
Adaptive Visualization of Dynamic Unstructured Meshes
Student: Steven P. Callahan1

Advisor: Cláudio T. Silva2

Institution: University of Utah

1 Introduction
Research in scientific visualization has advanced to the point where there are now good and effective techniques for the
analysis of static regular and unstructured volumetric data. Although not as advanced, there are also many techniques
that address the problem of visualizing time-varying regular data sets [7]. This thesis deals with the visualization of
dynamic unstructured meshes, an area that has been virtually untouched in the literature and in ongoing work.

The motivation for working on dynamic meshes comes from the fact that a large number of applications require
this functionality. Advanced simulation codes now generate large amounts of time-varying unstructured meshes. In
some of them, the actual geometry of the mesh stays the same over time, while only the computed fields change. In
others, the geometry and topology of the meshes also change over time. Rendering of dynamic data has the potential
to be applied in many areas of science, engineering, and even medicine.

Our proposed work is based on a fundamentally new approach where the volumetric data is streamed through the
GPU, removing the need for extensive preprocessing or mesh connectivity information. It also provides the means for
adaptively rendering the geometry for improved interactivity.

This work is seperated into three major components: providing tools for interactive exploration through adaptive
visualization of large datasets; efficiently volume rendering the common case of unstructured meshes with dynamic
scalar fields; and finally, handling the more complex case of volume rendering unstructured meshes with dynamic
geometry and topology.

2 Background
A large step in creating a framework for adaptive visualization was presented in our previous thesis work [2]. The
main contributions of this work are a hardware-assisted visibility sorting (HAVS) algorithm for unstructured volume
rendering [5] and a dynamic level-of-detail approach for interactively rendering large meshes [4].

The HAVS algorithm [5] efficiently balances CPU and GPU computation, resulting in one of the fastest volume
rendering algorithms for unstructured grids. In contrast to previous techniques, HAVS operates in both object-space
and image-space. In object-space, the algorithm performs a partial sort of triangle primitives on the CPU in preparation
for rasterization. The goal of the partial sort is to create a list of primitives that generate fragments in nearly sorted
order. In image-space, the fragment stream is incrementally sorted using a fixed-depth A-buffer [6] implemented in
hardware, called the k-buffer.

A key advantage of the HAVS algorithm is that it operates on a collection of triangles instead of tetrahedra, thus
it requires little preprocessing and no neighbor information. Because the algorithm can use a different set of data for
each frame, it can naturally handle dynamic geometry. This was recently exploited to perform dynamic level-of-detail
rendering for large datasets [4]. The idea is to perform sample-based simplification of the data by rendering only a
subset of it, in place of the more traditional domain-based simplification which collapses vertices or edges and forms
a mesh with fewer primitives. This new level-of-detail approach is very simple and efficient because it requires no
hierarchical mesh representation.

3 Adaptive Visualization
As data size increases, it becomes more difficult to manage the data efficiently. By keeping the data in one repository
either on a server or in a database, we can reduce the storage cost of keeping it locally. As an example, consider a
scientist working remotely who would like to visualize a large dataset on his laptop computer. Recently, we introduced
a new progressive technique that allows real-time rendering of extremely large tetrahedral meshes [3]. The main idea
is to create an effect similar to progressive image transmission over the internet. A server becomes a data repository

1stevec@sci.utah.edu
2csilva@cs.utah.edu

1



and a client (i.e., a laptop with programmable graphics hardware) becomes a renderer that accumulates the incoming
geometry and displays it in a progressively improving manner. This progressive strategy is unique because it only
requires the storage of a few images on the client for the incremental refinement. For interactivity, a small portion of
the mesh is stored on the client which uses a bounded amount of memory. Because the geometry is rendered in steps,
the user can stop a progression and change the view without penalty, thus facilitating exploration. Our algorithm is
robust, memory efficient, and provides the ability to create and manage approximate and full quality volume renderings
of unstructured grids too large to render interactively at full resolution.

Proposed Research. Currently, our adaptive visualization algorithm only handles static meshes. We would like to
extend the algorithm to handle dynamic data by streaming the changing scalar field, geometry, and topology.

4 Dynamic Scalar Fields
Datasets with static geometry and dyanamic scalar fields are common. There are four fundamental pieces to adap-
tively volume render dynamic data. First, compression of the dynamic data for efficient storage is necessary to avoid
exhausting available resources. Second, handling the data transfer of the compressed data is important to maintain
interactivity. Third, efficient volume rendering solutions that handle changing data are necessary. Finally, maintaining
a desired level of interactivity or allowing the user to change the speed of the animation is important for the user expe-
rience. In recent work [1], we address these issues in a system that extends the HAVS algorithm with a sample-based
level-of-detail strategy that targets changing scalar fields and data compression that reduces the data transfer of the
additional data from the CPU to the GPU. Our solution provides an adaptive framework for moderately-sized datasets
with little additional rendering overhead.

Proposed Research. We would like to explore better compression algorithms that can be more efficiently used on the
GPU and allow much larger datasets by reducing the CPU to GPU transfer.

5 Dynamic Geometry and Topology
The most complex type of dynamic data is that in which geometry and/or topology change over time. Like the case
of dynamic scalar fields, this poses a difficult task in both compression and visualization algorithms. Consider, for
example, a mesh created from sensors placed directly on a beating heart. New vertices and primitives may be added
or removed between subsequent time-steps. Currently, this type of data is handled in a completely brute-force manner
because the technical challenges to be overcome have thus far eluded visualization researchers. Our adaptive framework
provides the necessary flexibility to handle this type of data.

Proposed Research. By extending existing compression schemes to handle changes in space and time, we can lever-
age the power of our streaming HAVS volume renderer to efficiently render these large datasets. We would like to
explore methods to reduce the data size, allow user control of the speed and quality of the visualizations, and facilitate
interactive exploration of the time-steps.

References
[1] F. Bernardon, S. Callahan, J. Comba, and C. Silva. Interactive volume rendering of unstructured grids with time-varying scalar

fields. In Eurographics Symposium on Parallel Graphics and Visualization, pages 51–58, 2006.

[2] S. Callahan. The K-buffer and its applications to volume rendering. Master’s thesis, University of Utah, 2005.

[3] S. Callahan, L. Bavoil, V. Pascucci, and C. Silva. Progressive volume rendering of large unstructured grids. In IEEE Visualiza-
tion ’06, 2006. to appear.

[4] S. Callahan, J. Comba, P. Shirley, and C. Silva. Interactive rendering of large unstructured grids using dynamic level-of-detail.
In IEEE Visualization ’05, pages 199–206, 2005.

[5] S. Callahan, M. Ikits, J. Comba, and C. Silva. Hardware-assisted visibility ordering for unstructured volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 11(3):285–295, 2005.

[6] L. Carpenter. The A-buffer, an antialiased hidden surface method. In Computer Graphics (Proceedings of ACM SIGGRAPH),
volume 18, pages 103–108, July 1984.

[7] K.-L. Ma and E. Lum. Techniques for visualizing time-varying volume data. In C. D. Hansen and C. Johnson, editors,
Visualization Handbook. Academic Press, 2004.

2


