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Abstract

As a generalization of the use of graphs to describe pairwise interactions, simplicial com-
plexes can be used to model higher-order interactions between three or more objects in complex
systems. There has been a recent surge in activity for the development of data analysis meth-
ods applicable to simplicial complexes, including techniques based on computational topology,
higher-order random processes, generalized Cheeger inequalities, isoperimetric inequalities, and
spectral methods. In particular, spectral learning methods (e.g. label propagation and cluster-
ing) that directly operate on simplicial complexes represent a new direction emerging from the
confluence of computational topology and machine learning. Similar to the challenges faced by
massive graphs, computational methods that process simplicial complexes are severely limited
by computational costs associated with massive datasets.

To apply spectral methods in learning to massive datasets modeled as simplicial complexes,
we work towards the sparsification of simplicial complexes based on preserving the spectrum of
the associated Laplacian operators. We show that the theory of Spielman and Srivastava for
the sparsification of graphs extends to simplicial complexes via the up Laplacian. In particular,
we introduce a generalized effective resistance for simplexes; provide an algorithm for sparsi-
fying simplicial complexes at a fixed dimension; and give a specific version of the generalized
Cheeger inequality for weighted simplicial complexes. Finally, we demonstrate via experiments
the preservation of the up Laplacian during sparsification, as well as the utility of sparsification
with respect to spectral clustering.
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1 Motivation

Our work towards spectral sparsification of simplicial complexes is primarily motivated by learning
based on simplicial complexes. Simplicial complexes capture higher-order interactions in complex
systems; and there has been much recent activity in developing spectral theory for higher-order
Laplacians as well as learning algorithms that operate on these Laplacians. We are interested
in understanding the behavior of spectral learning algorithms on compact representations that
preserve the spectral structure of data.

Simplicial complexes in data analysis. Understanding massive systems with complex inter-
actions and multi-scale dynamics is important in a variety of social, biological, and technological
settings. One approach to understanding such systems is to represent them as graphs where ver-
tices represent objects and (weighted) edges represent pairwise interactions between the objects.
A large arsenal of methods has now been developed to analyze properties of graphs, which can
then be combined with domain-specific knowledge to infer properties of the system being studied.
These tools include graph partitioning and clustering [42, 56, 57], random processes on graphs [25],
graph distances, various measures of graph connectivity [41], combinatorial graph invariants [16],
and spectral graph theory [12].

While graphs have been used with great success to describe pairwise interactions between ob-
jects in datasets, they fail to capture higher-order interactions that occur between three or more
objects. These structures in data can be described using simplicial complexes [27, 38]. There has
recently been a surge in activity for the development of data analysis methods that focus on sim-
plicial complexes, including methods based on computational topology [8, 20, 23, 27], higher-order
random processes [5, 26], generalized Cheeger inequalities [28, 54], isoperimetric inequalities [45],
high-dimensional expanders [17, 35, 44], and spectral methods [29]. In particular, topological data
analysis methods using simplicial complexes as the underlying combinatorial structures have been
successfully employed for applications as diverse as the discovery of a new subtype of breast cancer
[40], describing high-contrast patches in images [34], time series analysis [46], multi-channel commu-
nication [47] and sensor networks [13], statistical ranking [31, 43], and visualization [58]. Simplicial
complexes have also been used to generalize graphical models in machine learning, where faces of
dimension two or higher represent higher-order conditional dependence relations between random
variables [19].

Sparsification of simplicial complexes. For unstructured graphs representing massive datasets,
the computational costs associated with näıve implementations of many graph-based tools is pro-
hibitive. In this scenario, it is useful to approximate the original graph with one having fewer edges
or vertices while preserving some properties of interest in some appropriate metric, known as graph
sparsification. A variety of graph sparsification methods have been developed, allowing for their
efficient storage and computation [3, 50, 51]. Our work is inspired by and based on the seminal
work by Spielman and Srivastava [50].

Similar to the challenges faced by massive graphs, computational methods that operate on
simplicial complexes are severely limited by computational costs associated with massive datasets.
There have been recent approaches from computational topology to construct sparse simplicial
complexes that give good approximation results for computing persistent homology [6, 7, 9, 11, 14,
15, 33, 49, 55]. Persistence homology [21] turns the algebraic concept of homology into a multi-
scale notion. It typically operates on a sequence of simplicial complexes (referred to as a filtration),
constructs a series of homology groups and measures their relevant scales in the filtration. Common
simplicial filtrations arise from Čech or (Vietoris-)Rips complexes, and most of the aforementioned
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techniques produce sparsified Rips complexes that give guaranteed approximations to the persistent
homology of the unsparsified filtration. The sparsification processes involve either the removal or
subsampling of vertices, or edge contractions from the sparse filtration. While these techniques focus
on the preservation of homological features in the data (referred to as homological sparsification), to
the best of our knowledge, there are no known results regarding the higher-order spectral properties
of the sparsified simplicial complexes. Our approach significantly differs from these techniques in
the sense that it focuses on spectral sparsification which preserves higher-order spectral properties
of the simplicial complexes, instead of homological ones.

Spectral sparsification and machine learning. A recurring theme in machine learning focuses
on graph-based learning, where the data assume an underlying graph structure and one would like
to infer information about the nodes of the graph. Spectral methods for graph-based learning
such as spectral clustering (e.g. [1, 52]) are essential to many seminal papers in the field, which
typically have good theoretical guarantees and efficient solutions for problems ranging from image
segmentation [36] to community detection [2]. Some important instances of semi-supervised graph-
based learning algorithms are often referred to as label propagation methods [30, 60] where labels
on the nodes are propagated along the edges of the graph.

Inspired by graph-based learning, a setting which can be used to describe complex data, learning
(indirectly or directly) based on simplicial complexes represents a new direction recently emerging
from the confluence of computational topology and machine learning. On one hand, topological fea-
tures derived from simplicial complexes, used as input to machine learning algorithms, have shown
to increase the strength of prediction or classification compared to graph-theoretic features [4, 59].
On the other hand, we would like to develop learning algorithms that directly operate on simpli-
cial complexes. For example, researchers have begun to develop mathematical intuition behind
higher-dimensional notions of spectral clustering and label propagation [37, 54, 57].

Our work on spectral sparsification of simplicial complexes would play an important role in
applying spectral learning algorithms to massive datasets modeled as simplicial complexes.

Overview. In this paper, we work towards developing computational methods for the spectral
sparsification of simplicial complexes, in particular:

• We introduce a generalized effective resistance of simplexes by extending the notion of effective
resistance of edges (e.g. [10, 18, 22]); see Section 3.

• We show that the algorithm in [50] for sparsifying graphs can be generalized to the simplifi-
cation of simiplicial complexes at a fixed dimension, and prove that the spectrum of the up
Laplacian is preserved under sparsification in the sense that the spectrum of the up Lapla-
cian for the sparsified simplicial complex can be bounded in terms of the spectrum of the up
Laplacian for the original simplicial complex; see Theorem 3.1.

• We generalize the Cheeger constant of Gundert and Szedlák for unweighted simplicial com-
plexes [28] to weighted simplicial complexes and verify that the Cheeger inequality involving
the first non-trivial eigenvalue of the weighted up Laplacian holds in the sparsfied setting; see
Proposition 4.1.

• Our theoretical results are supported by numerical experiments in Section 5. These experi-
ments illustrate the inequalities bounding the spectrum of the up Laplacian of the sparsified
simplicial complex, proven in Theorem 3.1. Further experiments demonstrate that simplicial
complex clusters, obtained via a method extending spectral clustering to simplicial complexes,
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are preserved by spectral sparsification. This application exemplifies the utility of the spectral
sparsification methods developed here.

We proceed by reviewing background results and introducing notation in Section 2 that gives a
brief description of relevant algebraic concepts, effective resistance, and spectral sparsification of
graphs. The theory and algorithm for sparsifying simplicial complexes are provided in Section 3.
We state the implications of the algorithm for a generalized Cheeger cut for the simplicial complex
in Section 4. We showcase some experimental results validating our algorithms in Section 5. We
conclude with some open questions in Section 6.

2 Background

Simplicial complexes. A simplicial complex K is a finite collection of simplices such that every
face of a simplex of K is in K and the intersection of any two simplexes of K is a face of each of
them [38]. 0-, 1- and 2-simplices correspond to vertices, edges and triangles. An oriented simplex
is a simplex with a chosen ordering of its vertices. Let Sp(K) denote the collection of all oriented p-
simplices of K and np = |Sp(K)|. The p-skeleton of K is denoted as K(p) := ∪0≤i≤pSi(K). For the
remainder of this paper, let K be an oriented simplicial complex on a vertex set [n] = {1, 2, . . . , n}.
Let dimK denote the dimension of K. For a review of simplicial complexes, see [24, 27, 38].

Laplace operators on simplicial complexes. The i-th chain group Ci(K) = Ci(K,R) of a
complex K with coefficient R is a vector space over the field R with basis in Si(K). The i-th cochain
group Ci(K) = Ci(K,R) is the dual of the chain group, defined by Ci(K) := Hom(Ci(K),R), where
Hom(Ci,R) denotes all homomorphisms of Ci into R. The coboundary operator, δi : C

i(K) →
Ci+1(K), is defined as

(δif)([v0, . . . , vi+1]) =

i+1∑
j=1

(−1)jf([v0, . . . , v̂j , . . . , vi+1]),

where v̂j denotes that the vertex vj has been omitted. It satisfies the property δiδi−1 = 0 which
implies that im(δi−1) ⊂ ker(δi). The boundary operators, δ∗i , are the adjoints of the coboundary
operators,

· · · Ci+1(K)
δi
�
δ∗i

Ci(K)
δi−1

�
δ∗i−1

Ci−1(K) · · ·

satisfying (δia, b)Ci+1 = (a, δ∗i b)Ci for every a ∈ Ci(K) and b ∈ Ci+1(K), where (·, ·)Ci denote the
scalar product on the cochain group.

Following [29], we define three combinatorial Laplace operators that operate on Ci(K) (for the
i-th dimension). Namely, the up Laplacian,

Lupi (K) = δ∗i δi,

the down Laplacian, Ldown
i (K) = δi−1δ

∗
i−1, and the Laplacian, Li(K) = Lupi (K) + Ldown

i (K). All
three operators are self-adjoint, non-negative, compact and enjoy a collection of spectral properties,
as detailed in [29]. We restrict our attention to the up Laplacians.
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Explicit expression for the up Laplacian. To make the expression of up Laplacian explicit,
we need to choose a scalar product on the coboundary vector spaces, which can be viewed in terms
of weight functions [29]. In particular, the weight function w is evaluated on the set of all simplices
of K,

w :
dimK⋃
i=0

Si(K)→ R+,

where the weight of a simplex f is w(f). Let wi : Si(K) → R+. Then Ci(K) is the space of
real-valued functions on Si(K), with inner product

(a, b)Ci :=
∑

f∈Si(K)

wi(f)a(f)b(f),

for every a, b ∈ Ci(K).
Choosing the natural bases, we identify each coboundary operator δp with an incidence matrix

Dp. The incidence matrix Dp ∈ Rnp+1×Rnp encodes which p-simplices are incident to which (p+1)
simplices in the complex, and is defined as

Dp(i, j) =


0 if σpj is not on the boundary of σp+1

i

1 if σpj is coherent with the induced orientation of σp+1
i

−1 if σpj is not coherent with the induced orientation of σp+1
i

Let DT
p be the transpose of Dp. Let Wi be the diagonal matrix representing the scalar product on

Ci(K). The i-dimensional up Laplacian can then be expressed in the chosen bases, as the matrix

LK,i := Lupi (K) = W−1i DT
i Wi+1Di.

With this notation, L = LK,0 is the graph Laplacian.

Effective resistance. We quickly review the notation in [50] regarding effective resistance. Let
G = (V,E,w) be a connected weighted undirected graph with n vertices and m edges and edge
weights we ∈ R+. W is an m × m diagonal matrix with W (e, e) = we. Suppose the edges are
oriented arbitrarily. Its graph Laplacian L ∈ Rn×n can be written as

L = BTWB,

where B ∈ Rm×n is the signed edge-vertex incidence matrix, that is,

B(i, j) =


0 if vertex j is not on the boundary of edge i

1 if j is i’s head

−1 if j is i’s tail.

The effective resistance Re at an edge e is the energy dissipation (potential difference) when a unit
current is injected at one end and removed at the other end of e [50]. Define the matrix

R := B(L)+BT = B(BTWB)+BT ,

where L+ denote the Moore-Penrose pseudoinverse of L. The diagonal entry R(e, e) of R, is the
effective resistance Re across e. That is, Re = R(e, e).

The above expression for L is consistent with previous notation of up Laplacian, by setting
B = D0, W = W1 for L = LK,0 = W−10 DT

0W1D0. Suppose W0 = I (identity matrix), then R could
be expressed as

R = D0(L)+DT
0 = D0(D

T
0W1D0)

+DT
0 .
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Graph sparsification. There are several different notions of approximation for graph sparsifi-
cation, including the following based on spectral properties of the associated graph Laplacian. We
say H = (V, F, u) is an ε-approximate sparse graph of G = (V,E,w) if

(1− ε)LG � LH � (1 + ε)LG, (1)

where LG and LH are the graph Laplacians of G and H respectively and the inequalities are to be
understood in the sense of the semi-definite matrix ordering. That is, ∀x ∈ Rn,

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx. (2)

It is well-known from spectral graph theory that the spectrum of the graph Laplacian controls a va-
riety of properties of interest including the size of cuts (i.e. bottlenecks), clusters (i.e. communities),
distances, various random processes (i.e. PageRank), and combinatorial properties (e.g. coloring,
spanning trees, etc.). It follows that a sparsified graph, H, with graph Laplacian satisfying Equation
(1), yields a great deal of information about the original graph, G, at a reduced computational cost.
Recently, methods have been developed to efficiently compute sparsified graphs. In particular, it
has been proven that every weighted graph G with n vertices and m edges has as an ε-approximate
sparse graph H with at most O(n·log(n)/ε2) edges and moreover, by subsampling the original graph
with probabilities based on effective resistance, this graph can be found efficiently in O(m/ε2) time
[50].

3 Sparsification of simplicial complexes

To prove the existence of ε-approximate sparse simplicial complex, we will follow the approach of
[51] for the analogus problem for graphs.

Generalized effective resistance for simplicial complexes. To generalize effective resistance
for simplices beyond dimension 1 (i.e. edges), we consider the operator Ri : C

i → Ci, defined by

Ri = Di−1(LK,i−1)+DT
i−1 = Di−1

(
W−1i−1D

T
i−1WiDi−1

)+
DT
i−1.

Specifically, setting Wi−1 = I, we have

Ri = Di−1(LK,i−1)+DT
i−1 = Di−1

(
DT
i−1WiDi−1

)+
DT
i−1,

which is the projection onto the image of Di−1
1. The generalized effective resistance on the i-

dimensional simplex f , is defined to be the diagonal entry, Ri(f, f).
For i = 1, the generalized effective resistance reduces to the effective resistance on the graph

[22]. That is, recall in the notation from Section 2, let B = D0 and assume W0 = I, we have
R = R1 = D0(D

T
0W1D0)

+DT
0 .

Sparsification algorithm. Algorithm 1, is a natural generalization of the Sparsify Algorithm
given in [50]. The algorithm sparsifies a given simplicial complex K at a fixed dimension i (while
ignoring all dimensions larger than i). The main idea is to include each i-simplex f of K in the
sparsifier J with probability proportional to its generalized effective resistance. Specifially, for a

1For the rest of this section, we always consider Ri by assuming Wi−1 = I in our simplicial complex K. However
our result will hold for any other choice of weights Wi−1 in dimension i−1 since for symmetric matrices A,B, A � B
if and only if DA � DB for any positive definite diagonal matrix D.
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Algorithm 1: J = Sparsify(K, i, q), a sparsification algorithm for simplicial complexes.

Data: A weighted, oriented simplicial complex K, a dimension i (where 1 ≤ i ≤ dimK),
and an integer q.

Result: A weighted, oriented simplicial complex J which is sparsified at dimension i, with
equivalent (i− 1)-skeleton to K and dim J = i.

J := K(i−1)

Sample q i-dimensional simplices independently with replacement according to the
probability

pf =
w(f)Ri(f, f)∑
f w(f)Ri(f, f)

,

and add sampled simplexes to J with weight w(f)/qpf . If a simplex is chosen more than
once, the weights are summed.

fixed dimension i, the algorithm chooses a random i-simplex f of K with probability pf (propor-
tional to wfRf ), and adds f to J with weight wf/qpf ; then q samples are taken independently with
replacement, while summing weights if a simplex is chosen more than once. The following theorem
(Theorem 3.1) shows that if q is sufficiently large, the i-dimensional up Laplacians of K and J are
close.

Theorem 3.1. Let K be a weighted, oriented simpicial complex, and J = Sparsify(K, i, q) for
some fixed i (where 1 ≤ i ≤ dimK). Suppose K and J have (i− 1)-th up Laplacians LK := LK,i−1
and LJ := LJ,i−1 respectively. Let ni−1 denote the number of (i − 1)-simplexes in K. Fix ε > 0
(where 1/

√
ni−1 < ε ≤ 1), and let q = 9C2ni−1 log ni−1/ε

2, where C is an absolute constant. If
ni−1 is sufficently large, then with probability at least 1/2,

(1− ε)LK � LJ � (1 + ε)LK , (3)

where the inequalities are to be understood in the sense of the semi-definite matrix ordering. Equiv-
alently, this means, ∀x ∈ Rni−1,

(1− ε)xTLKx ≤ xTLJx ≤ (1 + ε)xTLKx. (4)

Proof. For simplicity in notation, let L = LK := LK,i−1 and L̃ = LJ := LJ,i−1, with corresponding
weight matrices denoted as Wi and W̃i respectively.

Our proof follows the proof of [50, Theorem 1]. We consider the projection matrix Π =

W
1/2
i RiW

1/2
i . We also define the ni × ni nonnegative, diagonal matrix Si with entries

Si(f, f) =
w̃f
wf

=
# times f is sampled

qpf
,

where the random entry Si(f, f) captures the amount of i-simplexes f included in J by Sparsify.

The weight of an i-simplex f in J is w̃f = Si(f, f)wf . Since W̃i−1 = Wi−1Si−1 = W
1/2
i−1Si−1W

1/2
i−1

and W̃i = WiSi = W
1/2
i SiW

1/2
i , the (i− 1)-dimensional up Laplacian of J is therefore

L̃ = LJ,i−1 = W̃i−1D
T
i−1W̃iDi−1 = (W

1/2
i−1Si−1W

1/2
i−1)DT

i−1(W
1/2
i SiW

1/2
i )Di−1.

Since ESi = I, ESi−1 = I and suppose Wi−1 = I, therefore EL̃ = L. It is not difficult to show that
if S is a non-negative diagonal matrix such that

‖ΠSΠ−ΠΠ‖2 ≤ ε (5)
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then (3) holds. But, ΠSΠ can be expressed as the average of symmetric, rank-one matrices. Now
applying a result of Rudelson and Vershynin [48, Theorem 3.1], we have that E‖ΠSΠ−ΠΠ‖2 ≤ ε

2 .
By Markov’s inequality this implies that (5) holds with probability at least 1

2 .

Computing the generalized effective resistance. Recall the work in [50] uses the linear
system solver of Spielman and Teng [53], which applies to all symmetrical positive semidefinite
matrices, for graph sparsification. Recent methods for solving symmetric diagonally dominant
(SDD) linear systems based on low-stretch spanning trees improves the running time further [32].
In particular, these solvers are applicable for approximating the generalized effective resistance
here.

4 Generalized Cheeger inequalities for simplicial complexes

Cheeger constant and inequality for graphs. The Cheeger constant for an unweighted graph
G = (V,E) is given by

h(G) := min
∅(A(V

|V | |E(A, V \A)|
|A| |V \A| , (6)

where E(A,B) is the set of edges that connect A ⊂ V to B ⊂ V . For a weighted graph, G =
(V,E,w), the Cheeger constant is typically generalized to

h(G) := min
∅(A(V

|V |
|A| |V \A|

∑
(i,j)∈E(A,V \A)

wij . (7)

Using the variational formulation for eigenvalues and a suitable test function, it is not difficult to
prove the Cheeger inequality,

λ1(LG) ≤ 2h(G),

where λ1(LG) is the first non-trivial eigenvalue of the weighted graph Laplaican [12, Lemma 2.1].

Generalized Cheeger inequality for simplicial complexes of Gundert and Szedlák.
We first recall the generalized Cheeger inequality for simplicial complexes of Gundert and Szedlák
[28]. For a k-dimensional simplicial complex K, its k-dimensional completion is defined to be

K̄ := K
⋃
{τ∗ ∈

(
V

k + 1

)
| (τ∗ \ v) ∈ X,∀v ∈ τ∗}.

When K has a complete (k−1)-skeleton, K̄ is the complete k-dimensional complex. The generalized
Cheeger constant for unweighted simplicial complexes is defined to be

h(K) := min
V=

⊔k
i=0 Ai

Ai 6=∅

|V ||F (A0, A1, . . . , Ak)|
|F ∗(A0, A1, . . . , Ak)|

, (8)

where F (A0, A1, . . . , Ak) and F ∗(A0, A1, . . . , Ak) are the sets of all k-simplices of K and K, respec-
tively, with one node in Ai for all 0 ≤ i ≤ k.

Theorem 4.1 ([28, Theorem 2]). If λ1(LK) is the first non-trivial eigenvalue of the k-th up-
Laplacian and C∗ is a the maximum number of (k − 1)-simplices contained in a k-simplex of K,
then

λ1(LK) ≤ (k + 1) C∗

|V | h(K).

We remark that an alternative Cheeger inequality is given in [45].
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A generalized Cheeger constant for weighted simplicial complexes. In analogy to the
generalization of the unweighted Cheeger constant in Equation (6) to the weighted Cheeger constant
in Equation (7), we define the generalized Cheeger constant for weighted simplicial complexes by

h(K) := min
V=

⊔k
i=0 Ai

Ai 6=∅

|V |
|F ∗(A0, A1, . . . , Ak)|

∑
X∈F (A0,A1,...,Ak)

wk(X). (9)

Observe that Equation (9) agrees with Equation (8) in the case when all weights are unity. The
following result can be proved analogously to Theorem 4.1.

Proposition 4.1. If λ1(LK) is the first non-trivial eigenvalue of the k-th weighted up-Laplacian
and C∗ is a the maximum number of (k − 1)-simplices contained in a k-simplex of K, then

λ1(LK) ≤ (k + 1) C∗

|V | h(K).

The proof of Proposition 4.1 involves only a slight modification of the arguments in [28] by
adapting weights in the definition of the generalized Cheeger constant (Equation 9), we omit its
proof here.

The following result now follows from combining Theorem 3.1 and Proposition 4.1.

Corollary 4.1. In the setting as Theorem 3.1 and Proposition 4.1, we have with probability 1
2 ,

h(J) ≥ |V |
(k + 1) C∗

λ1(LJ) ≥ |V |
(k + 1) C∗

(1− ε) λ1(LK).

Thus, the Cheeger constant of the sparsified simplicial complex, J , is bounded below by a
multiplicative factor of the first nontrivial eigenvalue of the up Laplacian for the original complex,
K.

5 Numerical Experiments

In Section 5.1, we conduct numerical experiments to illustrate the inequalities bounding the spec-
trum of the up Laplacian of the sparsified simplicial complex, proven in Theorem 3.1. In Section 5.2
we extend spectral clustering methods to simplicial complexes. We show that the clusters obtained
for sparsified simplicial complexes are similar to those of the original simplicial complex. In both
sections, we also present the analogous results for graph sparsification to serve as a comparison.

5.1 Preservation of the spectrum of the up Laplacian

Experimental set up. In the setting of graph sparsification [50], we recall that if a graph H is
an ε-approximation of a graph G, n is the number of vertices in H and G, then, as in (2), we have
the following inequality,

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, ∀x ∈ Rn.

Subtracting xTLGx from all terms in this inequality, we obtain

−εxTLGx ≤ xT (LH − LG)x ≤ εxT (LG)x, ∀x ∈ Rn.
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Let λmax(LG), λmax(LH) and λmax(LH − LG) be the maximum eigenvalues of LG and LH and
LH −LG respectively. Also, let λmin(LG) be the minimum eigenvalue of LG. With some algebraic
manipulations, we obtain on the right hand side,

λmax(LH − LG) = max
||x||=1

xT (LH − LG)x ≤ ε max
||x||=1

xT (LG)x = ελmax(LG).

Similarly, on the left hand side, we obtain

0 = −ελmin(LG) = −ε min
||x||=1

xTLGx

= max
||x||=1

−εxTLGx

≤ max
||x||=1

xT (LH − LG)x = λmax(LH − LG).

Together we have the inequality

0 ≤ λmax(LH − LG) ≤ ελmax(LG). (10)

We can obtain the analogous inequality in the setting of simplicial complex sparsification. Let
J be a sparsified version of K following the setting of Theorem 3.1. Suppose for a fixed dimension
i (where 1 ≤ i ≤ dimK), K and J have (i − 1)-th up Laplacians LK := LK,i−1 and LJ := LJ,i−1
respectively, we have,

(1− ε)xTLKx ≤ xTLJx ≤ (1 + ε)xTLKx, ∀x ∈ Rni−1 . (11)

A similar argument leads to the following inequality,

0 ≤ λmax(LJ − LK) ≤ ελmax(LK). (12)

Notice that inequality (10) is a special case of the inequality (12).

Preservation of the spectrum of the sparsified graph Laplacian. To demonstrate how the
spectrum of the graph Laplacian is preserved during graph sparsification, we set up the following
experiment. Consider a complete graph G with n0 = 40 vertices and n1 = 780 edges. We run
multiple sparsification processes on this graph G and study the convergence behavior based on
the inequality in (2). For each sparsification process, we use a sequence of sample sizes, ranging
between 10 and 2n1. For each sample size q, we set ε =

√
n0 log n0/q by assuming that 9C2 = 1

in the hypothesis of Theorem 3.1. As q varies, we correspondingly obtain a sequence of varying ε
values.

In particular, we run 25 simulations on G. For each simulation, we fix a unit vector x uniformly
randomly sampled from Sn0 , and perform 25 instances of experiments. For each instance, we apply
our sparsification procedure to generate the convergence plot using the list of fixed sample sizes
q and their corresponding ε’s. Specifically, for each sample size, we obtain a sparse graph H and
compute xTLHx and λmax(LH −LG); and we observe the convergence behavior of these quantities
as the sample size increases.

In Figure 1(a), we show the convergence behavior based on the inequality in (2). For a single
simulation, we compute the point-wise average of xTLHx across the 25 instances, and plot these
values as function of the sample size q, which gives rise to a single convergence curve in aqua.
Then we compute the point-wise average of the aqua curves across all simulations, producing the
red curve. Since each simulation (for a fixed x) has a different upper bound curve (1 − ε)xTLGx
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Figure 1: The results of a numerical experiment illustrating inequalities which control the spectrum
of sparsified graph Laplaicans; see Section 5.1 for details. (a) For an ensemble of vectors, x ∈ Sn0 ,
and sparsified graphs, H, we plot the terms in inequality (2). (b) For an ensemble of sparsified
graphs, H, we plot the terms in the inequality (10).

and lower bound curve (1 + ε)xTLGx respectively (not shown here), The point-wise average of the
upper and lower bound curves across all simulations is plotted in blue. We observe that on average,
these curves respect the inequality (2), that is, the red curve is nested within its approximated
theoretical upper and lower bounds in blue.

In Figure 1(b), we illustrate the theoretical upper and lower bounds for λmax(LH − LG) given
in inequality (10) as the sample size q increases. In particular, we run a single simulation with
25 instances, computing λmax(LH − LG). Each instance gives us a convergence curve shown in
aqua. We compare the point-wise average of λmax(LH − LG) (in red) with its (approximated)
theoretical upper bound in blue and lower bound (i.e., 0, the x-axis). On average, the experimental
results respect the inequality (10). Figure 3(a) illustrates how the number of edges scale with the
increasing number of samples across all instances.

Preservation of the spectrum of the up Laplacian for a sparsified simplicial complex.
To demonstrate that the spectrum of the up Laplacian is preserved during the sparsification of
a simplicial complex, we set up a similar experiment. We start with a 2-dimensional simplicial
complex, K, that contains all edges and triangles on n0 = 40 vertices (with n1 = 780 edges
and n2 = 9880 faces.) and a sequence of fixed sample sizes q. For each sample size q, we solve for
ε =

√
n1 log n1/q assuming that 9C2 = 1 in the hypothesis of Theorem 3.1, to get the corresponding

sequence of ε values. With the simplicial complex K and the sequence of sample sizes fixed, we run
25 simulations, each simulation consisting 25 instances and a fixed randomly sampled unit vector x
as described previously; only this time, we sparsify the faces of the simplicial complex by applying
Algorithm 1 with i = 2. In Figure 2, we plot the terms in inequalities describing the spectrum for
these sparsified simplicial complexes.

In Figure 2(a), following the same procedure as for graph sparsification, we obtain a plot that
respects the inequality (11). The curves in aqua show the point-wise averages of xTLJx across
all instances in a single simulation, whereas the red curve represents point-wise average across all
instances and all simulations. Since the random vector x is resampled for each simulation, the upper
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Figure 2: The results of a numerical experiment illustrating inequalities which control the spectrum
of the up Laplacian for sparsified simplicial complexes; see Section 5.1 for details. (a) For an
ensemble of vectors, x ∈ Sn1 , and sparsified simplicial complexes, J , we plot the terms in inequality
(11). (b) For an ensemble of sparsified simplicial complexes, J , we plot the terms in the inequality
(12).
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Figure 3: Figures illustrating how (a) the number of edges in the case of graph sparsification
and (b) the number of faces/triangles in the case of simplicial complex sparsification vary with
increasing sample size.

and lower bound curves are different for every simulation. In Figure 2(a) we plot their point-wise
average across all simulations as the upper and lower bound curves in blue.

In Figure 2(b), to illustrate inequality (12), we run a single simulation with 25 instances.
Each instance gives us a sequence of λmax(LJ − LK) values as function of sample size. We plot
them as curves in aqua. We compare the point-wise averages of λmax(LJ − LK) (in red) with its
(approximated) theoretical upper and lower bounds in blue. Figure 3(b) shows how the number of
faces scales with increasing number of samples across all instances.
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5.2 Spectral clustering

We demonstrate via numerical experiments, that preserving the structure of the up Laplacian via
sparsification also preserves the results of spectral clustering on simplicial complexes. Spectral
clustering can be considered as a class of algorithms with many variations. Here, we apply spectral
clustering to simplicial complexes before and after sparsification, by extending a rather standard
implementation for graphs.

Datasets. We consider a graph that contains two complete subgraphs with 20 vertices (and 190
edges) each, which are connected by 64 = 8× 8 edges spanning across the two subgraphs. We refer
to this graph, G, as the dumbbell graph; it has n0 = 40 vertices and n1 = 444 edges. All edge
weights are set to be 1. To compute the sparsified graph, the number of samples, q, is set to be
0.5n1.

Similarly, we consider a simplicial complex that contains two complete sub-complexes with 10
vertices, 45 edges and 120 triangles each. The two sub-complexes are connected by 16 cross edges
and 48 cross triangles so that the simplicial complex is made up of n0 = 20 vertices, n1 = 106
edges and n2 = 288 triangles. We refer to this simplicial complex, K, as the dumbbell complex. The
weights on all edges and triangles are set to be 1. To compute the sparsified simplicial complex,
the number of samples, q, is set to be 0.75n2.

Spectral clustering algorithm for graphs. We use the Ng-Jordan-Weiss algorithm [39] to
perform spectral clustering of graphs. Let n0 be the number of vertices in a graph. The algorithm
can be summarized:

1. Compute the vertex-vertex adjacency matrix A ∈ Rn0×n0 such that Aij = 1 if vertices vi and
vj are connected by an edge, otherwise Aij = 0.

2. Compute the degree matrix, ∆ ∈ Rn0×n0 , a diagonal matrix with diagonal elements ∆ii being
the number of edges incident to vertex vi, that is, ∆ii =

∑
j Aij .

3. Construct the matrix M = ∆−1/2A∆−1/2.

4. Find u1, u2, · · · , uk, the eigenvectors of M corresponding to the k largest eigenvalues (chosen
to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix
X = [u1u2 · · ·uk] ∈ Rn0×k by stacking the eigenvectors in columns.

5. Form the matrix Y from X by re-normalizing each of X’s rows to have unit length, that is,

Yij = Xij/
(∑

j X
2
ij

)1/2
.

6. Treating each row of Y as a point in Rk, cluster them into k clusters via the k-means algorithm.

7. Finally, assign the original vertex vi to cluster j if and only if row i of the matrix Y is assigned
to cluster j.

Recall the graph Laplacian can be written as L = ∆ − A. Furthermore M = I − LN , where
LN = ∆−1/2L∆−1/2 is referred to as the normalized graph Laplacian.

To demonstrate the utility of the sparsification, we illustrate the spectral clustering results
before and after graph sparsification in Figure 4. Since graph sparsification preserves the spectral
properties of graph Laplacian, we expect it to also preserve (to some extent) the results of spectral
methods, such as spectral clustering.
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Figure 4: Spectral clustering of graphs before (a) and after (b) sparsification. We observe that the
clusters are very similar. See Section 5.2 for details.

Spectral clustering algorithm for simplicial complex. We seek to extend the Ng-Jordan-
Weiss algorithm [39] to simplicial complexes, which, as far as we are aware, has not yet been
studied. We seek the simplest generalization by replacing the vertex-vertex adjacency matrix with
an edge-edge adjacency matrix A, where two edges are considered to be adjacent if they are faces
of the same triangle. This definition is a straightforward extension of the adjacency among vertices
in graphs, however it does not account for the orientation of edges or triangles.

Formally, let n1 be the number of edges. We define the edge-edge adjacency matrix A ∈ Rn1×n1 ,
where

Ai,j =

{
1 if edges ei and ej are faces of the same triangle

0 otherwise
.

We define the degree matrix ∆ ∈ Rn1×n1 to be the diagonal matrix with element ∆i,i is the number
of triangles incident to edge ei. With A and ∆ defined this way, we can apply the Ng-Jordan-Weiss
algorithm to cluster the edges of the simplicial complex K.

This is the same as applying spectral clustering to the dual graph of K. A dual graph G of
a given simplicial complex K is created as follows: each edge in K becomes a vertex in the dual
graph G, and there is an edge between two vertices in G if their corresponding edges in K share
the same triangle. We then apply spectral clustering to the dual graph G as usual and obtain the
resulting clustering of vertices in G (which correspond to the clustering of edges in K). To better
illustrate our edge clustering results, we visualize the resulting clusters based upon the dual graph.
The results are plotted in Figure 5 for two clusters and Figure 6 for three clusters. Applying the
spectral algorithm with this new adjacency definition results in clusters that agree reasonably well
before and after sparsification.

The adjacency matrix, A, does not take into consideration the orientation of the edges, so
the above clustering algorithm effectively relies on computing the eigenvectors of a normalized up
Laplacian. To wit, one can verify that the dimension 1 up Laplacian can be written as

LK,1 = ∆−A∗,

where ∆ is the diagonal degree matrix defined previously and the oriented edge-edge adjacency

13
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Figure 5: Spectral clustering of simplicial complexes into two clusters, before (a) and after (b)
sparsification. See Section 5.2 for details.

matrix, A∗ ∈ Rn1×n1 , is given by

A∗i,j =


−1 edges ei and ej are adjacent and either both agree or disagree with the

orientation of their shared triangle

1 if either ei or ej (but not both) agree with the orientation of their shared triangle

0 if ei and ej are not adjacent

.

It follows that the edge-edge adjacency matrix A = |A∗| where the absolute value operation
is applied element-wise. The relation between the normalized up Laplacian ∆ − A and the up
Laplacian, LK,1, we used for sparsification, remains unclear.

6 Discussion

The results in this paper constitute a first step towards spectral sparsification of simplicial com-
plexes. Our work is strongly motivated by the study of an emerging class of learning algorithms
based on simplicial complexes and, in particular, those spectral algorithms that operate with higher-
order Laplacians. We would like to understand how such learning algorithms can be applicable to
more compact representations of the data. Several on-going and future directions are described
below.

Label prorogation on simplicial complexes. A very good example of spectral methods in
learning arises from extending label propagation algorithms on graphs to simplicial complexes,
in particular, the work by Mukherjee and Steenbergen [37]. Specifically, they adapt the label
propagation algorithm to higher dimensional walks on oriented edges, and give visual examples
of applying label propagation with the 1-dimensional up Laplacian Lup1 , down Laplacian Ldown1 ,
and Laplacian L1. We could envision label propagation to be generalized to random walks on even
higher-dimensional simplexes, such as triangles. A direct application of our work is to sparsify the
top-dimensional simplexes (e.g. triangles in a 2-dimensional simplicial complex) and examine how
label propagation behaves on these top-dimensional simplexes of the sparsified representation.
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Figure 6: Spectral clustering of simplicial complexes into three clusters, before (a) and after (b)-
(d), sparsification. See Section 5.2 for details.

Physical meaning of generalized effective resistance. We believe the generalization of effec-
tive resistance to simplicial complexes has interesting implications to our understanding of spectral
clustering of simplicial complexes. Such a generalization is algebraically straightforward, but does
not admit an obvious physical interpretation. As part of the future work, we will seek an interpreta-
tion in terms of a random process, such as an effective commute time as in the case of a graph [22].
This could also be related to properties of minimum spanning objects in the simplicial complex.

Multilevel and Hodge sparsification. We are also interested in performing multilevel sparsifi-
cation of simplicial complexes; for example, we would like to sparsify triangles and edges simultane-
ously while preserving spectral properties of the dimension 0 and dimension 1 up Laplacians. This
is very challenging if we would like to maintain structures of simplicial complexes; it may be possible
if we could relax our structural constraints to work with hyper-graphs instead. In addition, mul-
tilevel sparsification is also related to preserving the spectral properties of the (Hodge) Laplacian.
Finally, we are also interested in deriving formal connections between homological sparsification
and spectral sparsification of simplicial complexes.
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[3] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In Pro-
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