Homework 1
CS 354, BME 345
Due Sept 25 at the beginning of class

1. (10 points) Consider the following two commands:
```
glutInitWindowSize(800, 600);
gluOrtho2D(-100.0, 100.0, -100.0, 100.0);
```

Give the window coordinates for each of the following object coordinates. The origin in window coordinates will be at the top-left corner.
(a) $(0,0)$
(b) $(-50,50)$
(c) $(-75,-100)$
(d) $(90,10)$
(e) $(0,-40)$

Solution:
2. (5 points) Let α, β, γ be scalars, A, B, C be points, and u, v, w be vectors. Answer $\mathrm{T} / \mathrm{F} /$? for each operation. If the operation is defined, answer T. If it is undefined, answer F. If you don't know, answer ?. Each correct answer is worth 2 points. Each incorrect answer receives -1.0 points are given for ?.
(a) $v-u$
(b) $v-A$
(c) $A-v$
(d) $A+\alpha(B-A)$
(e) $\alpha A+v$
3. (5 points) Find a homogeneous-coordinate representation of a plane. Hint: the answer will be a dot product.
4. (15 points) If we are interested in only two-dimensional graphics, we can use three-dimensional homogeneous coordinates by representing a point as $\mathbf{p}=[x y 1]^{T}$ and a vector as $\mathbf{v}=[a b 0]^{T}$. Find the 3×3 rotation, translation, scaling, and shear matrices $\mathbf{R}, \mathbf{T}, \mathbf{S}$, and \mathbf{H}, respectively. How many degrees of freedom are there in an affine transformation for transforming two-dimensional points?
5. (15 points) Derive a rotation matrix where we rotate first about the x-axis $\mathbf{R}_{x}\left(\theta_{x}\right)$, then about the y-axis $\mathbf{R}_{y}\left(\theta_{y}\right)$, and then about the z-axis $\mathbf{R}_{z}\left(\theta_{z}\right)$. Assume that the fixed point is the origin.

