
Ray Tracing NPR-Style Feature Lines

A.N.M. Imroz Choudhury∗

Scientific Computing and Imaging Institute
Steven G. Parker†

NVIDIA Corporation
Scientific Computing and Imaging Institute

Figure 1: Acetaminophen molecule rendered with lambertian shading (left), using ourNPR line renderer (middle), and a composite of both
renderings (right). Between any two bonded atoms, a line marks the intersection; around the outer edge of the molecule, silhouette edges are
visible.

Abstract

We present an algorithm for rendering constant-width line-like
primitives within a ray tracing framework, which can render sim-
ple NPR-style feature lines, including silhouette edges, crease lines,
and primitive intersection lines. The algorithm is based on ray dif-
ferentials, which measure distances in screen space and are used to
detect and render constant-width feature lines. This technique al-
lows for a host of NPR-style raster algorithms to be ported to ray
tracers.

CR Categories: K.6.1 [Management of Computing and Infor-
mation Systems]: Project and People Management—Life Cycle;
K.7.m [The Computing Profession]: Miscellaneous—Ethics

Keywords: ray tracing, lines, creases, silhouettes, intersections

1 Introduction and Background

Though the goal of ray tracing and other physically based rendering
techniques is ultimately to produce photorealistic images, it is often
helpful to use non-photorealistic rendering techniques to illustrate
or highlight certain features [?; ?], such as the implied molecular
bonds in Figure 1 or the overall shape of the rounded cube in Figure
7. In raster graphics, many NPR techniques useline primitivesfor

∗email: roni@cs.utah.edu
†email: sparker@nvidia.com

such goals as conveying the shape of complex models with minimal
on-screen clutter [?; Judd et al. 2007; Ohtake et al. 2004], illustrat-
ing technical models by their outlines and hidden contours [Dooley
and Cohen 1990], and conveying confidence in architectural models
for inviting further discussion and design [Potter et al. 2009]. Lines
are useful in such applications because they are expressive of un-
derlying shape without being overly intrusive [Saito and Takahashi
1990].

Drawing lines in a raster graphics setting is a primitive operation
that uses classic line rasterization algorithms (e.g., the Bresenham
algorithm [Bresenham 1965]). The lines thus produced can be used
to highlight features such as sharp corners and silhouette edges. Be-
cause three-dimensional geometry is also rasterized to the screen,
3D primitives can be freely mixed with line primitives to produce a
variety of illustrative effects.

However, in ray tracing there is no obvious way to “rasterize” a line;
instead, all primitives are detected by intersecting camera rays with
scene geometry. Because lines are infinitely thin, they are trou-
blesome for the ray tracing algorithm, which operates on “physi-
cal” primitives that have at least two dimensions. It is possible to
represent lines with, e.g., long, thin pipe-like primitives; however,
such primitives have world-space thickness, and therefore change
their appearance on-screen as the camera position or zoom level
changes. In raster graphics, however, line-drawing algorithms ren-
der lines with a constant thickness on-screen, so their appearance is
not a function of the scale of the scene or the viewing projection.

This paper presents a method for ray tracing feature lines within
regularly rendered scenes with a scale-independent on-screen width
that is controlled by the user. Our method demonstrates how a vari-
ant of line rasterization can be included in a ray tracer, thus allowing
for the inclusion of NPR-style enhancements. It is based onray dif-
ferentials[Igehy 1999], which we use a variant of to detect edges in
the view of the scene geometry projected to the image plane; these
edges are in turn used as the basis for line drawing. Including these

lines gives the viewer additional cues to relative positions of ob-
jects within the scene, and also enhances particular features within
objects, such as sharp corners.

————-

1.1 Feature Lines

Feature lines are linear manifolds that denote geometrically inter-
esting features of objects. The ones this paper focuses on are

• silhouette edges[Gooch et al. 1998], marking the boundary of
an object in screen space against the background;

• intersection lines, marking the curves along which two prim-
itives intersect;

• and crease edges[Saito and Takahashi 1990], indicating
curves along which there is a discontinuity in a primitive’s
normal field (e.g. the sharp corners of a box).

Crease edges can highlight the bounding surface of an object by in-
dicating salient features such as sharp folds, while silhouette edges
and intersection lines help set apart different objects from their
neighbors. Such visual cues are important when understanding the
relative positions of objects in a scene is the primary goal, such as in
technical illustrations [Dooley and Cohen 1990], molecular graph-
ics [Tarini et al. 2006], or particle data visualization [Bigler et al.
2006; Bigler 2004].

1.2 Ray Differentials and Screen Space

Igehy describes ray differentials [Igehy 1999], which provide a
measure of how a given ray’s screen space “neighbors” interact
with the scene geometry. By parameterizing a ray both in terms
of where it intersects the image plane, and in terms of its propa-
gation distance (i.e. itst value), it is possible to derive derivatives
of the ray with respect to screen dimensions. The ray differential
describes how a slightly offset ray would behave; generalizing, it is
possible to describe how the ray’sscreen footprintbehaves.

In Igehy’s paper, the primary application of ray differentials is in
surface-local texture filtering for higher quality images. He also
mentions geometric level-of-detail, ray tracing caustics, and dull
reflections; these applications all depend in some form on under-
standing what happens in the screen-space vicinity (i.e. the foot-
print), of a traced ray. Our method uses ray differentials to measure
distances in screen space, allowing for the detection of features in
world space, and drawing corresponding feature lines with constant
width on the screen.

2 Related Work

The computer graphics literature shows a wealth of line rendering
techniques, mostly within the domain of non-photorealistic render-
ing. Here we review several examples in order to give a flavor of
the types of techniques, and to motivate their usefulness in general.

2.1 Wireframe Rendering

Perhaps the simplest way to include NPR-style lines in a rendering
is to use a simple two-pass rendering algorithm: first solid geome-
try is rendered, then the geometry wireframes are overlaid. For cer-
tain geometries, this process yields both crease and silhouette edges
(as for cubes or hexahedra), and the approach has been hybridized
with a ray tracer for mesh visualization [Ernst and Greiner 10-12
Sept. 2007]. Refinements of this basic technique exist (Bærentzen
et al. [Bærentzen et al. 2006], for example, developed a single-pass,

fragment-shader based approach that produces high-quality images
with little to no loss in performance) but such techniques cannot
capture other interesting features, such as intersection lines.

2.2 Applications of Line Drawing

There are several rendering algorithms that include NPR-style lines,
most of them applying to raster graphics. To give an idea of the
range of applications, several such techniques are reviewed here.

Expressing Shape. Dooley et al. [Dooley and Cohen 1990] de-
scribe an algorithm for creating expressive line renderings of 3D
objects using solid, dashed, and dotted lines of varying thickness
to indicate places where lines meet or run behind visible surfaces.
Their system focuses on silhouettes and creases to convey overall
structure; with just a few lines, whole objects can be understood,
including ordinarily invisible parts that are occluded by the visible
surfaces.

In the approaches of Dooley and Strothotte, the entire render-
ing is made from line primitives. There are also applications in
which lines are drawn on top of 3D renderings in order to draw
attention to or otherwise emphasize particular features. Saito et
al. [Saito and Takahashi 1990] explore techniques for extracting
edges, creases, and silhouettes by collecting depth or other values in
extended framebuffers and then applying standard image process-
ing techniques. Raskar et al. [Raskar and Cohen 1999] describe
a method for extracting and display silhouette edges with image
precision, optionally rendering such lines with varying thickness
to emulate charcoal or watercolor drawings. Gooch et al. [Gooch
et al. 1998] describe an NPR lighting model that includes silhou-
ette edges. Suggestive contours [DeCarlo et al. 2003], ridge-valley
lines [Ohtake et al. 2004], and apparent ridges [Judd et al. 2007]
are other approaches that use surface curvature to define classes of
lines that can convey shape.

Emulating Artistic Strokes. Strothotte et al. [Strothotte et al.
1994] present a “sketch renderer” that emulates human-made pen-
cil sketches in drawing scenes. The system can redraw portions
of scenes at runtime with more or less detail than before, drawing
the viewer’s eye to new places within the image and allowing the
modeller to influence how viewers see the scene. In a similar appli-
cation, Potter et al. [?] use perturbed lines to express various levels
of sketchiness in architectural renderings, allowing viewers to see
which parts are rendered with higher confidence, and which parts
require further discussion and design.

Scientific Visualization. Bigler et al. [Bigler et al. 2006; Bigler
2004] discuss the use of silhouette edges for enhancing geomet-
ric features in glyph-based scientific visualization of particle data
sets. Their approach adds silhouettes to a ray traced image by first
creating a depth buffer and then convolving the depth values with
a Laplacian kernel to detect “edges” in the depth image (similarly
to the approach of Saito et al. [Saito and Takahashi 1990]); finally,
these values are compared with a threshold to decide where to place
the edges on top of the rendered image. By varying the threshold,
the silhouettes will capture either groups of objects that are close
together, or each object by itself.

This approach is notable as one of the few techniques that combines
a raster-style algorithm with a ray traced image. The method pre-
sented here aims to demonstrate that, in general, such algorithms
can be adapted to work fully within a ray tracing framework. The
wealth of NPR techniques for raster graphics shows their usefulness
in many situations: we wish to incorporate the general machinery
underlying these techniques into the framework of ray tracers.

(a) (b) (c) (d)

Figure 2: The different types of feature lines our algorithm captures, illustrated schematically. (a) Silhouette edges, where the edge of an
object lies against the background. (b) Self-occluding silhouettes, where an edge of an object lies against a farther portion of the same object.
(c) Intersection lines, where two objects intersect. (d) Crease edges, where an object’s normal changes discontinuously.

3 Computing and Drawing Feature Lines

Generally, a ray tracer shoots severalsample raysfrom a camera
through an image plane into the scene being rendered. In the sim-
plest case, one sample ray is shot through the center of each pixel of
the target image. Each sample ray computes a color by interacting
with scene geometry (possibly shooting shadow or other secondary
rays); the sample colors are combined to yield colors for each pixel
in the final rendered image.

3.1 Tracing Ray Stencils

Detecting whether a sample ray strikes the scene near a feature line
requires knowing what happens in some neighborhood of the sam-
ple ray, i.e., how the ray differential interacts with the scene. To
approximate the differential for a sample rays, a disc-shapedray
stencilDN

h (s) is constructed abouts with radiush in screen space,
and using a quality parameterN . The parameterN determines the
number of raysM in the stencil (note thatM does not count the
sample ray itself). Figure 3a describes the construction ofDN

h (s).

Within the disc sampled by the ray stencil, feature lines can be
found as follows.s strikes some primitive in the scene, or else it
strikes the background: in either case, it is associated with ageom-
etry ID gs describing what it has struck,1 and a parametric distance
ts to the intersection point. Each stencil rayr is traced and associ-
ated with its own geometry IDgr and parametric distancetr.

Let m be the number of raysr in DN

h (s) for whichgr 6= gs (i.e. the
number of rays strikingdifferentgeometry froms). Depending on
the value ofm, one of the following situations results:

1. The stencil straddles different geometry IDs (0 < m ≤ M).
Some of the stencil rays strike different objects than the sam-
ple ray does so the sample ray is near either a silhouette edge
or an intersection line (Figure 1 demonstrates both types).

2. All the stencil rays strike the same geometry as the sample ray
(m = 0). When the entire ray stencil strikes the same object,
the possible feature lines are self-occluding silhouettes and
crease edges. A crease edge occurs when the surface normal
changes discontinuously (Figure??). Numerically, we define

1In the simplest setup, the geometry ID is identical with the “primitive
ID” of the primitive the ray has struck. However in some cases itmay be
more meaningful to associate a more complex object made up on simpler
primitives (e.g. a ray striking a meshed object will actually strike a trian-
gle primitive, but the geometry ID can instead reference the mesh itself),
hence the use of the termgeometry ID. Both primitive IDs and geometry
IDs can usually be identified with the unique pointer value specifying the
appropriate object in memory.

a crease edge occuring on any sample whose ray stencil in-
dicates a very large magnitude normal gradient. The normal
gradient is computed using the finite difference stencil con-
tained withing the ray stencil (Figure 3a). If the gradient is
larger than some threshold, then the sample lies near a crease
edge.

If a crease edge is not found, then the sample must be checked
for a self-occluding silhouette (Figure 4). These occur when
some of the stencil rays strike the object at a significantly far-
ther parametric distance than the sample ray does. Defined
to be the number of stencil raysr for which |tr − ts| > T
(whereT is a threshold that depends on the particular scene
and primitive, but can usually be set to some fraction ofts,
allowing for some view dependence on how the silhouette is
drawn). If d > 0 then the sample lies near a self-occluding
silhouette.

When the feature type is determined, anedge strength metricis used
to compute how dark the associated feature line should be drawn.
The stronger the edge, the darker it will be drawn. An edge strength
metric is a functioneM mapping a natural number less than or equal
to M to a real number in the range[0, 1]. The edge strengthes for
the sample rays is eM (m) if the feature is a silhouette or intersec-
tion, eM (d) if it is a self-occluding silhouette, and 1 for a crease
edge.

A simple example of an edge strength metric, which is used for the
examples in this paper, is

eM (i) = 1 −
|i − 1

2
M |

1

2
M

. (1)

This function rises linearly withi from zero to one fori ∈ [0, 1

2
M),

and then decreases linearly back to zero fori ∈ (1

2
M, M]. It re-

flects the fact that when a ray stencil is situated with half its area
in one geometry region and half in another, it is measuring the
strongest possible edge between two regions (Figure 3c). In this
case,m = 1

2
M , andeM (m) = 1. The value of this function is

used to blend the sample colorcs with black, thus rendering feature
lines.

The result of tracing and shading a sample ray, and then tracing the
associated ray stencil, is therefore a sample colorcs and an edge
strengthes.

3.2 Feature Line Rendering Algorithm

To find and draw feature lines, we use a modified version of the
ordinary ray tracing algorithm. For a particular sample ray, the al-

(a) (b) (c)

Figure 3: The details of how ray stencils work. (a) The ray stencilDN

h (s) samples a disc of radiush around the sample ray positions
(black). The samples lie inN concentric circles (dark gray, light gray/red) abouts, whereN is thequality parameter(in this example,N = 2
for two rings of samples). The largest circle has radiush. The red samples indicate a finite difference stencil that can be used to measure
gradients in searching for crease edges. (b) A ray stencil being used tomeasure foreign primitive area.s strikes some primitive below the
black line, and a different primitive lies above the line. The stencil (which excludess) contains twenty four rays (M = 24), and nine of them
strike a foreign primitive (m = 9). Using the linear edge strength metric (Equation 1), which measures howclose tohalf of the samples strike
a different primitive, we havees = eM (9) = 62.5%. (c) In the limit asN → ∞, a ray stencil becomes a circular disc, minus its center
point. The disc moves across a primitive boundary, from geometry IDg1 to g2, acting as anarea indicatorfor the portion of the filter that lies
on a foreign primitive (shaded black, the foreign primitive isg2 for the top three discs, andg1 for the bottom three). For the six “snapshots”
shown in this example, the disc moves a distance in screen space of2h, whereh is the disc radius. The foreign area increases from zero to
one-half, “flips” to the left side as the center of the filter crosses the boundary, and then decreases back to zero. The foreign primitive area is
used to define an edge strength, which in turn is used to render feature lines.

gorithm runs as follows: the sample rays is traced and shaded as
normal with colorcs. A ray stencilDN

h (s) is constructed abouts
and the stencil rays are traced until they strike the scene geome-
try. Depending onm, one of the two cases in Section 3.1 is trig-
gered, and an edge strengthes is computed. The sample colorcs

is blended with black, using the edge strength as an interpolation
factor, yielding a darkened colorcs(1− es), and this color replaces
the original sample color. For full edge strength, the sample will be
black and for zero edge strength it will be shaded as normal. Be-
tween these extremes lies a spectrum of darkened colors, usually
serving as a “halo” for the darkest part of the line. By changing
the radius of the stencilh, the thickness of the line can be varied.
Because the lines are computed in screen space, this valueh al-
ways yields lines of the same width, regardless of the scale of the
scene, camera zoom parameters, etc. Furthermore, because edge
strength determines darkness, the lines are inherently anti-aliased
via prefiltering (in much the same way as the wireframe techniques
of Bærentzen et al. [Bærentzen et al. 2006]).

In essence, this procedure searches for zeroth and first order discon-
tinuities in the geometry ID image and depth image in order to find
the target feature lines. The method is therefore similar to the ap-
proach of Saito et al. [Saito and Takahashi 1990], but fully adapted
to work within a general ray tracing framework.

4 Discussion

4.1 Extension to Multiple Bounces

The key insight in the algorithm presented here is the computation
of a ray stencil in the screen space. The stencil approximates the
ray differential, which in turn represents the changes taking place
in the image as one moves some distance in screen space. The
algorithm draws feature lines on the image itself, depending on how

the geometry behaves when projected to the image plane. It does
not draw feature lines on reflected images, such as those produced
by specular reflection. The method can be extended to do so by
continuing to trace stencil rays that would normally be reflected
due to effects such as specular reflection. This can be done in the
case where all the stencil rays strike the same object, and that object
supports specular reflection. In essence, by tracing such rays to see
what primitives they end up striking in the second bounce, reflected
images can have their feature lines computed exactly as the primary
image does. This process can be repeated so long as all of the stencil
rays strike the same object in each bounce.

4.2 Ray Stencils and Image Filtering

The idea of ray differentials and their instantiation with ray stencils
is the central concept of our method. By arranging the ray stencil in
screen space with a fixed radius, and allowing the rays the compute
scene information, a projection of the scene onto the disc sampled
by the stencil is accomplished. Through the stencil rayt values
and geometry IDs, the projection actually produces two images: a
geometry identification image and a depth image.

In computing the silhouette and intersection lines, the counting pro-
cess described in Section 3.2 is essentially anarea estimation, tak-
ing the area of the stencil covering “foreign” geometry IDs to be a
measure of how strong of an edge lies within the disc. Formulating
the process this way recalls the SUSAN edge detector from image
processing [Smith and Brady 1997] which also measures areas of
dissimilar brightness.

As constructed, the ray stencils contain a first-order finite difference
stencil. This is used to compute the gradient of the normal image,
discontinuities of which indicate sharp corners. First-order discon-
tinuities in the normal are related to second-order discontinuities in

(a) (b) (c)

Figure 4: Examples of crease lines and self-occluding silhouette edges. (a) The shading on the cube faces hints at a discontinuous normal
field; the crease lines highlight the location of the discontinuity. (b) The shape of a torus is more strongly expressed when the self-occluding
silhouettes extending from the central hollow are shown. (c) A gaussian function is rendered with a self-occluding silhouette, emphasizing
the bump.

the depth image (i.e. sudden changes in the normal direction are ac-
companied by sudden changes in the rate of change of depth values
with respect to some viewing direction).

For each type of feature line our algorithm detects, the action of the
ray stencil can be explained in terms of searching for zeroth, first,
or second order discontinuities in one function or another, along
the same lines as discussed in, e.g., Saito et al. [Saito and Taka-
hashi 1990]. Our method demonstrates that general image filtering
techniques are possible, fully within the ray tracing framework.

4.3 Anti-Aliasing

One particular advantage of our method is that the lines drawn are
naturally anti-aliased. This arises from the nature of the area esti-
mation performed by the ray stencils. Ideally, as a ray stencil moves
across a line-like feature in image space, the foreign geometry ID
area increases from zero to fifty percent, and then falls back to zero
again. The edge strength metric derived from these values, when
used to determine darkness, produces a line that is dark in the mid-
dle and smoothly lightens toward white at distances equal to the
radius of the stencil. By increasing the quality parameterN in the
stencil construction, the area estimation becomes finer and more
levels of smoothness can be used at the cost of tracing more stencil
rays. Bærentzen et al. [Bærentzen et al. 2006] achieve a similar ef-
fect by using smoothly varying “edge” functions in their fragment
shader.

If lines with different qualities are needed, different edge strength
metrics can create different kinds of lines. For instance, exponenti-
ating the second term of Equation 1 will produce an edge strength
metric with a faster transition from dark to light, giving sharper
edged lines.

The stencil rays can also be used for scene anti-aliasing. Because
the stencil rays are used for essentially an image processing task
that depends on visibility and depth, they are intersected with scene
geometry but not shaded. However, traversing and intersecting rays
with the scene is the dominant cost in tracing them; for a small extra
cost the stencil rays can be shaded and used for multisampling, in
addition to computing feature lines.

5 Results

The technique presented in this paper opens ray tracing to new
styles of rendering. In this section, we review several examples
of the technique.

5.1 Primitive joints

Figure 1 shows a space-filling model [Corey and Pauling 1953] of
an acetaminophen molecule, with NPR lines shown by themselves
in the middle panel. In the space-filling model, spheres represent-
ing atoms always intersect to show atomic bonds; marking the lines
along which the atoms intersect can make the structure subtly more
apparent, aiding in the understanding of such images. Techniques
for approximating global illumination, such as ambient occlusion,
have been shown to be useful for certain visualization applications,
including particle [Gribble and Parker 2006] and molecular [Tarini
et al. 2006] visualization. These methods are especially helpful in
understanding subtle three-dimensional placement. One of the ef-
fects of using ambient occlusion for a molecular model is todarken
the atomic joints; in this case, drawing the intersection lines serves
as a non-photorealistic way to indicate the darkened regions, evok-
ing some of the core effect of the ambient occlusion renderings.
Rendering intersection lines directly generalizes the darkening ef-
fect by drawing lines even for primitives that intersect at shallow
angles, in cases where ambient occlusion wouldnot significantly
darken the joint between them.

5.2 Mesh visualization

Triangle meshes are a standard and widespread way to represent
three-dimensional geometry; consequently, much work in the ray
tracing community aims toward improving rendering performance
for such meshes [Ize et al. 10-12 Sept. 2007; Wald et al. 2006; Wald
et al. 2008]. In a raster graphics setting, wireframe techniques can
reveal the mesh structure by showing the triangle joints. This can be
useful for many purposes, such as debugging mesh model geometry
or evaluating their quality during design and construction.

When ray tracing a mesh model (Figure 5), our technique offers
two choices for the stencil ray geometry IDs: either the ray can as-

Figure 5: Our method reveals intersection lines between the trian-
gles in the bunny model, allowing for the visualization of meshes.

sociate with the object representing the whole object, or with the
individual triangle primitive within the model. In the former case,
the technique treats the mesh as a single, whole object, and it will
show the silhouette of the meshed object.2 In the latter case, how-
ever, the joints between the triangles will also be drawn, revealing
the mesh structure and connectivity.

5.3 Particle data sets

Bigler et al. [Bigler et al. 2006; Bigler 2004] have demonstrated the
usefulness of advanced shading models and NPR techniques in ex-
amining particle data sets produced by the Material Point Method
(MPM) [Bardenhagen and Kober 2004; Sulsky et al. 1995]. The
data sets are usually visualized using a glyph to represent each par-
ticle; important insights come from understanding how the particles
are arranged and how their arrangement changes over simulated
time.

As discussed by Bigler, silhouette edges can act as a cue to struc-
ture. The authors of this paper have explored the use of different
glyph geometries for visualizing MPM data [Choudhury et al.]. By
using the technique described in this paper, we highlight not only
silhouette edges but also places where particles intersect (Figure 6,
left), while crease edges enhance the individual hexahedral glyph
shapes (Figure 6, right). Seeing where particles overlap each other
is especially important for MPM data, as it usually indicates error or
instability in the simulation. As with the molecule rendering (Fig-
ure 1), the NPR lines elaborate the primitives’ physical relationship
to each other, which is very important to understand in a setting like
scientific visualization.

5.4 Other NPR Techniques

To demonstrate that our framework of ray stencils is useful for other
NPR algorithms as well, we have implementedapparent ridgesac-

2If the normals are interpolated across the triangle faces forshading pur-
poses, then the technique will not pick up sharp corners at the triangle edges.

Figure 6: A particle data set rendered using spheres (left) and
hexahedral elements (right). In both images, our NPR technique
is used to render intersection lines, silhouette edges, and crease
edges. The intersection lines make very clear the relative positions
of the glyphs. In particular, the spheres are seen to overlap very
often in the left image, while slight intersection between the hexa-
hedral glyphs can be seen where the boundary lines appear kinked.

cording to the paper by Judd et al. [Judd et al. 2007]. Figure 7
shows a “rounded cube” (actually a superellipsoid) on which ap-
parent ridges, which are the loci of points at which the “view de-
pendent curvature” is locally maximal, can be seen.

The view dependent curvature is described by a rectangular ma-
trix Q that depends both on an object’s surface curvature, and the
viewing projection. It transforms vectors in screen space to normal
perturbation vectors in world space: in terms of ray stencils, this
means measuring the normal gradient in screen space is sufficient
to constructQ. The singular value decomposition ofQ yields the
view dependent curvature for each sample ray, which in turn can be
used to render the apparent ridges.

This example demonstrates that the ray tracing framework, together
with ray stencils, is flexible enough to allow for “porting” NPR
techniques from a raster graphics setting to a ray tracer. Given the
large number of techniques discussed in Section 2, the apparent
ridges example shows that it is possible to use NPR methods within
ray tracers.

6 Conclusions and Future Work

We have presented a method for computing and rendering feature
lines, using only the machinery of a ray tracing engine. The method
searches for indications of such feature lines in the screen space
vicinity of a sample ray, allowing for the ray tracer to render con-
stant width lines, emulating methods that already exist in the raster
graphics literature. The technique is useful for drawing attention
to specific geometric features, such as the relative placement and
grouping of primitives, which can promote better comprehension
of certain images.

One major area of future work for our method lies in searching
for optimizations. Currently, we trace stencil rays independently;
however, because stencil rays are, by definition, more likely to be
coherent, there should be ways to leverage that coherence to com-
pute their scene intersections more quickly. In addition, because
of the stencil rays’ geometric regularity, there may be opportunities
for re-using results from previous instantiations of ray stencils as
well.

Our method is particularly useful for scientific visualization, in
which ray tracing has been increasingly used to handle the sheer
number of primitives that can arise from modern scientific simula-
tions. NPR-style effects in scientific visualizations are useful be-
cause of the way they draw the eye to certain features that can pro-

Figure 7: A rounded cube overlaid with apparent ridges, as com-
puted by a ray tracer using ray stencils.

vide insight into the data. More generally, in any situation where
ray tracing is useful for one reason or another, but NPR effects are
also useful, our technique brings the two technologies together.

References

BÆRENTZEN, A., NIELSEN, S. L., GJØL, M., LARSEN, B. D.,
AND CHRISTENSEN, N. J. 2006. Single-pass wireframe ren-
dering. InSIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches,
ACM, New York, NY, USA, 149.

BARDENHAGEN, S. G.,AND KOBER, E. M. 2004. The general-
ized interpolation material point method.Computer Modeling in
Engineering and Sciences 5, 6, 477–496.

BIGLER, J., GUILKEY, J., GRIBBLE, C. P., HANSEN, C. D.,AND
PARKER, S. G. 2006. A case study: Visualizing material point
method data. InProceedings of Euro Vis 2006, 299–306, 377.

BIGLER, J. L. 2004. Use of Silhouette Edges and Ambient Oc-
clusion in Particle Visualization. Master’s thesis, University of
Utah.

BRESENHAM, J. E. 1965. Algorithm for computer control of a
digital plotter. IBM Systems Journal 4, 1, 25–30.

CHOUDHURY, A. I., GUILKEY, J. E.,AND PARKER, S. G. Phys-
ically based deformation visualization for particle datasets. Un-
published.

COREY, R. B., AND PAULING , L. 1953. Molecular models of
amino acids, peptides, and proteins.The Review of Scientific
Instruments 24, 8 (August), 621–627.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA , A. 2003. Suggestive contours for conveying shape.
ACM Trans. Graph. 22, 3, 848–855.

DOOLEY, D., AND COHEN, M. F. 1990. Automatic illustration
of 3d geometric models: lines. InSI3D ’90: Proceedings of the

1990 symposium on Interactive 3D graphics, ACM, New York,
NY, USA, 77–82.

ERNST, M., AND GREINER, G. 10-12 Sept. 2007. Early split clip-
ping for bounding volume hierarchies.Interactive Ray Tracing,
2007. RT ’07. IEEE Symposium on, 73–78.

GOOCH, A., GOOCH, B., SHIRLEY, P.,AND COHEN, E. 1998. A
non-photorealistic lighting model for automatic technical illus-
tration. InSIGGRAPH ’98: Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, 447–452.

GRIBBLE, C. P.,AND PARKER, S. G. 2006. Enhancing interactive
particle visualization with advanced shading models. InAPGV
’06: Proceedings of the 3rd symposium on Applied perception in
gr aphics and visualization, ACM Press, New York, NY, USA,
111–118.

IGEHY, H. 1999. Tracing ray differentials. InSIGGRAPH ’99: Pro-
ceedings of the 26th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 179–186.

IZE, T., SHIRLEY, P., AND PARKER, S. 10-12 Sept. 2007. Grid
creation strategies for efficient ray tracing.Interactive Ray Trac-
ing, 2007. RT ’07. IEEE Symposium on, 27–32.

IZE, T., WALD , I., ROBERTSON, C.,AND PARKER, S. Sept. 2006.
An evaluation of parallel grid construction for ray tracing dy-
namic scenes.Interactive Ray Tracing 2006, IEEE Symposium
on, 47–55.

JUDD, T., DURAND, F., AND ADELSON, E. H. 2007. Apparent
ridges for line drawing.ACM Trans. Graph. 26, 3, 19.

OHTAKE , Y., BELYAEV, A., AND SEIDEL, H.-P. 2004. Ridge-
valley lines on meshes via implicit surface fitting. InSIGGRAPH
’04: ACM SIGGRAPH 2004 Papers, ACM, New York, NY,
USA, 609–612.

POTTER, K., GOOCH, A., GOOCH, B., WILLEMSEN, P., KNISS,
J., RIESENFELD, R., AND SHIRLEY, P. 2009. Resolution in-
dependent npr-style 3d line textures.Computer Graphics Forum
28, 1, 52–62.

RASKAR, R., AND COHEN, M. 1999. Image precision silhouette
edges. InProceedings of the 1999 symposium on Interactive 3D
graphics, 135–140.

SAITO , T., AND TAKAHASHI , T. 1990. Comprehensible rendering
of 3-d shapes.SIGGRAPH Comput. Graph. 24, 4, 197–206.

SMITH , S. M., AND BRADY, J. M. 1997. Susan—a new approach
to low level image processing.International Journal of Com-
puter Vision 23, 1 (May), 45–78.

STROTHOTTE, T., PREIM, B., RAAB , A., SCHUMANN , J., AND
FORSEY, D. R. 1994. How to render frames and influence peo-
ple. Computer Graphics Forum 13, 3, 455–466.

SULSKY, D., ZHOU, S.-J.,AND SCHREYER, H. L. 1995. Appli-
cation of a particle-in-cell method to solid mechanics.Computer
Physics Communications 87, 1–2 (May), 236–252.

TARINI , M., CIGNONI, P., AND MONTANI , C. 2006. Ambient
occlusion and edge cueing for enhancing real time molecular vi-
sualization. IEEE Transactions on Visualization and Computer
Graphics 12, 5, 1237–1244.

WALD , I., IZE, T., KENSLER, A., KNOLL , A., AND PARKER,
S. G. 2006. Ray tracing animated scenes using coherent grid
traversal.ACM Trans. Graph. 25, 3, 485–493.

WALD , I., IZE, T., AND PARKER, S. G. 2008. Fast, parallel,
and asynchronous construction of bvhs for ray tracing animated
scenes.Computers and Graphics 32, 1 (February), 3–13.

