CS108 Software Systems: UNIX

Fall 2011

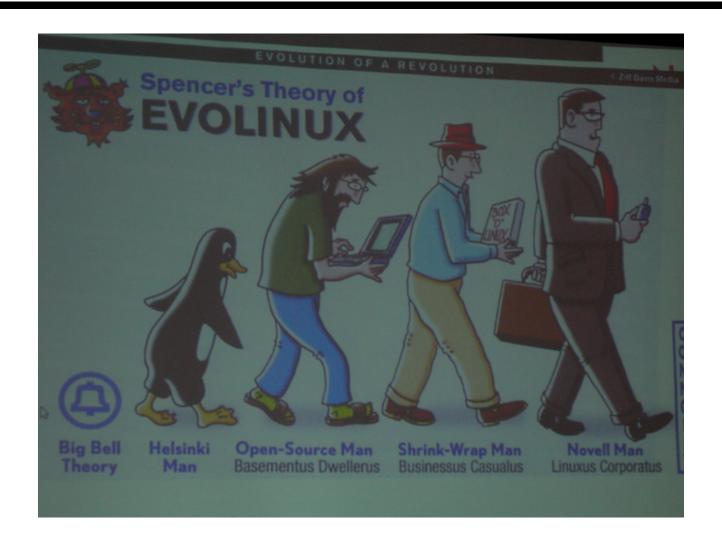
Course Info

cs.utexas.edu/~edwardsj/teaching/2011fall/cs108

Why Linux?

- Multi-user, multi-process operating system
- Open-source project with a rapidly expanding software base
- UNIX-like
 - The "UNIX Philosophy," as summarized by Doug McIlroy: "Write programs that do one thing and do it well. Write programs to work together. Write programs to handle text streams, because that is a universal interface."
- A mature desktop environment
- Adaptible, Robust, Secure, Cost-effective (free)

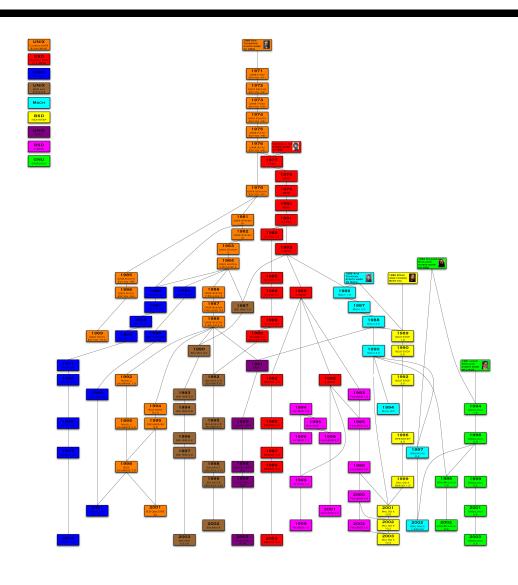
Why not?


- Cryptic commands and command-line options
- Few failsafes
- Coupled with open source movement (both good and bad)
- Designed for geeks by geeks, not users

Nevertheless, ...

- Linux is widely used in companies and academic departments, including UTCS
- People often assume you know your way around Linux
- John's opinion: excellent environment for working on programming projects and technical papers

Fall 2011


Ancestry of Linux

- 1969: UNIX developed at Bell Laboratories by Ken Thompson & Dennis Richie, et al., for the DEC PDP-7 minicomputer.
- **1972**: Thompson develops the C programming language; work begins on rewriting UNIX in C.
- **1976**: Thompson introduces UNIX to UC Berkeley; BSD is born.
- **1984**: Richard Stallman begins the GNU project with Emacs.
- **1985**: Richard Stallman founds the Free Software Foundation (FSF) to support the GNU project.
- **1991**: Linus Torvalds writes a Minix-like kernel; GNU/Linux is born.

UNIX/Linux Timeline

The Linux Family

Collection of common software elements form usable OS. No one "Linux" but rather many *distributions* that contain (nearly) the same software.

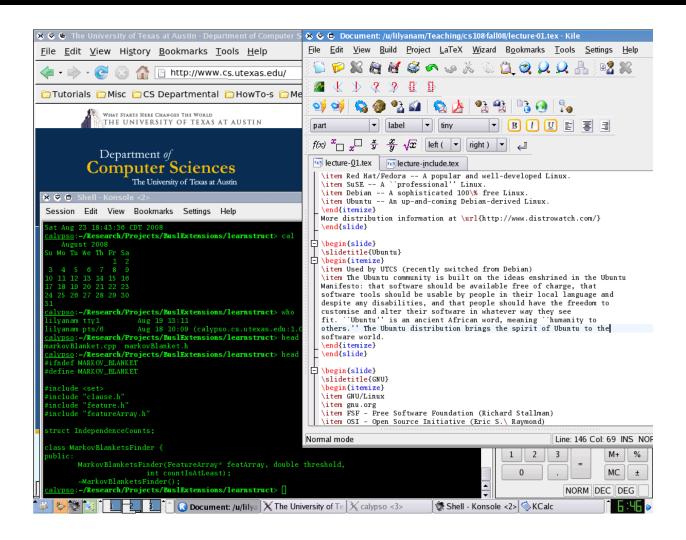
- Red Hat/Fedora A popular and well-developed Linux.
- SuSE A "professional" Linux.
- Debian A sophisticated 100% free Linux.
- Ubuntu A popular Debian-derived version of Linux.

More distribution information at

http://www.distrowatch.com/

GNU

- GNU (Gnu's Not UNIX) "complete UNIX-compatible software system"
- FSF Free Software Foundation (Richard Stallman)
 - "Free software" is a matter of liberty, not price. To understand the concept, you should think of "free" as in "free speech," not as in "free beer." GNU Free Software Definition
 - "Free software is software that users have the freedom to distribute and change. Some users may obtain copies at no charge, while others pay to obtain copies." Richard Stallman


Components of a Linux System

- **Kernel** The core OS code that manages physical resources (CPU, memory, hard drives, etc.)
- **Shells** Programs providing a text-based interface to the OS, a.k.a. the command line interface (CLI).
- Commands, utilities, and applications The large set of programs that perform specific tasks, e.g. moving files, printing documents, and browsing the web.
- Compilers Software development tools for converting human-understood languages into computer-understood languages.
- **Desktops / Window Managers** Software providing a graphical user interface (GUI).

The Two Faces of Linux

```
Sat Aug 23 18:43:36 CDT 2008
calypso:~/Research/Projects/BuslExtensions/learnstruct> cal
   August 2008
Su Mo Tu We Th Fr Sa
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
calypso: ~/Research/Projects/BuslExtensions/learnstruct> who
lilyanam tty1
                     Aug 19 13:11
                     Aug 18 10:09 (calypso.cs.utexas.edu:1.0)
lilvanam pts/6
calypso: -/Research/Projects/BuslExtensions/learnstruct> head -n15 markov
markovBlanket.cpp markovBlanket.h
calypso: -/Research/Projects/BuslExtensions/learnstruct> head -n15 markovBlanket.h
#ifndef MARKOV_BLANKET
#define MARKOV_BLANKET
#include <set>
#include "clause.h"
#include "feature.h"
#include "featureArray.h"
struct IndependenceCounts;
class MarkovBlanketsFinder {
public:
       MarkovBlanketsFinder(FeatureArray* featArray, double threshold,
                       int countIsAtLeast):
       ~MarkovBlanketsFinder():
calypso: -/Research/Projects/BuslExtensions/learnstruct>
```

The Two Faces of Linux

Connecting to a Linux System

Every user of a Linux system has a *user account*, identified by a *username* and authenticated with a *password*.

Linux systems may be accessed in a variety of ways:

- Console terminal
- telnet (insecure)
- ssh (secure)
- VNC

The Linux architecture allows almost all locally performable operations to be performed remotely as well.

Interacting with the Shell

The textual interface of a Linux system is provided by a *shell* program, which performs a READ-EVALUATE-EXECUTE loop.

- 1. Display a *prompt*, indicating readiness.
- 2. READ a line of input.
- 3. EVALUATE any meta-syntax.
- 4. EXECUTE the specified command(s).

Remote Log-in Using SSH

SSH allows you to establish a secure connection to a UNIX host from your local machine. To connect to a UTCS host:

1. Find a host that has a low load:

```
apps.cs.utexas.edu/unixlabstatus
```

- 2. Use a client SSH program to connect to the Machine.cs.utexas.edu:
 - OS X:
 - start the Terminal or X11 and type:
 ssh user@theMachine.cs.utexas.edu
 - Windows:

- SSH Secure Shell @ http://www.ssh.com/
- PuTTY @

```
www.chiark.greenend.org.uk/~sgtatham/putty/
```

- Enter the hostname (the Machine.cs.utexas.edu) (and user name if available) and press connect.
- Another UTCS UNIX host:
 - type

```
ssh the Machine.cs.utexas.edu or just ssh the Machine
```

Using VNC

VNC is a two-part system consisting of a server on a UTCS machine and viewer on the local machine (where the display is).

1. Find an available VNC Session

```
http://www.cs.utexas.edu/facilities/
accommodations/public_labs/vnc_status/vnc.html
```

- 2. SSH to that UTCS machine (for me, this is antones)
- 3. Start a vncserver on the UTCS machine:

```
antones:~> vncserver
Found /lusr/opt/realvnc-4.1.1/lib for http connections.

New 'antones.cs.utexas.edu:1 (erozner)' desktop is antones.cs.utexas.edu:1

Starting applications specified in /u/erozner/.vnc/xstartup
Log file is /u/erozner/.vnc/antones.cs.utexas.edu:1.log
```

4. The VNC viewer can now connect to the VNC server, e.g.

antones.cs.utexas.edu:1

- OS X
 - Chicken of the VNC@http:

```
//www.apple.com/downloads/macosx/
networking_security/chickenofthevnc.html
```

- Windows
 - RealVNC @ http://www.realvnc.com/
 - TightVNC @ http://www.tightvnc.com/
 - UltraVNC @ http://ultravnc.sourceforge.net/
- 5. When finished, terminate the VNC server from the UTCS machine:

antones:~> vncserver -kill :1
Killing Xvnc process ID 16384

6. For more detailed instructions, see:

http://www.cs.utexas.edu/facilities/documentation/using_vnc/index.shtml

Homework 1

cs.utexas.edu/~edwardsj/teaching/2011fall/cs108/getting_started.html