A.N.M. Imroz Choudhury

January 20, 2007

We wish to compute definite integrals over rectangular regions of the function

$$
\begin{equation*}
f(x, y)=\frac{1}{4}\left(\frac{x}{n_{x}}\left(1+\cos \left(k_{x} x^{2}\right)\right)\right)\left(\frac{y}{n_{y}}\left(1+\cos \left(k_{y} y^{2}\right)\right)\right) \tag{1}
\end{equation*}
$$

in which n_{x}, n_{y}, k_{x}, and k_{y} are constants, and $(x, y) \in\left[0, n_{x}\right] \times\left[0, n_{y}\right]$. First we perform some rearrangement:

$$
\begin{aligned}
f(x, y) & =\frac{1}{4}\left(\frac{x}{n_{x}}\left(1+\cos \left(k_{x} x^{2}\right)\right)\right)\left(\frac{y}{n_{y}}\left(1+\cos \left(k_{y} y^{2}\right)\right)\right) \\
& =\frac{1}{4 n_{x} n_{y}}\left(x+x \cos k_{x} x^{2}\right)\left(y+y \cos k_{y} y^{2}\right) \\
& =c F_{x}(x) F_{y}(y)
\end{aligned}
$$

In other words, $f(x, y)$ is separable in x and y, which will simplify the integration. We want the integral of f over a single pixel area, and so:

$$
\begin{align*}
\int_{j}^{j+1} \int_{i}^{i+1} f(x, y) d x d y & =\int_{j}^{j+1} \int_{i}^{i+1} c F_{x}(x) F_{y}(y) d x d y \\
& =c \int_{j}^{j+1} \int_{i}^{i+1} F_{x}(x) F_{y}(y) d x d y \\
& =c \int_{j}^{j+1} F_{y}(y)\left(\int_{i}^{i+1} F_{x}(x) d x\right) d y \\
& =c\left(\int_{i}^{i+1} F_{x}(x) d x\right)\left(\int_{j}^{j+1} F_{y}(y) d y\right) \tag{2}
\end{align*}
$$

Taking the $d x$ integral above, we get:

$$
\begin{aligned}
\int_{i}^{i+1} F_{x}(x) d x & =\int_{i}^{i+1}\left(x+x \cos k_{x} x^{2}\right) d x \\
& =\int_{i}^{i+1} x d x+\int_{i}^{i+1} x \cos k_{x} x^{2} d x \\
& =\left.\frac{x^{2}}{2}\right|_{i} ^{i+1}+\left[\frac{-\sin \left(k_{x} x^{2}\right)}{2 k_{x}}\right]_{i}^{i+1} \\
& =\left(\frac{(i+1)^{2}-i^{2}}{2}\right)+\left(\frac{-\sin \left(k_{x}(i+1)^{2}\right)+\sin \left(k_{x} i^{2}\right)}{2 k_{x}}\right)
\end{aligned}
$$

Replacing i with j and k_{x} with k_{y} in this final expression gives the value of the $d y$ integral, and by substituting into (2), these expressions give the integral of (1).

It is possible to simplify the resulting expression so that direct translation to C or $\mathrm{C}++$ code is more efficient, but this is far afield of the mathematical timbre this short report seeks after.

