consider splitting a 2D node to create the child node
{0}. It is possible to split the given node in two ways:
splitting along y and then x, creating configuration {0,1,4},
or splitting along x and then y, giving {0,2,7}. Both these
choices can lead to redundant subdivision, depending upon
the future requests, e.g., {0,2,7} is not optimal if child {1}
is requested next because it will create {0,1,2,3}, whereas
{0,1,4} is already sufficient. Rather than making potentially
unsuitable choices, AMM defers the subdivision by creating
only the requested children. We call a node that is not
partitioned fully but has at least one child an improper node.

Partial subdivision within improper nodes creates a sub-
set of child nodes that can be used to represent noncuboidal
shapes, e.g., an L-shaped domain. Improper nodes can also
be used to represent a region of interest without requiring
a complete coverage. Fig. 2 illustrates an example where
AMM can reduce the size of the mesh using improper
nodes. Improper nodes are our solution to capture the
degrees of freedom that have not yet been resolved. By
design, the “unresolved” portions of improper nodes do
not overlap with any existing child nodes. Therefore, the

{0, 1, 4} {0, 2, 7} {0}

Fig. 4: AMM uses improper nodes (right) to preserve ambi-
guity in refinement (left and middle) by refining a node
partially. Here, the child {0} could be created greedily by
subdividing the node into {0,1,4} or {0,2,7}, both of which
could be suboptimal. Instead, AMM creates only {0} and
maintains the remaining region as unresolved until more
data is available to make the optimal choice.
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resulting configurations are also considered valid, e.g., {0}
is a valid configuration.

Improper nodes represent a temporary state of AMM
to support incremental construction and can be resolved
by creating the missing child nodes on demand to support
intermediate queries without sacrificing incremental con-
struction (discussed further in Section 4.2.4).

3.1.4 Pointerless Representation of the Tree
AMM uses a pointerless representation of its tree using
the notion of location codes, which are commonly used for
efficient representation of octrees [55], [56]. Any node within
an octree with a maximum depth of L can be uniquely
encoded using d × L + 1 bits, where d bits are used to
locate a child with respect to (the location code of) its parent.
In comparison, a location code in AMM requires d − 1
additional bits per level to support rectangular cuboidal
nodes, totaling (2d − 1) × L + 1 bits per location code.
Using 64-bit unsigned integers for location codes, AMM can
represent a 3D tree with L = 12, i.e., data sizes up to 40973.

Location codes offer efficient tree traversal as they can
be converted into the coordinates of the vertex at the center
of the node efficiently using bit shift operations only. For
standard octrees, centers of (regular) nodes can be reached
by capturing and concatenating every dth bit of the location
code (from the right) to create the spatial coordinates. AMM
follows the same procedure but also discards the d − 1
additional bits for each level. Since all internal nodes are
regular nodes by design, all such discarded bits are zeros.
Given a location code, AMM first looks at the 2d − 1
least significant bits, which encode the child id of the node
(with respect to its parent). For regular nodes, the standard
traversal is sufficient, whereas for rectangular nodes, the
standard traversal is used to first find the parent node (a
d-cube), and then a special case is used to find the correct
child. AMM uses location codes also as search keys. Leaf
nodes are not stored, and internal nodes are stored as hash
maps of location codes to an 8-bit unsigned integer that
encodes its node configuration. AMM makes extensive use
of hashmaps and switch statements in the code to manip-
ulate node configurations efficiently. Given a valid node
configuration and a desired operation (e.g., splitting along
z axis), the resulting configuration is known and predefined
in the code to optimize computational cost.

Additionally, AMM also stores the vertex values as hash
maps from the index to the value of the vertex. Using
sizes that are 2L + 1 also offers a way to efficiently encode
vertex ids. Whereas the simple and commonly used row-
major order requires multiplication and modulo operators
to convert between coordinates and index, we leverage the
fact that each coordinate requires at most L + 1 bits and
compute the index of a vertex (x, y, z) efficiently using bit-
shifts, as (z << 2(L+ 1)) + (y << (L+ 1)) + (x).

3.2 Precision Adaptivity using Blocks of Vertices

To support mixed-precision representation, AMM stores
vertices as blocks of size 4 × 4 × 4 in 3D and 8 × 8 in 2D.
Values are stored in block floating-point format [4], where
each value vi = 2e × mi is expressed with respect to the
largest exponent, e, in the block. For each block, an exponent

is stored only once, and the mantissa bits mi are stored in
negabinary format (to avoid special handling of the sign bit)
to a fixed precision, i.e., a fixed number of bits, p. A block’s
precision is defined as the smallest multiple of 8 (bits) that
captures all nonzero bits in every mi; each block may have
a different precision. AMM also allows spatial adaptivity,
i.e., not all vertices in a block may exist. To identify which
vertices exist, a 64-bit unsigned integer mask is stored whose
bits correspond to vertices in the block. Each block thus
comprises a bytestream that encodes the mantissa bits for all
existing vertices, the vertex mask (eight bytes), the common
exponent e (two bytes), and the precision p (one byte). To
index the blocks themselves, AMM uses a hashmap indexed
by blocks’ row-major indices.

If a new vertex is added to the block, the bytestream is
recreated to insert the new value at its correct location (in
order of the local index in the block). We note, however, that
updating bytestreams in this way is expensive. For nonpro-
gressive, state-of-the-art compression approaches, the en-
coding usually happens with the availability of all data, and
there is no need to update the bytestream, which provides
high throughput. However, supporting incremental updates
poses computational challenges because the encoding is
dynamic and can change as new values in the block or
new bits for existing values are received. In order to support
progressive adaptivity, AMM strives to reduce the number
of times the bytestream is recreated. As mentioned, AMM
represents function values with precision in multiples of
bytes, not bits, so that the cost of update is amortized over
many bitplanes, i.e., the bytestream does not need to grow
with each new bit. We further amortize the computational
cost of update through an effective use of staging.

4 CONSTRUCTION OF AMM
Although AMM can also be created by simply reading in
a collection of multilinear cuboidal cells, in this section, we
focus on an important way of creating AMM— using tensor
products of biorthogonal linear B-spline wavelets [16].

Here, Section 4.1 describes the relevant properties of
the corresponding wavelet basis and draws comparison
between AMM and the framework of Weiss and Lind-
strom [15]. Section 4.2 presents a practical algorithm to in-
crementally create AMM through arbitrarily-ordered datas-
treams of wavelet coefficients. Finally, Section 4.3 discusses
a new linear-lifting extrapolation scheme to expand the input
data to a 2L + 1 size without boundary artifacts.

4.1 Wavelet Coefficients and Associated Stencils

As shown in Fig. 5, 2D/3D tensor products of linear B-spline
wavelets are associated with “spatial stencils” consisting of
multilinear cells at two adjacent levels of refinement. Super-
position of such stencils onto a spatial grid is equivalent to
performing an inverse transform (the lifting step), but using
sparse wavelet coefficients. Previously, Weiss and Lind-
strom [15] leveraged these stencils to create reduced and
adaptive representations using a restricted set of wavelet
coefficients (filtered by magnitude). Nevertheless, since their
hierarchy is built upon a regular octree, they are unable to
fully exploit the shape of these stencils. Specifically, their
representation cannot directly represent the “rectangular
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portions” of these stencils and instead decomposes such
cells into sets of smaller, square cells. This additional de-
composition implies a finer mesh to represent sets of cells
and vertices that can be trivially interpolated and, therefore,
do not provide any additional information. We discuss
how AMM’s flexible spatial hierarchy outperforms previous
work [15] by reducing the size of the representation.

As an example, consider the approximating wavelet
stencil in 2D (WW), illustrated in Fig. 5. When correspond-
ing to a wavelet coefficient at level `, the stencil is defined
on a subgrid at level `+1 and contains a total of 7× 7 = 49
vertices. Illustrated in Fig. 6, properties of these stencils can
be exploited to reduce the number of “effective” vertices
(i.e., those that need to be stored to reconstruct the function).
According to Weiss and Lindstrom [15], using the zero-
valued boundary and the multilinear interpolation of cells in
the stencil, only 25 effective vertices need to be represented.

Our framework further improves this reduction by al-
lowing for rectangular cells using AMM. Specifically, it
becomes possible to represent the subdivisions in the axis-
aligned neighboring cells of the center point from 4 × 4 to

Fig. 5: Spatial stencils for bilinear and trilinear tensor-
product B-spline wavelets. Top: The 2D stencils are shown
with respect to an underlying regular grid, given the cells
at two adjacent levels (bold and light lines), with color and
height mapped to function value. With respect to the coarser
level, the scaling stencil (SS) is associated with vertices, the
wavelet stencils (WW) with faces, and mixed stencil (SW
and WS) with edges. Bottom: For easier visualization in
3D, only the rectangular cuboidal cells are shown (type-1
= green, type-2 = magenta) within the bounding box of the
stencil (black). The scaling stencil (SSS) is not shown.

Total [15] AMM
#V #C #V #C #V

SS 25 4 1 4 1
SW 35 12 15 8 3
WW 49 24 25 16 9
SSS 125 8 1 8 1
SSW 175 40 45 16 3
SWW 245 119 63 32 9
WWW 343 160 125 64 27

Fig. 6: A WW stencil (placed at the center vertex) as used by
Weiss and Lindstrom [15] (left) and AMM (middle). Using
rectangular cells and other properties of the stencil, AMM
reduces the representation to 9 vertices and 16 cells (4 square
green, 4 square pink, and 8 rectangular blue), as compared
to 25 vertices and 24 cells [15, Table 1]. The associated table
lists such comparisons for all types of stencils in 2D and 3D.

4 × 2, which also removes the need to represent 8 vertices.
Our final representation for this stencil, therefore, contains
only 16 cells and 9 effective vertices. Unsurprisingly, the
gains are substantially higher in 3D; Fig. 5 tabulates the
reduction in every type of stencil using our framework.
“Stamping” stencils to the mesh. Our approach for creat-
ing AMM from a given set of wavelet coefficients utilizes
a “stamping” procedure for the corresponding spatial sten-
cils. Here, we use the ideas presented by Weiss and Lind-
strom [15] to identify the spatial context of a stencil (i.e., cells
to be created) using iterators of the primal and dual k-cells
of regular octree refinement and other standard queries,
such as neighhboring cells of a cell and incident cells of a
vertex. However, the actual approach of creating these cells
is different because of the differences in the spatial hierarchy.
To simplify the construction process, AMM exposes an API
to create a cell and split a cell along any combination of axes.

The second step in the stamping procedure is the addi-
tion of vertices. Given the center vertex of the stencil and its
level in the wavelet hierarchy, it is trivial to identify all ver-
tices that need to be updated. As discussed in Section 4.2.3,
stencil vertices are also “stamped” into a staging phase and
combined with the vertices from coarser and finer levels
later in the unstaging step.

4.2 A Practical Approach Toward Creating AMM
Our approach toward creating a resolution-precision-
adaptive representation is guided by four goals: (1) the
smallest number of cells and vertices that can represent
the function faithfully, (2) speed of construction, (3) abil-
ity to perform incremental updates through arbitrary data
streams, and (4) ability to represent the function using
mixed-precision values. To achieve these goals, we utilize
three staging phases (see Fig. 7) to create AMM.

4.2.1 Staging and Unstaging of Wavelet Coefficients
The first challenge is posed by the arbitrary nature of data
streams as incoming coefficients may be in any order and
may represent complete (all bits) or partial (some bits)
values. In the case of partial values, updating the mesh
through stamping the corresponding stencils (tree traversals
to create nodes and update vertex values) every time a bit is
received is wasteful. Even when complete values are to be
received, the order of coefficients may require excessive tree
traversal, e.g., updating a coarse node in a deep tree requires
traversing down and updating the corners of all child nodes.

To mitigate the cost of excessive traversals, AMM col-
lects incoming coefficients without updating the tree. This

Stage	
coefficientsData	stream Unstage

nodes

Unstage
vertices

Finalize	
improper	nodes	
&	boundary

Unstage
Coefficients

Stage	
nodes

Stage
vertices

Update AMM

Fig. 7: For computational efficiency, construction of AMM
is performed using three staging phases. Whereas AMM
continues to ingest and stage the incoming datastream
(green), this data is processed only when a request to update
the mesh is received (e.g., a visualization query). The pink
arrows follow the movement of data within the construction
pipeline after receiving the update request.
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staging is particularly useful for collecting all bits of the
same coefficient and then stamping the stencil only once,
preventing redundant operations. At the time of unstaging,
these coefficients are sorted coarse-to-fine before stamping
to ensure that coarser nodes are created first, preventing
the need to propagate the values at the corners of coarse
nodes all the way down to the leaf nodes. Finally, this
staging process also acts as a filter by discarding any wavelet
coefficients whose stencils lie completely outside the data
domain (to avoid boundary artifacts, the wavelet transform
may be performed on a larger, 2L + 1 domain).

4.2.2 Staging and Unstaging of Tree Nodes

The next optimization our algorithm makes is to prevent
unnecessary updates to the spatial hierarchy, i.e., creation
and splitting of nodes. Since the stencils of different wavelet
coefficients overlap in their spatial extent, different stencils
may require updating the same nodes. For example, one
stencil may create a node, followed by another that splits it
vertically, and another that splits it horizontally.

Instead of processing the tree for each stencil, which
requires tree traversals, a few hash map queries, and in-
terpolations to identify the values of the split points, AMM
collects all such requests to identify the final state of each
node. At the time of unstaging (i.e., when all stencils have
been accounted for), each node is processed only once,
reducing the overall computational cost.

4.2.3 Staging and Unstaging of Tree Vertices

Whereas the coefficient staging reorders the received data
from coarse-to-fine, it can work only on the coefficients
received since the last mesh update. During incremental
construction, one may already have a deep tree when coarse
coefficients are received. The resulting challenge is that any
new updates require propagating those changes down to
the leaf nodes through recursive interpolation within parent
nodes, which quickly becomes computationally prohibitive,
especially when nodes at the coarse levels are updated
frequently in a deep and/or dense tree.

AMM’s vertex staging mitigates this cost by collecting
the updates to vertex values and storing them separately by
their level in the tree because vertex updates corresponding
to a given level are additive. At the time of unstaging, the
tree is traversed down only once for each node updated
in the current stage. During this traversal, the corners of
a given node are multilinearly interpolated to add to the
values of all corners of all child nodes — the corners of the
child nodes that are also the corners of the parent node do
not need this update. Temporary caches are used to prevent
duplicate updates to a vertex for each of its incident nodes.
Mixed-precision representation of vertex values. The un-
staging of vertices naturally separates the vertex values that
are created/modified during the current staging/unstaging
step from those that existed before. The final task in the
vertex unstaging is to combine the two sets of vertex val-
ues to give the final and correct values. At this time, if
a mixed-precision representation is requested, the vertex
values aggregated from the current stage are finalized into
the bytestream representation of the vertex values.

4.2.4 Finalization of Improper Nodes and Boundary Nodes

As described earlier, AMM uses improper nodes to preserve
unresolved degrees of freedom. However, since typical anal-
ysis and visualization tasks expect a complete coverage of
space, any improper nodes in the tree must be resolved
before preparing the mesh for use. Improper nodes may
be resolved by simply creating additional child nodes (by
design, these will be leaf nodes of the tree) and associated
vertices. AMM preserves the current state of the tree by
storing these additional leaf nodes and vertices in a separate
and temporary data structure that is used only to respond to
the query at hand, without sacrificing the improper nodes
for incremental construction.

Furthermore, the underlying tree may also have a larger
spatial extent than the given data, in which case there may
exist no leaf nodes whose boundary aligns with the bound-
ary of the data domain. In such cases, it is straightforward to
identify the leaves that exist across the data boundary and
split them using multilinear interpolation to create cells and
vertices for the output mesh. Similar to the case of improper
nodes, the boundary leaf nodes and the additional vertices
are also stored in a temporary data structure to not affect the
state of the tree. The AMM API abstracts these temporary
data structures, allowing the application to use the mesh
directly through cell and vertex iterators and accessors.

4.3 Data Extrapolation Using a Linear-Lifting Scheme

Since wavelet transforms are computed for power-of-two
sized grids, their practical application often requires ex-
tending the signal to suitable lengths. Whereas several ap-
proaches exist for this extension (e.g., zero padding, linear
extrapolation, and symmetric extension), each is associated
with different types of boundary artifacts, such as dis-
continuity and nonsmoothness, that lead to large wavelet
coefficients, which may not be conducive to the applica-
tion. For AMM, these artificial coefficients typically result
in unnecessary refinement, inflating the memory footprint
significantly and needlessly.

Here, we present a new, linear-lifting approach to ex-
tend the input function at the boundary to avoid such
artifacts and reduce the number of unneccesary cells near
the boundary. Conceptually, we perform the usual lifting
steps everywhere in an extended domain of size (2L + 1)d,
but assign values lazily to grid points outside the original
domain, [X × Y × Z] (see Section 3.1.1). Denoted symboli-
cally as (*--*--*), the w-lift step updates the value at the
center using the adjacent ones. With respect to the original
and extended domains, there exist four possible scenarios:
(x--x--x), (x--x--o), (x--o--o), and (o--o--o),
where x represents a grid point within the original domain
whereas o has an uninitialized value due to being outside
the original domain (but within the extended domain). In
the first case, all three relevant grid points exist within the
original domain and the standard w-lift can be applied. In
the second case, we linearly extrapolate the two known
values to assign a value to the rightmost grid point when
needed, resulting in a zero-valued wavelet coefficient. For
the third and the fourth case, we set the wavelet coefficient
to zero but defer setting the value for the rightmost sample
to an extrapolation step on some coarser level. Furthermore,
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TABLE 1: Our linear-lifting approach extrapolates a 6-point
function using two levels of transform with integer arith-
metic. A (forward) lifting phase begins with linear extrap-
olation (pink), followed by w-lift (brown) and s-lift (blue).
Inverse lifting extends the input function to 9 points, but
only 7 coefficients are stored for full reconstruction. Note
that the extrapolated function is different from one obtained
via simple linear extrapolation in the last two elements.

Input function 56 8 48 44 32 8

Level 1: Extrapolate 56 8 48 44 32 8 -16
Level 1: Forward w-lift 56 -44 48 4 32 0 -16
Level 1: Forward s-lift 45 -44 38 4 33 0 -16
Level 2: Extrapolate 45 38 33 -16 -65
Level 2: Forward w-lift 45 -1 33 0 -65
Level 2: Forward s-lift 45 -1 33 0 -65

Coefficients stored in memory 45 -44 -1 4 33 -16 -65

Level 2: Insert w-coefficients 45 -1 33 0 -65
Level 2: Inverse s-lift 45 -1 33 0 -65
Level 2: Inverse w-lift 45 38 33 -16 -65
Level 1: Insert w-coefficients 45 -44 38 4 33 0 -16 0 -65
Level 1: Inverse s-lift 56 -44 48 4 32 0 -16 0 -65
Level 1: Inverse w-lift 56 8 48 44 32 8 -16 -41 -65

Extrapolated function 56 8 48 44 32 8 -16 -41 -65

(a) Zero padding
(7997, 9918, 4664)

(b) Linear extrap.
(6263, 34742, 19007)

(c) Linear-lifting
(6263, 6342, 2965)

Fig. 8: Function extensions (top) and the corresponding
meshes (bottom) for a shockwave defined on [256 × 1024]
domain and extrapolated to [1025 × 1025] using different
methods. The associated metrics are number of (cells, leaf
nodes, internal nodes). Zero padding introduces artificial
discontinuities at the boundary of the input domain (notice
the vertical blue streak of finest-level cells). Linear extrap-
olation maintains smoothness near the boundary, but can
create discontinuities farther out from the original domain.
Our linear-lifting approach avoids artificially large wavelet
coefficients at the boundary and in the extrapolated region.

s-lift is applied only to values that have been initialized
— standard step for the first case, but no effect for the
remaining three. With this scheme, uninitialized grid points
are given values such that when they are used for lifting,
the resulting wavelet coefficients are always zero. Table 1
illustrates our approach using a concrete 1D example.

Our scheme differs from simple linear extrapolation in
that it interleaves the potential linear extrapolation steps de-
scribed above with lifting steps. Simple linear extrapolation
does not ensure smoothness along dimensions orthogonal

to the one being extrapolated, while also failing to correct
for the nonlinear reconstruction introduced by s-lift steps.
In contrast, by interleaving lifting steps with extrapolation
steps across the hierarchy and across spatial dimensions,
our method ensures smoothness in the extended function
both across the boundary of the domain as well as across
all dimensions (see Fig. 8). Naive linear extrapolation is also
entirely local as it depends only on the last two values near
the domain boundary, whereas our method extrapolates at
multiple scales and therefore is globally influenced.

In the example from Table 1, the extrapolated function is
longer than the original function by three elements unlike
the traditional wavelet transform, where the two functions
have the same length. However, in practice, the inverse
lifting steps are never performed, and thus the extrapolated
function is never explicitly computed or stored. We do need
to store the potentially extrapolated value at each lifting
step to support perfect reconstruction, but this requires
storing at most a single extra value along each dimension
of the original domain, as the same slot can be reused
on the next coarser transform level without compromising
reconstruction using inverse lifting steps. Since the wavelet
coefficients in the extrapolated domain are all zero, in the
resulting mesh, AMM’s adaptivity allows the overhead (the
extra cells and vertices) to remain small, as seen in Fig. 8c.

5 EVALUATION

In our evaluation, we focus on the three design goals of
AMM: adaptivity in spatial resolution, adaptivity in preci-
sion, and incremental construction, and consider the size of
the resulting representation, the reconstruction quality, and
the time it takes to compute AMM.

We report the size of our adaptive representation in
terms of the number cells and vertices; we also report
the approximate memory footprint of the representation
by counting eight bytes for each cell and vertex (to store
indices) and the number of bytes used (one to eight) to
represent function values, but ignore the additional over-
head of data structures such as hash maps. To quantify the
quality of a reconstructed function f̂ against the original
function f , we measure the peak signal-to-noise ratio, PSNR
= 20 log10 ((fmax − fmin )/2) − 10 log10

(∑
(f − f̂)2/N

)
,

where N is the total number of samples in the given data.
Datastreams. In this work, we consider six types of datas-
treams. We borrow four datastreams from Hoang et al. [7] —
“by-magnitude” (Smag), “by-level” (Slvl), “by-bit-plane” (Sbit),
and “by-wavelet-norm” (Swav). Here, Smag is a resolution
stream since it transmits complete coefficients, which are
ordered by their magnitude. Streams Slvl, Sbit and Swav are
precision streams since they may transmit bits of a coefficient
separately; Slvl orders coefficients by level in the wavelet
hierarchy (coarse to fine) but transmits the bits after dis-
carding leading zeros; Sbit picks the bits in order of bit plane
(most significant to least significant); and Swav combines the
functionality of Sbit and Slvl to order the bits based on both
the bit plane and the wavelet basis on the subband of the
coefficient. We consider two additional resolution streams —
“by-level-coeff”, (Slcf), which transmits complete coefficients
ordered by level in the wavelet hierarchy; and “by-coeffient-
energy”, (Scen), which orders the coefficients based on both
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the magnitude of the coefficient and the norm of the wavelet
basis function for the corresponding subband.
Interfacing with other tools for visualization. Although
several visualization tools support spatially adaptive repre-
sentations, precision adaptivity is generally not well sup-
ported due to both software and hardware limitations, and
the data is typically inflated first to full-precision (floats
or doubles) before visualization. Whereas utilizing AMM
directly at reduced precision remains a task for the future,
currently AMM facilitates analysis and visualization by
providing a simple interface to the visualization toolkit
(VTK) [9]. It is straightforward to output AMM as a VTK
unstructured grid, which can be used with standard tools,
such as Paraview [10], VisIt [11], and OSPRay [14], as well
as to support hardware-accelerated rendering [12], [13].

Volume renderings of the original, uniform-grid data
in this paper are generated using nanovdb [57], and those
of AMM are generated using the GPU-based unstructured
volume rendering approach of Morrical et al. [12], which
employs fixed function tree traversal units to efficiently
locate and interpolate unstructured elements. For this work,
we improved the performance of this approach by lever-
aging the properties of AMM — axis-aligned cells with
predictable sizes. Given axis-aligned cells, we invert the per-
vertex interpolants using analytical voxel-trilinear interpola-
tion instead of the root-finding method required for general,
curved hexahedra. Likewise, memory bandwidth is reduced
by reading only two, diagonally opposite vertices instead of
all eight as done for arbitrary hexahedra.

Using these tools, we compare the performance of vol-
ume rendering for the original data and AMM in terms of
the memory footprint and rendering time (as milliseconds
per frame). Whereas our current pipeline demonstrates the
computational benefits of AMM (small meshes with axis-
aligned cells) using external tools, we envision a more-
integrated visualization directly using AMM in the future.

5.1 Evaluation of Spatial Hierarchy

First, we compare AMM’s adaptivity in spatial resolution
to the recent work of Weiss and Lindstrom (WL) [15]. To set
up this comparison, we note that the competing tool creates
a reduced representation by filtering wavelet coefficients
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Fig. 9: In this example, AMM improves the data reduction
by 20%–50% as compared to the framework of Weiss and
Lindstrom [15], while taking up to 20% more time to con-
struct. However, in the relevant levels of reduction (<2% of
the coefficients), AMM provides significant improvement.

by magnitude, akin to the Smag stream. Therefore, for this
comparison, AMM was generated without the incremental
mode, i.e., consuming all filtered data at once.

To concisely present the comparisons, Fig. 9 reports the
relative size and time to compute AMM with respect to WL.
Here, the horizontal axis captures an unusually large range
of coefficients — given the nature and size of this dataset,
good quality reconstructions can be obtained within the first
1–2% of the coefficients (also shown by WL [15, Fig. 9]).
Within this more reasonable range, AMM produces about
20–50% smaller meshes (not even counting cells) while
taking about the same time for construction. Once the mesh
is refined further, AMM’s gains stabilize, since at this time,
there are fewer rectangular nodes, but it still takes longer to
process the more sophisticated hierarchy.

For comparisons, we added a “standard hierarchy
mode” in AMM, where rectangular and improper nodes are
disallowed. In the absence of a standard output mesh from
WL, the next result uses AMM to create meshes both with
and without our proposed hierarchy, with the latter acting
as a proxy for [15]. Next, we reduce a [512 × 512 × 512]
float32 dataset (512 MB), which represents a magnetic re-
connection event in relativistic plasmas [58], to roughly the
same footprint using both techniques (about 10 MB each).
Without using rectangular nodes, one can process only 8192
largest coefficients, giving a mesh with 9.94 MB footprint.
On the other hand, with AMM’s hierarchy, it is possible to
utilize 23,040 coefficients with a 9.86 MB footprint, which
allows capturing features of interest in the data (see Fig. 10).

Next, we consider the entropy field from a Richtmyer-
Meshkov instability simulation [59] and use AMM to com-
pare the reduction obtained using Slcf and Scen. As shown in
Fig. 1, Slcf (which streams the data in order of wavelet sub-
bands) sweeps through space rather evenly, refining large
regions to the same depth. On the other hand, Scen (which
scales the coefficients by wavelet function norm) allows
capturing more quickly the turbulent regions of interest.
When streamed for 8 MB each, both streams create differ-
ent representation sizes, with Scen creating an almost 4×
denser mesh. Not only does AMM provide improved data
reduction due to its subdivision flexibility, it also facilitates
comparing different modes of data reduction easily and
through a consistent interface. For this comparison, creating
AMM using Slcf and Scen took 72.5 s and 86.1 s, respectively.
Volume rendering of the reduced meshes achieved 22.2 ms
and 19.7 ms per frame, with peak memory consumption
2.13 and 2.71 GB, respectively. Comparing these numbers

Fig. 10: Volume rendering of the magnetic reconnection
event dataset at full resolution (left, 512 MB) and AMM
(right, 9.86 MB) are shown, highlighting the flexibility
of AMM to handle different types of (dense vs. sparse)
datasets and still highlight important features therein.
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with 31.9 ms per frame and 35.07 GB for the original data
demonstrates the computational benefits of AMM.

5.2 Evaluation of Mixed-Precision Representation
To demonstrate mixed-precision capabilities in AMM, we
consider the three precision streams introduced above (Sbit,
Slvl, and Swav) and use a [2025× 1600× 400] float64 dataset
from the simulation of a lifted flame. We stream 4 MB
data (partial coefficients) through these streams and create
AMM. Referring to the histogram plot in Fig. 11, we note
the distribution of precision captured by AMM. Whereas
all streams show a wide distribution, Sbit, in particular,
represents several vertex values using two bytes only. Using
AMM, it is straightforward to also highlight the differences
between the precision distribution visually by rendering it
as a volume on the mesh (as shown in the figure for Slvl and
Sbit). Here, we observe, unsurprisingly, that Slvl provides a
wider spatial coverage but with lower precision, whereas
Sbit invests bits heavily based on spatial resolution. Finally,
the top row of the figure visualizes the resulting volumes
and compares the reduced data with the original dataset at
full resolution and full precision.

5.3 Evaluation of Incremental Updates
Finally, we demonstrate the incremental construction of
AMM using different types of streams. Here, we work

with the Rayleigh-Taylor instability [60] data defined using
float64 values on a [384×384×256] grid. AMM was created
for a stream of 32 MB in chunks of 1 MB, i.e., mesh update
requests were sent after every 1 MB. Fig. 12 shows the evo-
lution of the representation with respect to these streams in
terms of the reconstruction quality (PSNR), time to update
the mesh for each chunk, and the size of the resulting mesh
(number of cells and vertices). First, we note Smag and Scen
provide almost equivalent reconstruction and performance,
because the two streams are quite similar and differ by a
scaling factor only, which appears to be nonconsequential
for this particular dataset. Next, we look at Slcf and Slvl,
which although providing almost equivalent reconstruction
quality, refine the mesh very differently. Whereas Slvl creates
larger mesh sizes and, therefore, is slower to compute, the
result indicates that Slcf should be the choice of stream
among the two. Finally, we observe that, as expected, Sbit
and Swav, both precision streams, refine the mesh drastically
from the beginning by transmitting the most significant bits
for most of the turbulent domain, thus not only creating
a dense mesh but also providing a much higher quality.
By providing such analysis in a consistent manner, AMM
facilitates, for the first time, comparing such datastreams in
a much more scalable manner than before [7]. Finally, we
leave the reader with Fig. 13 to observe the visual quality of
the resulting representations for each of the streams.

Original Data (9.7 GB) Slvl (14.7 MB) Sbit (863 MB)
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Fig. 11: Using mixed-precision format for vertex values, AMM provides additional savings in the representation. The
figure compares reduced volumes (upper row) with the original, and also provides analysis on the distribution of precision
(lower row) in the reduced data as a histogram and as volume renderings (darker color means low precision).
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Fig. 12: AMM provides a simple and consistent framework to create and compare reduced representations using different
resolution and precision streams. The plots compare six streams and show that two precision streams (by-bitplane and
by-wavelet-norm) drastically outperform others in terms of quality, but at commensurately large mesh sizes.
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Fig. 13: Visual comparison of data reconstructed after streaming 8 MB for each of the six streams against the original,
full-resolution data. The numbers at the bottom right provide the approximate memory footprint of the respective meshes.

6 CONCLUSION AND DISCUSSION

In this paper, we present a resolution-precision-adaptive repre-
sentation that can ingest arbitrary datastreams progressively to
provide an interface to existing tools and algorithms. By repre-
senting uniformly sampled, scalar-valued data as piecewise
multilinear functions using tensor products of linear B-
spline wavelets, we produce meshes based on a flexible
spatial hierarchy to reduce the size of the mesh and demon-
strate faithful reconstruction. AMM uses a mixed-precision
representation of function values to further reduce the mem-
ory footprint and to facilitate precision adaptivity. Mixed-
precision AMM can also be used to trim down superflu-
ous bits in the (full-precision) coefficients received through
spatial streams. Currently, AMM’s mixed-precision mode
provides a lossless representation, but it is straightforward
to expand this framework to achieve lossy reduction by
dropping additional bits within acceptable error.

AMM provides a VTK interface through output files,
which still somewhat introduces additional overhead in
using AMM representations. In the future, we would like to
expand our framework to expose an improved API with effi-
cient iterators, accessors, and common visualization queries,
such as point queries and contouring, which will facilitate
leveraging this framework directly for visualization.

The current implementation of AMM is serial and CPU-
based. Whereas it is easy to conceive porting key operations
to GPU kernels and/or to a distributed algorithm, the
primary challenge appears to be reducing data movement
across host and device or across MPI ranks, especially in a
streaming setting where it is not known a priori which parts
of the tree will be updated. Addressing these challenges
offers interesting directions for future research.

We have also identified several opportunities for further
improvement in the performance of AMM creation. Most
notably, the stamping process for vertices requires tree
traversals and is the key bottleneck in further scaling. On
the other hand, the lifting process is a standard and efficient
technique for inverse transforms, but works with dense data
(coefficients on uniform grid). In the future, we will explore

the possibilities of utilizing the lifting approach for sparse
data (restricted coefficients) and their stencils.

When compared to state-of-the-art compressors, such as
ZFP or SZ, AMM does not offer competitive rate-distortion
curves, since it does not currently employ sophisticated
compression to further reduce the memory footprint of the
adaptive mesh. On the other hand, such compressors do
not reduce the number of vertices and cells and, thus, do
not benefit the performance of downstream tasks most of
the time. In contrast, by reducing the number of vertices
and cells in the representation, AMM offers significant
computational advantages during traversal; current work
demonstrates about 50% faster volume rendering. Com-
pared to the technique closest to our own [15], AMM
produces significantly smaller meshes (20–50% gain) at the
same data quality. An important research direction for the
future is to combine the best of AMM and compression, e.g.,
by utilizing ZFP to replace the mixed-precision, block-based
representation of vertices currently used by AMM.

Finally, a key enabling technology in AMM is the sup-
port for incremental updates using arbitrary sequences of
data. By relaxing the assumption that the data must be
ordered in specific, predefined ways, we aim to position
our open-source tool (github.com/llnl/amm) as a standard
framework to explore and evaluate the reduction of data in
the space of precision and resolution, ultimately resulting in
next-generation data reduction techniques.
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Fig. 14: Volume renderings of a turbulent jet flame dataset. The original data at full resolution [920× 1400× 72] is shown
at the top. The middle row shows the reduced meshes obtained after ingesting 8 MB and 16 MB, respectively, using the
by-coefficient-energy stream. The bottom row shows reduced meshes using the by-level-coeff stream. Both streams produce
high quality visualizations, particularly after ingesting 16 MB.
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