Hierarchical Modeling

CS 354, Fall 2012

John Edwards

Slides courtesy Ed Angel, UNM

Objectives

- Examine the limitations of linear modeling
 - Symbols and instances
- Introduce hierarchical models
 - Articulated models
 - Robots
- Introduce Tree and DAG models

Instance Transformation

- Start with a prototype object (a symbol)
- Each appearance of the object in the model is an *instance*
 - Must scale, orient, position
 - Defines instance transformation

Symbol-Instance Table

Can store a model by assigning a number to each symbol and storing the parameters for the instance transformation

Symbol	Scale	Rotate	Translate
1	$s_{x'} s_{y'} s_{z}$	$\theta_{x'} \theta_{y'} \theta_{z}$	d_{x}, d_{y}, d_{z}
2		,	7
3			
1			
1			

Relationships in Car Model

- Symbol-instance table does not show relationships between parts of model
- Consider model of car
 - Chassis + 4 identical wheels
 - Two symbo

 Rate of forward motion determined by rotational speed of wheels

Structure Through Function Calls

```
car(speed)
{
    chassis()
    wheel(right_front);
    wheel(left_front);
    wheel(right_rear);
    wheel(left_rear);
}
```

- Fails to show relationships well
- Look at problem using a graph

Graphs

- Set of nodes and edges (links)
- Edge connects a pair of nodes
 - Directed or undirected
- Cycle: directed path that is a loop

Tree

- Graph in which each node (except the root) has exactly one parent node
 - May have multiple children
 - Leaf or terminal node: no children

Tree Model of Car

DAG Model

- If we use the fact that all the wheels are identical, we get a *directed acyclic graph*
 - Not much different than dealing with a tree

Modeling with Trees

- Must decide what information to place in nodes and what to put in edges
- Nodes
 - What to draw
 - Pointers to children
- Edges
 - May have information on incremental changes to transformation matrices (can also store in nodes)

Robot Arm

Articulated Models

Robot arm is an example of an articulated model

- Parts connected at joints
- Can specify state of model by giving all joint angles

Relationships in Robot Arm

- Base rotates independently
 - Single angle determines position
- Lower arm attached to base
 - Its position depends on rotation of base
 - Must also translate relative to base and rotate about connecting joint
- Upper arm attached to lower arm
 - Its position depends on both base and lower arm
 - Must translate relative to lower arm and rotate about joint connecting to lower arm

Required Matrices

- Rotation of base: R_b
 - Apply $\mathbf{M} = \mathbf{R}_{b}$ to base
- Translate lower arm <u>relative</u> to base: T_{lu}
- Rotate lower arm around joint: \mathbf{R}_{lu}
 - Apply $\mathbf{M} = \mathbf{R}_{b} \mathbf{T}_{lu} \mathbf{R}_{lu}$ to lower arm
- Translate upper arm $\underline{\text{relative}}$ to upper arm: \mathbf{T}_{uu}
- ullet Rotate upper arm around joint: $old R_{uu}$
 - Apply $\mathbf{M} = \mathbf{R}_b \mathbf{T}_{lu} \mathbf{R}_{lu} \mathbf{T}_{uu} \mathbf{R}_{uu}$ to upper arm

OpenGL Code for Robot

```
mat4 ctm;
robot arm()
    ctm = RotateY(theta);
    base();
    ctm *= Translate(0.0, h1, 0.0);
    ctm *= RotateZ(phi);
    lower arm();
    ctm *= Translate(0.0, h2, 0.0);
    ctm *= RotateZ(psi);
    upper arm();
```

Tree Model of Robot

- Note code shows relationships between parts of model
 - Can change "look" of parts easily without altering relationships
- Simple example of tree model
- Want a general node structure for nodes

Possible Node Structure

matrix relating node to parent

Generalizations

- Need to deal with multiple children
 - How do we represent a more general tree?
 - How do we traverse such a data structure?
- Animation
 - How to use dynamically?
 - Can we create and delete nodes during execution?

Humanoid Figure

Building the Model

- Can build a simple implementation using quadrics: ellipsoids and cylinders
- Access parts through functions
 - -torso()
 - -left_upper_arm()
- Matrices describe position of node with respect to its parent
 - M_{lla} positions left lower leg with respect to left upper arm

Tree with Matrices

Display and Traversal

- The position of the figure is determined by 11 joint angles (two for the head and one for each other part)
- Display of the tree requires a graph traversal
 - Visit each node once
 - Display function at each node that describes the part associated with the node, applying the correct transformation matrix for position and orientation

Transformation Matrices

- There are 10 relevant matrices
 - M positions and orients entire figure through the torso which is the root node
 - M_h positions head with respect to torso
 - M_{lua} , M_{rua} , M_{lul} , M_{rul} position arms and legs with respect to torso
 - \mathbf{M}_{lla} , \mathbf{M}_{rla} , \mathbf{M}_{rll} , \mathbf{M}_{rll} position lower parts of limbs with respect to corresponding upper limbs

Stack-based Traversal

- Set model-view matrix to M and draw torso
- Set model-view matrix to MM_h and draw head
- For left-upper arm need MM_{lua} and so on
- Rather than recomputing MM_{lua} from scratch or using an inverse matrix, we can use the matrix stack to store M and other matrices as we traverse the tree

Traversal Code

```
figure() {
                         save present model-view matrix
   PushMatrix()
                         update model-view matrix for head
   torso();
   Rotate (...);
   head();
                         recover original model-view matrix
   PopMatrix();
                               save it again
   PushMatrix();
   Translate(...);
                             update model-view matrix
   Rotate (...);
                             for left upper arm
   left upper arm();
                             recover and save original
   PopMatrix();
                            model-view matrix again
   PushMatrix();
                                rest of code
```

Analysis

- The code describes a particular tree and a particular traversal strategy
 - Can we develop a more general approach?
- Note that the sample code does not include state changes, such as changes to colors
 - May also want to use a PushAttrib and PopAttrib to protect against unexpected state changes affecting later parts of the code

General Tree Data Structure

- Need a data structure to represent tree and an algorithm to traverse the tree
- We will use a *left-child right sibling* structure
 - Uses linked lists
 - Each node in data structure is two pointers
 - Left: next node
 - Right: linked list of children

Left-Child Right-Sibling Tree

Tree node Structure

- At each node we need to store
 - Pointer to sibling
 - Pointer to child
 - Pointer to a function that draws the object represented by the node
 - Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
 - Represents changes going from parent to node
 - In OpenGL this matrix is a 1D array storing matrix by columns

C Definition of treenode

```
typedef struct treenode
  mat4 m;
   void (*f)();
   struct treenode *sibling;
   struct treenode *child;
} treenode;
```

torso and head nodes

```
treenode torso node, head node, lua node, ... ;
torso node.m = RotateY(theta[0]);
torso node.f = torso;
torso node.sibling = NULL;
torso node.child = &head node;
head node.m = translate(0.0, TORSO HEIGHT
 +0.5*HEAD HEIGHT,
 0.0) *RotateX(theta[1]) *RotateY(theta[2]);
head node.f = head;
head node.sibling = &lua_node;
head node.child = NULL;
   E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
```

Notes

- The position of figure is determined by 11 joint angles stored in theta[11]
- Animate by changing the angles and redisplaying
- We form the required matrices using Rotate
 and Translate
 - More efficient than software
 - Because the matrix is formed using the modelview matrix, we may want to first push original model-view matrix on matrix stack

Preorder Traversal

```
void traverse(treenode* root)
   if(root==NULL) return;
   mvstack.push(model view);
   model view = model view*root->m;
   root->f();
   if(root->child!=NULL) traverse(root-
 >child);
   model view = mvstack.pop();
   if (root->sibling!=NULL) traverse (root-
 >sibling);
```

Notes

- We must save model-view matrix before multiplying it by node matrix
 - Updated matrix applies to children of node but not to siblings which contain their own matrices
- The traversal program applies to any leftchild right-sibling tree
 - The particular tree is encoded in the definition of the individual nodes
- The order of traversal matters because of possible state changes in the functions

Dynamic Trees

• If we use pointers, the structure can be dynamic

```
typedef treenode *tree_ptr;
tree_ptr torso_ptr;
torso_ptr = malloc(sizeof(treenode));
```

 Definition of nodes and traversal are essentially the same as before but we can add and delete nodes during execution