Hierarchical Modeling

CS 354, Fall 2012 John Edwards

Slides courtesy Ed Angel, UNM

Objectives

- Examine the limitations of linear modeling
- Symbols and instances
- Introduce hierarchical models
- Articulated models
- Robots
- Introduce Tree and DAG models

Instance Transformation

- Start with a prototype object (a symbol)
- Each appearance of the object in the model is an instance
- Must scale, orient, position
- Defines instance transformation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Symbol-Instance Table

Can store a model by assigning a number to each symbol and storing the parameters for the instance transformation

Symbol	Scale	Rotate	Translate
1	$s_{x^{\prime}} s_{y}, s_{z}$	$\theta_{x^{\prime}} \theta_{y^{\prime}} \theta_{z}$	$d_{x^{\prime}} d_{y^{\prime}} d_{z}$
2			
3			
1			
1			
\cdot			

Relationships in Car Model

- Symbol-instance table does not show relationships between parts of model
- Consider model of car
- Chassis + 4 identical wheels
- Two symbc
- Rate of forward motion determined by rotational speed of wheels

Structure Through Function Calls

- Fails to show relationships well
- Look at problem using a graph

Graphs

- Set of nodes and edges (links)
- Edge connects a pair of nodes
- Directed or undirected
- Cycle: directed path that is a loop

Tree

- Graph in which each node (except the root) has exactly one parent node
- May have multiple children
- Leaf or terminal node: no children

Tree Model of Car

DAG Model

- If we use the fact that all the wheels are identical, we get a directed acyclic graph
- Not much different than dealing with a tree

Modeling with Trees

- Must decide what information to place in nodes and what to put in edges
- Nodes
- What to draw
- Pointers to children
-Edges
- May have information on incremental changes to transformation matrices (can also store in nodes)

Robot Arm

Articulated Models

- Robot arm is an example of an articulated model
- Parts connected at joints
- Can specify state of model by giving all joint angles

Relationships in Robot Arm

- Base rotates independently
- Single angle determines position
- Lower arm attached to base
- Its position depends on rotation of base
- Must also translate relative to base and rotate about connecting joint
- Upper arm attached to lower arm
- Its position depends on both base and lower arm
- Must translate relative to lower arm and rotate about joint connecting to lower arm

Required Matrices

- Rotation of base: \mathbf{R}_{b}
- Apply $\mathbf{M}=\mathbf{R}_{\mathrm{b}}$ to base
- Translate lower arm relative to base: $\mathbf{T}_{\text {lu }}$
- Rotate lower arm around joint: $\mathbf{R}_{\text {lu }}$
- Apply $\mathbf{M}=\mathbf{R}_{\mathrm{b}} \mathbf{T}_{\mathrm{lu}} \mathbf{R}_{\mathrm{lu}}$ to lower arm
- Translate upper arm relative to upper arm: $\mathbf{T}_{\text {uu }}$
- Rotate upper arm around joint: \mathbf{R}_{uu}
- Apply $\mathbf{M}=\mathbf{R}_{\mathrm{b}} \mathbf{T}_{\mathrm{lu}} \mathbf{R}_{\mathrm{lu}} \mathbf{T}_{\mathrm{uu}} \mathbf{R}_{\mathrm{ut}}$ to upper arm

OpenGL Code for Robot

```
mat4 ctm;
robot_arm()
{
    ctm = RotateY(theta);
    base();
    ctm *= Translate(0.0, h1, 0.0);
    ctm *= RotateZ(phi);
    lower_arm();
    ctm *= Translate(0.0, h2, 0.0);
    ctm *= RotateZ(psi);
    upper_arm();
}
```


Tree Model of Robot

- Note code shows relationships between parts of model
- Can change "look" of parts easily without altering relationships
- Simple example of tree model
-Want a general node structure for nodes

Possible Node Structure

matrix relating node to parent

Generalizations

- Need to deal with multiple children
- How do we represent a more general tree?
- How do we traverse such a data structure?
- Animation
- How to use dynamically?
- Can we create and delete nodes during execution?

Humanoid Figure

Building the Model

- Can build a simple implementation using quadrics: ellipsoids and cylinders
- Access parts through functions
-torso()
-left_upper_arm()
- Matrices describe position of node with respect to its parent
- $\mathbf{M}_{\text {lla }}$ positions left lower leg with respect to left upper arm

Tree with Matrices

Display and Traversal

-The position of the figure is determined by 11 joint angles (two for the head and one for each other part)

- Display of the tree requires a graph traversal
- Visit each node once
- Display function at each node that describes the part associated with the node, applying the correct transformation matrix for position and orientation

Transformation Matrices

- There are 10 relevant matrices
- M positions and orients entire figure through the torso which is the root node
- \mathbf{M}_{h} positions head with respect to torso
$-\mathbf{M}_{\text {lua }}, \mathbf{M}_{\text {rua }}, \mathbf{M}_{\text {lul }}, \mathbf{M}_{\text {rul }}$ position arms and legs with respect to torso
- $\mathbf{M}_{\mathrm{lla}}, \mathbf{M}_{\mathrm{rla}}, \mathbf{M}_{\mathrm{lll}}, \mathbf{M}_{\mathrm{rll}}$ position lower parts of limbs with respect to corresponding upper limbs

Stack-based Traversal

- Set model-view matrix to \mathbf{M} and draw torso
- Set model-view matrix to $\mathbf{M M}_{\mathrm{h}}$ and draw head
- For left-upper arm need $\mathbf{M M}_{\text {lua }}$ and so on
- Rather than recomputing $\mathbf{M M}_{\text {lua }}$ from scratch or using an inverse matrix, we can use the matrix stack to store \mathbf{M} and other matrices as we traverse the tree

Traversal Code

figure() \{
PushMatrix()
torso() ;
Rotate (...);
head();
PopMatrix();
PushMatrix();
Translate (...) ;
Rotate (...) ;
left_upper_arm();
PopMatrix();
PushMatrix();
save present model-view matrix
update model-view matrix for head
recover original model-view matrix save it again
update model-view matrix for left upper arm
recover and save original model-view matrix again rest of code

Analysis

- The code describes a particular tree and a particular traversal strategy
- Can we develop a more general approach?
- Note that the sample code does not include state changes, such as changes to colors
- May also want to use a PushAttrib and PopAttrib to protect against unexpected state changes affecting later parts of the code

General Tree Data Structure

- Need a data structure to represent tree and an algorithm to traverse the tree
-We will use a left-child right sibling structure
- Uses linked lists
- Each node in data structure is two pointers
- Left: next node
- Right: linked list of children

Left-Child Right-Sibling Tree

Tree node Structure

- At each node we need to store
- Pointer to sibling
- Pointer to child
- Pointer to a function that draws the object represented by the node
- Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
- Represents changes going from parent to node
- In OpenGL this matrix is a 1D array storing matrix by columns

C Definition of treenode

typedef struct treenode
\{
mat4 m;
void (*f) ();
struct treenode *sibling;
struct treenode *child;
\} treenode;

torso and head nodes

treenode torso_node, head_node, lua_node, ... ;
torso_node.m = RotateY(theta[0]);
torso_node.f = torso;
torso_node.sibling = NULL;
torso_node.child = \&head_node;
head_node.m $=$ translate (0.0, TORSO_HEIGHT $+0.5 *$ HEAD_HEIGHT,
0.0) *RotateX (theta[1]) *RotateY (theta[2]) ; head_node.f = head; head_node.sibling = \&lua_node; head node.child = NULL;
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Notes

- The position of figure is determined by 11 joint angles stored in theta [11]
- Animate by changing the angles and redisplaying
- We form the required matrices using Rotate and Translate
- More efficient than software
- Because the matrix is formed using the modelview matrix, we may want to first push original model-view matrix on matrix stack

Preorder Traversal

```
void traverse (treenode* root)
\{
    if(root==NULL) return;
    mvstack.push (model_view) ;
    model_view \(=\) model_view*root->m;
    root->f();
    if(root->child!=NULL) traverse(root-
    >child);
    model_view = mvstack.pop();
    if(root->sibling!=NULL) traverse (root-
    >sibling);
\}
```


Notes

- We must save model-view matrix before multiplying it by node matrix
- Updated matrix applies to children of node but not to siblings which contain their own matrices
-The traversal program applies to any leftchild right-sibling tree
- The particular tree is encoded in the definition of the individual nodes
-The order of traversal matters because of possible state changes in the functions

Dynamic Trees

- If we use pointers, the structure can be dynamic

```
typedef treenode *tree_ptr;
tree_ptr torso_ptr;
torso_ptr = malloc(sizeof(treenode));
```

- Definition of nodes and traversal are essentially the same as before but we can add and delete nodes during execution

