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ABSTRACT

In this paper we present a novel method for analyzing the
relationship between functional brain networks and behav-
ioral phenotypes. Drawing from topological data analysis,
we first extract topological features using persistent homology
from functional brain networks that are derived from correla-
tions in resting-state fMRI. Rather than fixing a discrete net-
work topology by thresholding the connectivity matrix, these
topological features capture the network organization across
all continuous threshold values. We then propose to use a
kernel partial least squares (kPLS) regression to statistically
quantify the relationship between these topological features
and behavior measures. The kPLS also provides an elegant
way to combine multiple image features by using linear com-
binations of multiple kernels. In our experiments we test
the ability of our proposed brain network analysis to predict
autism severity from rs-fMRI. We show that combining cor-
relations with topological features gives better prediction of
autism severity than using correlations alone.

Index Terms— Brain networks, topological data analy-
sis, kernel regression, autism

1. INTRODUCTION

Understanding the communication network between func-
tional regions of the brain is a vital goal towards uncover-
ing the biological mechanisms behind several diseases and
neuropsychiatric disorders. This is particularly important
in autism spectrum disorder (ASD), which converging evi-
dence has shown to be characterized by abnormal functional
and structural connectivity. The development of imaging
biomarkers that correlate with specific behavioral symptoms
would be beneficial for early diagnosis or for tracking treat-
ment efficacy. Achieving this requires new methods for ex-
tracting relevant network representations from neuroimaging
and statistical models for regressing this high-dimensional
and non-Euclidean information with behavioral measures.

Analysis of brain networks begins with a matrix of pair-
wise associations between brain regions, e.g., correlations be-
tween time series in resting-state functional MRI (rs-fMRI).
Such an association matrix is often used directly as the repre-
sentation of the network in a regression analysis, hypothesis
test, or classification. Recently, graph-theoretic methods [1]
have emerged as a powerful means to describe the organiza-
tion of brain networks. Graph-theoretic measures (e.g., small
worldness, modularity, etc.) have shown promising ability
to explain impairments in brain networks characteristic of
neuropsychiatric disorders such as ASD. However, graph-
theoretic measures require that the association between nodes
be thresholded to a binary value (connection or no connec-
tion), which loses information about the strength or certainty
of the association. On the other hand, while the raw asso-
ciation matrix retains all information about the association
strength between nodes, it does not directly capture informa-
tion about the topology of the network.

To address this, we propose to use persistent homology
features because they capture the topology of the association
network at all levels of thresholding. These topological fea-
tures are recorded in a persistence barcode, which is not a
Euclidean vector, making direct use of linear statistical mod-
els difficult. However, we can define an inner product be-
tween two persistence barcodes, and use kernel partial least
squares (kPLS) for regressing brain network topological fea-
tures against behavioral scores. We apply our proposed meth-
ods to study how functional brain connectivity in autism is
related to severity of the disorder.

2. TOPOLOGY OF BRAIN NETWORKS

Topological data analysis and persistent homology. Topo-
logical data analysis (TDA) extends mathematical concepts to
the qualitative study of data from its point cloud representa-
tions; see, e.g., [2] for seminal work on the topic and [3, 4]
for excellent surveys. In particular, the mathematical notion
of homology captures the topological features of a space in



Fig. 1. Persistent homology computation and barcode.

terms of its connectivity, treating its (connected) components,
tunnels and voids as 0-, 1- and 2-dimensional features; while
persistent homology [2], a main ingredient in TDA, automat-
ically detects and systematically characterizes these topolog-
ical features at all scales.

To convey the key ideas behind persistent homology, see
Fig. 1 for an illustrative example. In Fig. 1(a), imaging five
tiny infectious cells are born at time t = 0 in the culture and
start to grow linearly in time. These cells differ by their de-
grees of infectiousness, where red > pink > blue > orange
> green. When two cells grow large enough to intersect each
other, the more infectious cell will kill the less infectious one,
and both cells merge to form a highly infectious cluster. Using
persistent homology, we investigate the topological changes
within the growing sequence of cells indexed by time (a fil-
tration). In particular, we focus on important events when
cells merge with one another to form clusters (i.e., compo-
nents) or tunnels. We begin by tracking the birth and death
times of each cell (or cluster of cells) as well as its lifetime in
the filtration. At t = 2.5, the green cell gets infected by the
red cell and dies; and the two cells merge into one red clus-
ter; therefore the green cell has a lifetime (i.e., persistence)
of 2.5. At t = 3, the orange cell gets infected by the pink
cell and turns pink; therefore it dies at t = 3. Similarly, the
blue cell dies at t = 3.2 while the pink cluster of cells dies
at t = 3.7. At time t = 4.2, something interesting happens
as the collection of cells forms a tunnel; and the tunnel dis-
appears at t = 5.6. We record and visualize the appearance
(birth), the disappearance (death), and the persistence of topo-
logical features in the filtration via persistence diagrams [5],
or equivalently, persistence barcodes [4]. A point p = (a, b)
in the persistent diagram records a topological feature that is
born at time a and dies at time b. Equivalently in the barcode
of Fig. 1(b), such a feature is summarized by a horizontal bar
that begins at a and ends at b.

On the other hand, from a computational point of view, the
above nested sequence of spaces formed by cells can be rep-
resented by a nested sequence of simplicial complexes with
a much smaller footprint, as illustrated in Fig. 1(c). Suppose
we represent each cell by its nucleus, a black point within its
center. At a fixed parameter t, if two cells intersect each other,
we construct an edge (i.e., 1-simplex) connecting their nuclei.
Similarly, we construct a triangle (i.e., 2-simplex) for every

three nuclei and a tetrahedron (i.e., 3-simplex) for every four
nuclei whose corresponding cells have pairwise intersections.
Such a complex is referred to as the Rips complex, denoted as
R(t). For example, at t = 2.5, an edge is formed connecting
a pair of nuclei in the red cluster; and at t = 5, a triangle is
constructed among a set of pairwise intersecting cells. It is
clear that for parameters t1 ≤ t2, R(t1) ⊆ R(t2), forming a
nested sequence. Persistent homology then captures the topo-
logical changes of these Rips complexes, producing similar
barcode as in Fig. 1(b).
Applying persistent homology to brain networks. Per-
sistent homology is becoming an emerging tool in studying
complex networks (e.g., [6]), in particular, brain networks
(e.g., [7, 8]). The key insight is to map a given brain network
to a point cloud in the metric space (intuitively this corre-
sponds to the set of cells in Fig. 1), where network nodes map
to points, and the measures of association between pairs of
nodes map to distances between pairs of points. In this paper
for example, the distance d between two points u, v in the
metric space is computed using their correlation coefficients
in the brain network, that is, d(u, v) =

√
1− corr(u, v).

Subsequently, a nested sequence of simplicial (e.g., Rips)
complexes could be constructed in the metric space for per-
sistent homology computation. See Fig. 2 for an illustration.

To interpret the extracted topological features from the
simplicial complexes with respect to the brain network,
dimension-0 features capture how nodes in the brain net-
works are groups into clusters based on their correlations;
while dimension-1 and dimension-2 features encode how
these nodes are glued together forming tunnels and voids.
Low persistence features capture high correlation, and possi-
bly microscopic interactions among the network nodes; while
high persistent features reveal low correlation, and poten-
tially mesoscopic and macroscopic interactions. Some initial
works [7, 8] have shown that the distributions of the topolog-
ical features with high or low persistence can be indicative
of differences among network organizations; although few
systematic investigations have been carried out so far.

Fig. 2. Mapping a brain network to the metric space.

Leveraging topological features for statistical analysis. To
interface topological features with the statistical algorithms
such as regression or classification, we employ a recent tech-
nique proposed by Reininghaus et al. [9] that imposes a sta-
ble, multi-scale topological kernel for persistence barcodes,
which connects topological features encoded in the barcodes
with popular kernel-based learning techniques such as ker-
nel SVM and kernel PCA. In a nutshell, the topological ker-



nelKTDA
σ (A,B) (parametrized by a scale parameter σ) mea-

sures similarity between a pair of barcodes A and B obtained
from two different functional networks. It is defined as,

KTDA
σ (A,B) =

1

8πσ

∑
p∈A,q∈B

e−
||p−q||2

8σ − e−
||p−q̄||2

8σ ,

where for every q = (a, b) ∈ B, q̄ := (b, a).

3. KERNEL PARTIAL LEAST SQUARES

Partial least squares. Partial least squares regression (PLS)
[10] is a dimensionality reduction technique that finds two
sets of latent dimensions from datasets X and Y such that
their projections on the latent dimensions are maximally co-
varying. In comparison to principal component regression
which separately reduces the dimension of regressors, PLS
finds relevant latent variables that facilitate a better regression
fit between datasets X (the predictor/regressor) and Y (the
predicted response variables). Similar to Singh et al. [11],
we consider here the case where the X predictors are fea-
tures from brain imaging, and the Y responses are clinical
measures of behavior. X is an n × N matrix of zero-mean
variables and Y is an n ×M matrix of zero-mean variables.
PLS decomposes X and Y into X = TPT + E and Y =
UQT + F , where T and U are n× p matrices of the p latent
variables, the N × p matrix P and the M × p matrix Q are
orthonormal matrices of loadings, and the n × N matrix E
and the n×M matrix F are residuals. The first latent dimen-
sion in the PLS regression can be computed using the iterative
NIPALS algorithm [12], which finds loading vectors w and u,
such that the data projected onto these vectors, t = Xw and
u = Y c, has maximal covariance. Subsequent latent dimen-
sions are then found by deflating the previous latent dimen-
sion from X and Y , then repeating the NIPALS procedure.
Kernel partial least squares regression. Rosipal and
Trejo [13] derived the kernel partial least squares (kPLS)
algorithm which assumes that the regressor data X is mapped
by some mapping Φ to a higher dimensional inner product
space F . Let K be the Gram matrix of data X , such that
the entries of the kernel k(x, x′) between two vectors in F is
equal to the inner product 〈Φ(x),Φ(x′)〉F . The kernel form
of the NIPALS algorithm scales to unit norm vectors t and u
instead of the vectors w and c. It initializes a random vector
u and repeats the following steps until convergence:

t = ΦΦTu = Ku (1)
‖t‖ → 1 (2)

c = Y T t (3)
u = Y c (4)

‖u‖ → 1 (5)

At convergence, K is then deflated by K ← (I − ttT )K(I −
ttT ) to compute additional latent dimensions. Similar to PLS,

the regression equation is Ŷ = ΦB = KU(TTKU)−1TTY .

4. RESULTS

We applied our proposed kPLS regression between brain net-
work topological features and behavior in an rs-fMRI study
of autism. Our goal was to test the ability to predict autism
severity, as measured by the Autism Diagnostic Observation
Schedule (ADOS), from topological features of functional
networks. We first tested raw correlations from rs-fMRI as
the brain network features in the kPLS. Our results below
show that augmenting these raw correlation features with the
proposed topological features improves the predictive power
of the kPLS model.
Data. We use data from the Autism Brain Imaging Data Ex-
change (ABIDE), a joint effort across multiple international
sites aggregating subjects’ rs-fMRI scans and behavioral in-
formation such as ADOS. To avoid data heterogeneity from
site differences, such as different scanner models, protocols,
etc., we limit our analysis to a single site. There was a total
of n = 87 subjects with both rs-fMRI and ADOS information
(30 typically-developing control subjects and 57 ASD sub-
jects). The ADOS is an evaluation for autism based on social
and communication behaviors. Subscores are assigned for
both criteria, and at the clinician’s discretion, subjects scor-
ing a total > 8 are diagnosed with ASD.
Preprocessing. All fMRI data were preprocessed using the
Functional Connectomes-1000 scripts, which include skull
stripping, motion correcting, registration, segmentation and
spatial smoothing. Next, the time series for each of 264 re-
gions were extracted based on Power’s regions of interest
[14]. The Pearson correlation coefficient was then computed
between each pair of regions, resulting in a 34,716 dimen-
sional feature space for each subject (by vectorizing the
strictly upper triangular part of the 264× 264 correlation ma-
trix). These pairwise correlations were used to compute the
persistence barcodes for the topological features in Section 2.
Relating fMRI correlations to ADOS total scores. Using
the rs-fMRI correlation values, we defined a linear kernel
Kcor by taking the Euclidean dot products of the features.
We used kPLS to regress the ADOS score Y against rs-fMRI
correlations. The predictive power of the model was tested
using leave-one-out cross-validation (LOOCV), i.e., for each
subject, we trained the kPLS regression on the other n − 1
subjects and predicted the left out subject’s ADOS score. We
evaluated the prediction Ŷ of the true ADOS scores Y using
the root mean squared error (RMSE).
Topological kernels. From each subject’s fMRI correlation
matrix we computed the persistence barcodes of the dimen-
sion 0 and dimension 1 topological features using the proce-
dure detailed in Section 2. The kernels KTDA0 and KTDA1

obtained from these barcodes were normalized by the me-
dian of the absolute values of their entries. There are four



RMSE ADOS mean KTDA Kcor

ADOS mean 6.4302 - - -
KTDA 6.3553 0.316 - -
Kcor 6.0371 0.055 0.095 -

KTDA+cor 6.0156 0.048 0.075 0.288

Table 1. ADOS prediction results. Columns 2 to 4 are p-
values for the permutation test of improvement of row method
over column method.

free parameters in the kPLS regression: the kernel param-
eters σ0 and σ1 for dimension 0 and dimension 1 features,
and linear weights w0, w1 for combining the kernels to give
KTDA+cor = w0K

TDA0 +w1K
TDA1 + (1−w0−w1)Kcor.

We performed LOOCV over all combinations of parameters,
with weights w0 and w1 in the range from 0 to 1 by 0.05, and
log kernel sizes log10(σ0) and log10(σ1) from -8 to 6 by 0.2.
We also evaluatedKTDA, with constraint (1−w0−w1) = 0,
such that the combined kernel only uses topological features.

The above methods Kcor, KTDA+cor, and KTDA were
compared against a baseline of using the mean ADOS value
of the other n− 1 subjects for prediction. Our RMSE results
show that correlation matrices and topological features have
promising predictive power over the mean prediction baseline
(see Table 1). To ensure that these regressions are also better
than using random signals, we generated n random correla-
tion matrices from i.i.d. N(0, 1) time series of the same size
as the real fMRI data and computed their linear kernel. Ran-
dom signals performed worse than the ADOS mean predic-
tion baseline, with an RMSE of 6.47359.

We used permutation tests to determine the p-value sig-
nificance of our RMSE results. We looked at the test statis-
tics RMSEmethod2 - RMSEmethod1 for all pairwise compar-
isons of the three kernel methods plus baseline. In each of
100,000 permutations, we performed random pairwise swaps
of method2 and method1 predictions for subjects and com-
puted the new statistic. The p-value is the percentage of per-
muted difference statistics that were greater than the unper-
muted statistic.

From our results, both KTDA (parameters: σ0 = −6.6,
σ1 = 1.8, w0 = 0.05, w1 = 0.95) and Kcor show evidence
of improvement over baseline and noise. Augmenting Kcor

with topological features, KTDA+cor has the best predictive
power, and is the only method that is statistically significantly
better than baseline. This best result is with the parameters
σ0 = −7.8, σ1 = 2.8, w0 = 0.10, w1 = 0.40. These re-
sults show that topological features derived from correlations
of rs-fMRI have the potential to explain the connection be-
tween function brain networks and autism severity. For future
work, we will investigate the predictive power of persistence
barcodes derived from other metrics, e.g., partial correlations.
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