
Hierarchical Modeling

CS 354, Fall 2012
John Edwards

Slides courtesy Ed Angel, UNM

1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives

• Examine the limitations of linear modeling
- Symbols and instances

• Introduce hierarchical models
- Articulated models
- Robots

• Introduce Tree and DAG models

2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Instance Transformation

• Start with a prototype object (a symbol)
• Each appearance of the object in the
model is an instance
- Must scale, orient, position
- Defines instance transformation

3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Symbol-Instance Table

Can store a model by assigning a number to
each symbol and storing the parameters
for the instance transformation

4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Relationships in Car Model

• Symbol-instance table does not show
relationships between parts of model

• Consider model of car
- Chassis + 4 identical wheels
- Two symbols

• Rate of forward motion determined by
rotational speed of wheels

5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Structure Through
Function Calls

car(speed)
{
 chassis()
 wheel(right_front);
 wheel(left_front);
 wheel(right_rear);
 wheel(left_rear);
}

• Fails to show relationships well
• Look at problem using a graph

6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Graphs

• Set of nodes and edges (links)
• Edge connects a pair of nodes

- Directed or undirected

• Cycle: directed path that is a loop

7E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

loop

Tree

• Graph in which each node (except the
root) has exactly one parent node

- May have multiple children
- Leaf or terminal node: no children

8E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

root node

leaf node

Tree Model of Car

9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

DAG Model

• If we use the fact that all the wheels are
identical, we get a directed acyclic graph

- Not much different than dealing with a tree

1
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Modeling with Trees

• Must decide what information to place in
nodes and what to put in edges

• Nodes
- What to draw
- Pointers to children

• Edges
- May have information on incremental changes

to transformation matrices (can also store in
nodes)

1
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Robot Arm

1
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

robot arm parts in their own
coodinate systems

Articulated Models

• Robot arm is an example of an articulated
model

- Parts connected at joints
- Can specify state of model by
giving all joint angles

1
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Relationships in Robot Arm

• Base rotates independently
- Single angle determines position

• Lower arm attached to base
-  Its position depends on rotation of base
- Must also translate relative to base and rotate

about connecting joint
• Upper arm attached to lower arm

-  Its position depends on both base and lower arm
- Must translate relative to lower arm and rotate

about joint connecting to lower arm

1
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Required Matrices

• Rotation of base: Rb

- Apply M = Rb to base
• Translate lower arm relative to base: Tlu

• Rotate lower arm around joint: Rlu

- Apply M = Rb Tlu Rlu to lower arm

• Translate upper arm relative to upper arm: Tuu

• Rotate upper arm around joint: Ruu

- Apply M = Rb Tlu Rlu Tuu Ruu to upper arm

1
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Code for Robot

mat4 ctm;
robot_arm()
{
 ctm = RotateY(theta);
 base();
 ctm *= Translate(0.0, h1, 0.0);
 ctm *= RotateZ(phi);
 lower_arm();
 ctm *= Translate(0.0, h2, 0.0);
 ctm *= RotateZ(psi);
 upper_arm();
}

1
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Tree Model of Robot

• Note code shows relationships between
parts of model

- Can change “look” of parts easily without
altering relationships

• Simple example of tree model
• Want a general node structure
for nodes

1
7E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Possible Node Structure

1
8E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Code for drawing part or
pointer to drawing function

linked list of pointers to children

matrix relating node to parent

Generalizations

• Need to deal with multiple children
- How do we represent a more general tree?
- How do we traverse such a data structure?

• Animation
- How to use dynamically?
- Can we create and delete nodes during

execution?

1
9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

2
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Humanoid Figure

2
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Building the Model

• Can build a simple implementation using
quadrics: ellipsoids and cylinders

• Access parts through functions
- torso()
- left_upper_arm()

• Matrices describe position of node with
respect to its parent

- Mlla positions left lower leg with respect to left
upper arm

2
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Tree with Matrices

2
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Display and Traversal

• The position of the figure is determined by
11 joint angles (two for the head and one
for each other part)

• Display of the tree requires a graph
traversal

- Visit each node once
- Display function at each node that describes

the part associated with the node, applying the
correct transformation matrix for position and
orientation

2
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Transformation Matrices

• There are 10 relevant matrices
- M positions and orients entire figure through

the torso which is the root node
- Mh positions head with respect to torso
- Mlua, Mrua, Mlul, Mrul position arms and legs with

respect to torso
- Mlla, Mrla, Mlll, Mrll position lower parts of limbs

with respect to corresponding upper limbs

2
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Stack-based Traversal

• Set model-view matrix to M and draw torso
• Set model-view matrix to MMh and draw
head

• For left-upper arm need MMlua and so on
• Rather than recomputing MMlua from
scratch or using an inverse matrix, we can
use the matrix stack to store M and other
matrices as we traverse the tree

2
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Traversal Code

figure() {
 PushMatrix()
 torso();
 Rotate (…);
 head();
 PopMatrix();
 PushMatrix();
 Translate(…);
 Rotate(…);
 left_upper_arm();
 PopMatrix();
 PushMatrix();

save present model-view matrix

update model-view matrix for head

recover original model-view matrix

save it again

update model-view matrix
for left upper arm

recover and save original
model-view matrix again

rest of code

2
7E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Analysis

• The code describes a particular tree and a
particular traversal strategy

- Can we develop a more general approach?
• Note that the sample code does not
include state changes, such as changes
to colors

- May also want to use a PushAttrib and
PopAttrib to protect against unexpected state
changes affecting later parts of the code

2
8E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Tree Data Structure

• Need a data structure to represent tree
and an algorithm to traverse the tree

• We will use a left-child right sibling
structure

- Uses linked lists
- Each node in data structure is two pointers
- Left: next node
- Right: linked list of children

2
9E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Left-Child Right-Sibling Tree

3
0E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Tree node Structure

• At each node we need to store
- Pointer to sibling
- Pointer to child
- Pointer to a function that draws the object

represented by the node
- Homogeneous coordinate matrix to multiply on

the right of the current model-view matrix
• Represents changes going from parent to node
•  In OpenGL this matrix is a 1D array storing

matrix by columns

3
1E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

C Definition of treenode

typedef struct treenode
{
 mat4 m;
 void (*f)();
 struct treenode *sibling;
 struct treenode *child;
} treenode;

3
2E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

torso and head nodes

treenode torso_node, head_node, lua_node, … ;

torso_node.m = RotateY(theta[0]);
torso_node.f = torso;
torso_node.sibling = NULL;
torso_node.child = &head_node;

 head_node.m = translate(0.0, TORSO_HEIGHT
+0.5*HEAD_HEIGHT,
0.0)*RotateX(theta[1])*RotateY(theta[2]);

head_node.f = head;
head_node.sibling = &lua_node;
head_node.child = NULL;

3
3E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Notes

• The position of figure is determined by 11 joint
angles stored in theta[11]

• Animate by changing the angles and
redisplaying

• We form the required matrices using Rotate
and Translate

- More efficient than software
- Because the matrix is formed using the model-

view matrix, we may want to first push original
model-view matrix on matrix stack

3
4E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Preorder Traversal

void traverse(treenode* root)
{
 if(root==NULL) return;
 mvstack.push(model_view);
 model_view = model_view*root->m;
 root->f();
 if(root->child!=NULL) traverse(root-
>child);

 model_view = mvstack.pop();
 if(root->sibling!=NULL) traverse(root-
>sibling);

}

3
5E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Notes

• We must save model-view matrix before
multiplying it by node matrix

- Updated matrix applies to children of node but
not to siblings which contain their own matrices

• The traversal program applies to any left-
child right-sibling tree

- The particular tree is encoded in the definition
of the individual nodes

• The order of traversal matters because of
possible state changes in the functions

3
6E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Dynamic Trees

• If we use pointers, the structure can be dynamic

typedef treenode *tree_ptr;
tree_ptr torso_ptr;
torso_ptr = malloc(sizeof(treenode));

• Definition of nodes and traversal are
essentially the same as before but we can add
and delete nodes during execution

