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Fig. 1. ConTour shows a multitude of heterogeneous data items in several columns in the relationship view (bottom). The detail views
display a selected pathway and selected chemical structures of compounds (top).

Abstract—Large scale data analysis is nowadays a crucial part of drug discovery. Biologists and chemists need to quickly explore
and evaluate potentially effective yet safe compounds based on many datasets that are in relationship with each other. However,
there is a lack of tools that support them in these processes. To remedy this, we developed ConTour, an interactive visual analytics
technique that enables the exploration of these complex, multi-relational datasets. At its core ConTour lists all items of each dataset
in a column. Relationships between the columns are revealed through interaction: selecting one or multiple items in one column
highlights and re-sorts the items in other columns. Filters based on relationships enable drilling down into the large data space. To
identify interesting items in the first place, ConTour employs advanced sorting strategies, including strategies based on connectivity
strength and uniqueness, as well as sorting based on item attributes. ConTour also introduces interactive nesting of columns, a
powerful method to show the related items of a child column for each item in the parent column. Within the columns, ConTour shows
rich attribute data about the items as well as information about the connection strengths to other datasets. Finally, ConTour provides a
number of detail views, which can show items from multiple datasets and their associated data at the same time. We demonstrate the
utility of our system in case studies conducted with a team of chemical biologists, who investigate the effects of chemical compounds
on cells and need to understand the underlying mechanisms.
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1 INTRODUCTION

The need to explore multi-relational data is common in many domains.
Answering questions such as whether relationships of particular enti-
ties across datasets exist or how strong or specific a relationship is, is
important for a variety of applications. This is also true in drug discov-
ery. Researchers want to learn whether there are chemical compounds,
i.e., drugs or drug candidates, that modulate a specific biological pro-
cess without influencing others, or want to see which drugs induce a
characteristic change in a cell’s phenotype. However, due to the com-
plexity of the experimental data, the manifold interactions between
compounds and cellular components, and the rich associated data, the



analysis is difficult and cannot efficiently be done with current tools.
The fundamental challenge in such an analysis is resolving the web

of relationships while providing the relevant associated data. Which
drug inhibits the relevant biological function at the right concentra-
tion and exhibits an actual effect on the organism? Answering this
and similar questions requires resolving relationships between multi-
ple datasets, ranking results, filtering based on attributes, and visualiz-
ing the context of the involved components.

To address this challenge, we developed ConTour, a novel visual
analysis tool that supports researchers in drug discovery. ConTour
employs a drill down approach to untangle the web of relationships:
analysts select entries in one of the datasets they are interested in and
ConTour presents the related entries. To support the analytical tasks of
chemical biologists in drug discovery, we introduce a novel visualiza-
tion concept for flexibly arranging and nesting datasets, which makes
the browsing of relationships more user-friendly. ConTour employs
multiple advanced visualization methods on different levels of detail
for the analysis of data items and relationships. By providing param-
eterizable enrichment scores, ConTour allows analysts to investigate
complex relationships that involve multiple different data types.

We demonstrate the applicability of ConTour for its designed pur-
pose in three case studies, which reveal relationships between vari-
ous types of biological and pharmaceutical data, including pathways,
genes, compounds, compound activities, biological fingerprints, ther-
apeutic groups, and clusters. Using ConTour, our collaborators de-
tected correlations between fingerprint clusters and therapeutic groups
and were able to explain the composition of fingerprint clusters by
common targets in pathways. These findings are valuable indicators
in support of our collaborators’ hypothesis that biological fingerprints
can be used to detect meaningful compound similarities and that fin-
gerprints also reflect the effect of compounds on the cell or organism.

The drug discovery domain problem can be generalized to the prob-
lem of analyzing multi-relational datasets. The relationships between
genes, pathways, drugs, and further entities are, from a computer sci-
ence perspective, similar to those, for example, between customers,
vendors, and products in relational databases. Consequently, we argue
that our approach is applicable to many other problems.

2 RELATED WORK

The multi-relational data exploration problem can be interpreted as a
graph exploration problem where each item of each dataset represents
a node and the relationships between the items are the edges. Con-
Tour also employs a faceted search approach, where the considered
data is continuously narrowed down, either based on explicit data re-
lationships or based on attribute filters. Consequently, we review the
literature regarding both topics, in addition to a discussion of relevant
visualization approaches in pharmacology and molecular biology.

Graph exploration Jigsaw’s list view [24, 7] visualizes relation-
ships between multiple entities. Each list in the list view can be under-
stood as a partition of a graph. Selecting an item highlights the related
items in the other lists, facilitating a query-driven analysis. Schulz et
al. describe a similar table-based approach to visualizing bi-partite bi-
ological networks [19]. In contrast to Jigsaw’s list view, each partition
of the network is drawn in a table, which can be sorted based on vari-
ous attributes. The two partitions are connected with links. Both tools
visualize attributes within the cells. Ghani et al. [6] conducted a design
study on multimodal social network analysis and developed parallel
node-link bands, which are also similar to Jigsaw’s list view. Social
network data exhibits similar characteristics to the data discussed in
this paper. Ghani et al.’s evaluation shows that the parallel division of
items into multiple columns was easy to understand and worked well
for the domain experts. All of these interfaces use visible links to as-
sociate the individual columns, which is useful if all list items can be
fit on the screen, but less helpful when the targets of links are not in
the viewport. None of these approaches enable nested embedding of
partitions within each other.

GraphTrail [4] uses interaction to navigate a large and heteroge-
neous network using multiple charts. New charts can be duplicates
of their parent, or can be a refinement of the data relative to the first

one. This refinement can be done using the nodes directly or based on
attributes. While GraphTrail does not explicitly represent the network
partitions, as ConTour does, we use a similar approach to continuously
refine a selection to drill down into the dataset.

Lieberman et al. [12] employ the semantic substrates concept [21]
of visualizing connections between different semantic partitions of a
network to relationships across biomedical datasets, between, for ex-
ample genes to PubMed and OMIM (a disease database). It represents
the items of each dataset or class in a scatterplot and draws explicit
links between them, which, however does not allow to embed rich
meta data in the nodes.

Faceted browsing InfoZoom [22] and FOCUS [23] are exam-
ples of early faceted browsing systems that allow a linear drill down
and provide focus and context technique similar to Table Lens [18].
Yee et al. [29] describe a method to search for images along concep-
tual dimensions, which is similar to our approach of refining queries
based on selections in multiple datasets. PivotPath [3] introduces an
informal approach to interacting with faceted datasets on the web by
explicitly presenting connections between various facets, which, com-
bined with animated transitions between filters, makes the results of
queries more comprehensive. The system is conceived to encourage
exploration and lacks a data-driven approach, such as filtering based
on attributes. PivotSlice [30] visualizes both explicit and implicit rela-
tionships in a citation network and allows multi-focus exploration.

ConTour is related to all these approaches in the way it enables
drill down into a complex dataset, yet also distinct since the facets in
ConTour also correspond to the query results. Furthermore, none of
these approaches use network-based or other metrics to rank and filter
the items in facets.

Pharmacology visualization The visual analysis model to drug
candidate selection by Konecni et al. [10] can be considered comple-
mentary to ours. It uses machine learning to select compounds from a
large library and visualization to evaluate and update the model.

Becker [2] visualizes structural similarities of compounds by map-
ping the compound attributes to the axes of parallel coordinates plots.
The approach, however, does not integrate other data sources.

In contrast, Lounkine et al. [13] also considers the interaction of
compounds with biochemical pathways. They classify compounds
based on their structure and visualize their interactions with pathway
nodes. Since many compounds interact with specific nodes, however,
the results can be cluttered. A design goal of ConTour is to reduce the
number of compounds to those that are truly relevant and thus avoid
similar problems.

enRoute [15] takes an alternative approach to pathway visualiza-
tion to address the scalability problem of plotting rich attribute data
on top of nodes in a graph. It enables analysts to select individual
paths, which are extracted and for which detailed information is visu-
alized. For compound-pathway interactions, however, the data along a
specific path is less relevant than the topology of the network and the
various interaction partners of a specific class of compounds.

HiTSEE [27] helps finding correlations between the structure of
chemical compounds and their activity in reactions with a biologi-
cal target. Compounds can be selected and projected with respect to
structural similarity. Starting with a seed set, the user can expand the
selection involving neighbors. Clusters of compounds show common
substructures to allow reasoning about which molecule substructures
are driving activity. HiTSEE focuses on an in-depth analysis of one to
one relationships between structures and activities, whereas ConTour
takes a broader view and aims to identify potentially relevant relation-
ships.

3 BIOLOGICAL BACKGROUND AND DOMAIN GOALS

For many years, drug discovery has focused on finding the “magic
bullet”, i.e., the identification of a drug that selectively interacts with
a disease-causing or pathology-relevant protein target [26]. How-
ever, with more and more data describing how drugs interact with
biomolecules (bioactivity) and a better understanding of the biological
network, evidence accumulates that this strategy employs an overly



simplistic view of human disease and drug-target relationships. In-
deed, existing bioactivity data suggests that approved drugs interact
on average with seven different protein targets [14]. Furthermore,
one protein target can be involved in many different biological pro-
cesses. Therefore, its modulation by a compound can influence multi-
ple, seemingly unrelated phenotypic traits, i.e., have multiple observ-
able effects on the organism, both on a cellular and whole organism
level. However, the same phenotype can be induced by compounds
that interact with different protein targets, e.g., if the proteins are part
of the same signaling pathway. A pathway is a meaningful set of
biomolecules and reactions, whose interplay fulfills a particular func-
tion in a cell or organism. Given this complexity of the biological
system, classical structure-activity relationship analyses that study the
effect of a compound set against one particular protein need to be com-
plemented by techniques that allow for a more holistic view on the
effects that a compound has on a biological network. In the pharma-
ceutical industry, historical experimental data can be leveraged and
combined to generate so-called biological fingerprints that report the
activity of a compound across dozens of experiments that were de-
signed to monitor different cellular processes. In essence, the finger-
prints describe a numerical characterization of different experimen-
tally measured phenotypes. They are thus numerical descriptions of
the observable effect of a drug on a cell or organism and provide a
more comprehensive view on the manifold biological actions of a com-
pound than simple protein-compound interaction data.

Comparison and clustering of compounds based on the biologi-
cal fingerprints can lead to the detection of novel compound-target or
compound-disease relationships. More specifically, our collaborators
have three analysis goals:

• Identify a drug’s mechanism of action. If a compound with an
unknown mechanism-of-action falls into a cluster where all other
cluster members are known to modulate the same protein target,
it is conceivable that the compound also binds to this target.

• Identify the biological process a drug modulates. If com-
pounds that bind to different targets cluster tightly together, one
can hypothesize that these targets are involved in the same bio-
logical process.

• Identify new drugs for specific therapeutic indications. A
compound that clusters together with drugs for a particular thera-
peutic indication could be a novel candidate drug for this therapy,
with potentially advantageous properties.

While the biological fingerprints are the foundation of such an anal-
ysis, multiple other datasets also need to be considered to paint a holis-
tic picture, all of which we describe in the following section.

4 DATASET DESCRIPTION

The drug dataset studied in this paper consists of about 1,100 com-
pounds that have been extracted from the public bioactivity databases
ChEMBL [5] and DrugBank [11]. Over the past decades, all of
these compounds have been profiled in at least 50 different cell-based
screens at the pharmaceutical company Novartis [16]. These screens
were tested for compound activities against a panel of diverse targets,
pathways, and organisms. In each screen, all compounds were tested at
a single concentration, and compound activities were reported in form
of Z-scores, i.e., the number of standard deviations that a compound’s
effect in a screen differed from the mean response of all compounds
tested in the screen. For each compound under study, its Z-scores were
combined into a vector (the “fingerprint”), where each position was as-
sociated with a specific assay. Overall, Z-scores from 105 different as-
says were considered in the generation of the compound fingerprints.
A correlation-based similarity measure [28] was used to calculate a
similarity matrix between all compounds, which was then used as in-
put for hierarchical clustering. The resulting dendrogram was divided
into 100 distinct clusters. These fingerprint clusters provided the basis
for our analysis.

The compounds in the dataset were annotated with meta-data.
First of all, all compounds were annotated with about 7,000 activi-
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Fig. 2. Overview of pharmaceutical and biological data sets that are
analyzed using ConTour. The edges of this graph indicate direct rela-
tionships between data items and the cardinality of these relationships.
A pathway contains multiple genes, and one gene can be part of multiple
pathways. Activities connect genes and compounds. Compounds rep-
resent drugs, drug candidates, or other small molecules and are classi-
fied into therapeutic groups. Fingerprints describe biological properties
of compounds. Fingerprint clusters can reveal biologically relevant sim-
ilarities of compounds.

ties against protein targets that were extracted from the data reposi-
tories ChEMBL and GVK1. These activities describe whether there
is a known interaction for a particular compound-protein pair. Com-
pounds typically interact with multiple proteins, and proteins also in-
teract with multiple compounds. The dataset distinguishes between
three types of interactions: target activation, inhibition, and binding.
That means we discriminate between compounds that in- or decrease
the activity (functional effect) of a protein. If, based on the reported
bioactivity data, the direction of the interaction cannot be inferred, it
is reported as a binding event. In addition, these activities reported
AC50 values, i.e., the concentration of the drug at which 50% of the
maximal response was achieved. For example, for a compound that
inhibits an enzyme that cleaves other proteins, the AC50 value is the
compound concentration at which the observed cleavage is reduced by
50%. AC50 values thus characterize the potency of a drug; the lower
the value, the more potent the drug.

The about 1,100 considered proteins were mapped to their corre-
sponding genes; we will use either terms hereafter. The biological
roles of proteins in the human organism are captured in about 450
KEGG [8] and Wiki Pathways [9]. Many of the compounds in the stud-
ied dataset are approved drugs or clinical candidates. They were classi-
fied into about 400 therapeutic groups using the classification scheme
of the Prous Integrity database2. Figure 2 provides an overview of all
involved data and their relationships.

The structure of the available data can be described as a k-partite
graph, where sets of items, such as pathways, genes, compounds etc.,
represent the partitions of the graph. This implies that the items within
a set have no defined relationship, but that relationships are defined
between items of different sets. The graph describing the set relation-
ships (see Figure 2) is connected and acyclic, i.e., there are no sets that
are not related to others, and there is exactly one path connecting any
two sets. The relationships between the items of the sets can be of
arbitrary cardinality (1:1, 1:n, or n:m). Though this graph only shows
direct relationships, ConTour is designed to also consider indirect re-
lationships via intermediate sets and items. Pathways, for example,
are indirectly connected to compounds via genes and activities. Thus,
we refer to items as being related when they are directly or indirectly
related.

5 TASK ANALYSIS

In repeated consultations with multiple domain experts over half a year
we elicited a set of tasks an analyst has to perform to achieve the pre-
viously described domain goals. It is worth noting that none of the
domain goals can be directly mapped to a specific set or sequence of
tasks, but rather, that all of these tasks have to be executed in an iter-
ative, open analysis session to reach any of the domain goals. These
tasks are:

1http://www.gostardb.com/
2https://integrity.thomson-pharma.com/integrity/xmlxsl/



T 1: Identify related items. Given an item of type A, find all items
of type B that are directly or indirectly related. An example of this
task is to identify all pathways that contain a specific gene (direct), or
all compounds that influence a pathway (indirect).
T 2: Identify items that share a relationship with a set of items.
Given a set of items, find all items that are connected to all of the input
items. In other words, identify the items that all of the input items are
related to. The input items can be from the same set or from different
sets. An example is to identify all genes that are shared between two
pathways, or to identify all compounds that are connected to a specific
cluster and that are also related to a specific pathway.
T 3: Analyze network enrichment. In highly relational datasets
many nodes are connected, directly or indirectly, to many others,
which can lead to unspecific relationships. Our collaborators, how-
ever, are interested to identify the connections that are very specific.
For example, they want to identify clusters of compounds where all
compounds interact with only one specific pathway. More generally,
for items of type A and B that are not directly related, one might want
to judge how closely they are connected by considering items in the
chain between them.
T 4: Rank items. Being able to rank items is crucial to reveal the
most important items out of a long list. Rankings can be based on
item attributes or on derived measures such as network enrichment.
T 5: Filter items. Analysts want to filter items, either based on at-
tribute values or based on relationships. An example for the former is
that an analyst might want to only consider activities that activate their
interaction partner, and ignore inhibiting or binding drugs. The latter
case depends on T 1 and T 2 - items that are not related to a specific
selection of items should be filtered out.
T 6: View items in detail. The relevance of data items can often only
be judged by exploring their attributes. While some items are simple,
such as activities, others, such as pathways or compounds, are complex
entities. A central task is to view these complex entities in detail. For
example, a pathway should be viewable in all its complexity, or the
chemical structure of compounds should be displayable.

6 CONCEPT

The previously introduced tasks describe an analysis process that is
highly exploratory in nature, rather than a rigid step-by-step process
with well-defined starting, intermediate, and end points. To enable
such an analysis for different item sets, a visual analysis technique
needs to allow analysts to flexibly gain access to information encoded
by items or item relationships at virtually any point during the analysis.

Our approach to this problem is illustrated in Figure 3. The data
graph component contains all data items, their relationships, as well
as associated data present in the system. The items of this graph are
presented to the user in the visual interface. The main component of
this visual interface is the relationship view, which consists of a col-
lection of columns, each listing the item set of a particular type. A
second important component of the visual interface are detail views,
which display detailed item information using representations specif-
ically tailored to the item type. Based on individual items or whole
item sets, several operations such as selecting, filtering, or nesting can
interactively be triggered from the visual interface. Using graph infor-
mation of the data structure, these operations are propagated to related
items in other item sets, updating their representations in the relation-
ship view and the detail views, e.g., by highlighting, hiding, showing,
or reordering items. The tight interplay of the data graph and the vi-
sual interface realizes a highly interactive data-driven exploration of
item relationships. In the following sections, we will discuss the com-
ponents of the visual interface in more detail.

6.1 Relationship view
The relationship view is composed of several freely arrangeable
columns that represent one item set each. Individual columns can be
scrolled, sorted, and filtered independently. The layout is designed to
enable arbitrary entry points into the analysis: every item in every col-
umn can be a starting point. The column’s header displays relevant

Data
Genes 
Fingerprints 
Activities 
Clusterings

Pathways
Metadata

Data Graph
generate

nest, rank,  
select, filter

query  
result

new experiments, new clustering,  
calibrate fingerprinting

Insight
Visual Interface

a

b

e
f

f

i
j
k
l

a b k

Detail Views
interaction

Relationship 
View

Fig. 3. The overall visual analytics process in ConTour. Data from inter-
nal or external (public) sources make up the data graph. The data graph
is the underlying data structure for the visual interface and responds to
its queries (e.g., nesting, ranking, etc.). Through interaction with the vi-
sual interface domain experts generate insights. These insights can be
of value on their own, or can lead to refined biochemical experiments,
new ideas for clusterings and groupings, or to calibrated fingerprint al-
gorithms, thus generating new data.

summary information, while the body displays the items. Items show
either a label, or relevant attribute information in built-in visualiza-
tions, or both. Columns can be added, duplicated, and removed at any
time. As columns can potentially contain thousands of items, we pro-
vide several operations that can be performed on individual items or
whole columns to explore this huge amount of items and relationships
effectively. These operations are discussed in the following.

Item selection and highlighting. One simple yet effective
method to find related items (T 1) is highlighting. Selecting an item
highlights all of its related items. We distinguish between two selec-
tion methods: Hovering over an item just highlights all related items,
whereas clicking on an item also moves all related items in all columns
to the top. As this reordering might be undesirable in some cases, for
instance, if the items of a column use a meaningful sorting, it can be
disabled. When selecting multiple items of a type, we employ one of
two different modes, which are illustrated in Figure 4, to combine the
highlights: In union mode, all items that are related to any selected
item are highlighted. In intersection mode, only those items that are
related to all selected items are highlighted.

Selection-based filters. Selection-based filters allow to reduce
the whole data space to those items that are related to selected items
(T 1, T 5). Applying multiple filters in succession gradually narrows
down the data space. In essence, each newly applied filter is combined
with the result of all previous filters using a Boolean and operation.
However, after the data space is narrowed down, it might be desirable
to expand it again. Therefore, we provide the possibility to add related

a
b

i
j
k

union mode: intersection mode:

a
b

i
j
k

Fig. 4. Illustration of the two highlight modes. In union mode, selecting
items a and b highlights all items related to either of them, i.e., items i,
j, and k. In intersection mode, only items related to both a and b are
highlighted, which is item j in this case.



items that have previously been filtered out. This additional operation
can be regarded as a filter that is combined with the result of all previ-
ous filters using a Boolean or. The different selection modes (union,
intersection) affect the filtering behavior. The data space gets reduced
to the union or intersection of related items, respectively, and the union
or intersection of related items are added.

Nesting. Nesting is an effective method to directly associate mul-
tiple related items of different sets. Columns can be nested to create
parent-child relationships. Nesting two columns has the effect that for
each item in the parent column, all related items of the child column
are shown right next to it, as shown in Figure 5(a). Nesting a gene
column within the pathway column, for example, displays all genes
that a pathway contains next to the pathways. In contrast to highlight-
ing, nesting always unambiguously shows what items are related even
if multiple items are selected. The downside of nesting is that it is
less space efficient as it results in redundant items. To remedy this,
children can be collapsed, so that the relationships are shown only on
demand. When child items are collapsed, a summary representation
allows the analyst to gain an overview of these items, as shown on the
right of Figure 5(a). This representation can show a simple count of
the children or summary statistics about the children’s attributes.

An interesting possibility is to use summary values of the children
to sort the parent, opening up new opportunities to identify relevant
items. To easily identify items with many relationships, for instance,
the number of child items can be used as sorting criterion.

Nesting is a powerful way to investigate direct and indirect relation-
ships between different items (T 1), as items of a child column may be
intuitively associated with their parents for multiple items of the parent
column at once. ConTour also allows to nest multiple columns. Thus,
child columns can be siblings or be nested recursively, as illustrated
in Figure 5(b). However, a recursively nested item is only considered
as a child, if it is related to all of its parent items in the chain of par-
ent columns. This makes recursive nesting equivalent to a filter chain
applied to the items of the nested columns, with the filters being de-
fined over the relationships to the parent items. Recursive nesting of
columns is an effective way for identifying items that are commonly
related among items from different sets (T 2). For example, in Figure
5(b) on the right, item b and f do have j and l in common.

Ranking and sorting. Ranking and sorting items in a column
(T 4) is a simple method to identify the most interesting items quickly.
The sorting criteria can be manifold. For example, items can be sorted
alphabetically or by some numerical attribute. Rankings can also be
based on scores (T 3), that quantify certain network properties. Sorted
items can easily be compared, if their representation reflects the sort-
ing criterion, such as attribute values.

Column-based filters. Applying filters to columns (T 5) is a sim-
ple method to remove uninteresting or irrelevant items. Similar to
sorting, filters can be based on several criteria. For instance, attribute-
based filters may define the value range for numerical attributes or
filter items based on associated categories. A simple example is to
remove all activities that are above a threshold in their AC50 values,
which indicates that they are not potent. Filters may be applied lo-
cally or globally. Local filters only affect the item set of their column.
Global filters affect all item sets by removing the items that are not
connected to one of the remaining items in the source column. Global
filters are efficient at reducing the complexity of the whole data space.

6.2 Detail views
Triggered from the relationship view, detail views show one or several
items using suitable visualizations (T 6). Detail views are tailored to
item types. Some may show all items, some a subset of items, and oth-
ers may show only one item at a time. For example, the detail view for
fingerprints shows all of them in one large parallel coordinates view.
An example for a detail view that shows only selected items is the com-
pound view, where only the selected compound structures are shown.
Detail views can also integrate multiple item types. Our pathway view,
for example, shows a pathway together with genes, compounds, and
fingerprint clusters.
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Fig. 5. Nesting. (a) On the left direct relationships between the items
of columns A and B are indicated as connecting lines. In the center,
column B is nested in column A, placing related child items of column
B right next to their parent item of column A. For example, items e and
f are related to item a and are therefore displayed as its children. As
item f is also related to b it is shown next to both parents. On the right,
the child items of a and b are collapsed into summary representations.
(b) On the left the direct relationships between items of column A and C
and columns B and C are displayed. The items of columns A and B are
indirectly related via items of column C. On the right the columns are
recursively nested. Column B is nested in A, and C is nested in B. This
recursive nesting helps to find items in C that are commonly related
among items in A and B. For example, items a and g are commonly
related to item k, whereas items b and f are related to items j and l.

7 REALIZATION

We developed the prototype of ConTour in close cooperation with our
collaborators, who gave feedback on a weekly basis. In this section,
we describe the design decisions we made to represent the data, which
algorithms we implemented to satisfy the analytical needs of our col-
laborators, and what additional tools we added to support the analysts
in the data exploration process.

7.1 Relationship view
How we represent the various types of data items in the relationship
view mainly depends on the amount of information held by each item.
If an item has no additional data associated, we display its name or ID,
which is the case for genes, clusters, and therapeutic groups. Also, if
there is too much information available to fit in the columns, like in the
case of pathways and compounds, we also only show their names or
IDs. Although fingerprint items come with over 100 numerical values,
it is still possible to visualize them in a compact way. To achieve this,
we use centered bar charts with bars pointing up and down, as shown
in Figure 6(d). This compact representation provides a good overview
of the parameters and can be effectively used for comparative tasks.
Fingerprints contain many missing values, which we encode by leav-
ing the area empty, while adding a gray background for parameters
that have a value. Activity items consist of only two parameters. The
first one is a categorical parameter, which describes the binding type
of the associated compound to the associated gene. As shown in Fig-
ure 6(b), we visualize the three categories, activation, inhibition, and
binding, by icons that show an arrow pointing up, down, and a hori-
zontal double arrow respectively. The second parameter describing the
compound activity is the numerical AC50 value, which is encoded by
a horizontal bar.
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Fig. 6. Overview of visual components in the relationship view. Several different data items are listed in columns. (a) These columns can be nested
recursively. The visual representations differ depending on the item type. By default items are represented as text. (b) Attributes of activity items
are shown with bars and icons. (c) Box plots are used to summarize nested activity items. (d) Numerical fingerprint vectors show their data in
bar charts. (e) Line charts summarize the median values of the fingerprints in child columns. (f) Composite bars in each column header show the
number of all items (light gray), items not filtered out (dark gray), and selected items (orange) of a column. (g) The column toolbar is shown on
demand and contains buttons to sort, filter, duplicate, and remove the column. (h) The items of a child column can be collapsed and expanded
using the buttons in the column headers and next to the items. Highlighted items (i) indicate relationships to the selection source (j). (k) Columns
that are ranked by enrichment scores represent the scores as bars right next to the items. (m) The history view records every analysis step and
also shows snapshots taken. (n) The filter view displays the sequence of currently applied filters.

Nesting is a crucial concept in ConTour. To summarize nested
items, we employ different encodings. The default summary repre-
sentation that is available for any type of item provides an overview
of children by indicating the number of child items using three bars
that are drawn on top of each other. The light gray bar indicates the
total number of children of a parent item, not considering any filters.
The dark gray bar takes filters into account, indicating the number of
children that will be shown if the user expands the summary repre-
sentation. Finally, the orange bar indicates the number of children that
are currently highlighted by selection. As illustrated in Figure 6(f), the
same representation is used to give an overview of the items in each
column. As activity data is tightly coupled with genes and compounds,
they are usually nested within these columns. Our collaborators em-
phasized that it is important to enable analysts to get a quick overview
of all activity values associated with a gene or compound. To address
this, we provide an additional summary view that encodes the activ-
ity value distribution of child items using two box plots, as illustrated
in Figure 6(c). The box plots drawn in light gray show the distribu-
tion for all child items, not considering any filters, whereas the dark
gray box plots show the distribution for only those child items that
were not filtered out. As clusters are based on fingerprints, they are
typically nested within the cluster column. In order to represent the
characteristics of a cluster, the fingerprints are aggregated into a line
plot that encodes the median values for the fingerprints’ parameters,
as shown in Figure 6(e). We decided to employ a line plot instead of
a bar chart, to make the summary representation easy to distinguish
from the representation of individual fingerprints.

7.2 Detail views

As it is not possible to show all data associated with several item types
in the relationship view, we provide a number of detail views to make

this information accessible. As previously discussed, all detail views
are tightly linked with the relationship view and also with each other.
Thus, selections or filter operations are propagated to all other views.

Pathway view. The pathway view, shown in Figure 1, displays
a selected pathway and its contained genes using a texture from one
of the supported pathway databases. In addition, the pathway view
also displays compounds that interact with at least one of its genes,
as well as the fingerprint clusters the compounds are associated with.
The pathway view is designed to support two analysis goals: iden-
tify which compounds interact with which genes within their cellular
context, and identify which compounds and clusters are specific to a
pathway. As previously mentioned, specificity is an important qual-
ity measure for the domain experts. The more specific a cluster is to a
pathway, i.e., the more compounds of the cluster interact with the path-
way, the more likely the compounds-pathway interaction is biologi-
cally relevant. Clusters are encoded as bars on the left and right of the
pathway. The height of the bar encodes how many compounds of the
cluster interact with the pathway. Its saturation indicates how specific
a cluster is—highly specific clusters are dark blue, while unspecific
clusters are white. Next to the clusters, smaller rectangles represent the
compounds. By hovering or selecting a compound or cluster, all inter-
action partners within the pathway are highlighted, enabling analysts
to identify the exact binding partners of each compound. The nodes in
the pathway are shaded in yellow if no compound interacts with them.
Nodes with a white shading bind to one compound, whereas saturated
purple nodes bind to many compounds. The compounds optionally
adhere to the system-wide filters, which allows the domain expert to
quickly asses the relevance of a pathway for the remaining items.

Compound view. Being able to access the chemical properties
of compounds is important to our collaborators as it provides crucial
information when reasoning about, for example, why compounds fall



into the same cluster, or why they bind to similar targets. To realize
this, the compound view, which is shown in Figure 1, displays the
chemical structures for multiple compounds together with their names.

Parallel coordinates view. Analysts can make use of the parallel
coordinates view to visualize any kind of multi-dimensional data. In
the context of the available data, only activity data and fingerprint data
fall into this category. As activity data is already displayed in full detail
in the relationship view, the parallel coordinates view is mainly used
to display fingerprint data. By default the view shows all fingerprints,
but can be toggled to respect applied filters.

7.3 Support views

Two support views provide orientation and more flexibility during the
data exploration.

History view. Every step taken in the exploration of items and
their relationships is based on decisions made by the analyst. However,
in some cases, the path taken might lead to a dead end, or the analyst
just wants to explore the data in multiple directions without starting the
analysis from scratch. As shown in Figure 6(m), we provide a history
view to address this issue. The history view records every step taken
during the analysis and allows the analyst to go back and forth within
the analysis path as desired. Each step taken adds a new element to
the history view; information about the step is shown on demand as a
tooltip. Selecting an element reverts the system to the state when the
element was recorded. In addition, analysts can take snapshots of the
current state, which they can return to at any time.

Filter view. Filtering is an operation that is executed very fre-
quently. However, keeping track of filters without support is hard.
Therefore, ConTour tracks all applied filters in the filter view. As illus-
trated in Figure 6(n), every filter is represented by an element, which
displays the name of the item set the filter was applied on. We use two
symbols to indicate whether the data space was reduced by the filter, or
items were added. A more detailed description of the filters are shown
in a tooltip. Filters can be removed from the filter view on demand.

7.4 Enrichment score

One crucial task of our collaborators is judging how specific two types
of items are related considering a third item type. For example, they
want to know what clusters show an enrichment in compounds that
modulate a specific pathway. Abstracted to general set terms, we want
to know for an item i of set I (clusters) the enrichment of items of set
K (compounds) that reach one item j in set J (pathways). We define
an enrichment score as follows: Let Ki be the set of items in item set
K that are related to i and K j be the set of items in K that are related to
j. For a pair of items (i, j), we calculate the enrichment score si, j(K)
by

si, j(K) =
|Ki

⋂
K j|/|K j|

|Ki|/|K|
(1)

This is also illustrated in Figure 7. The numerator of this term de-
scribes how specific j is related to i via K. To account for the fact
that items in I that are related to many items in K are more likely to
also have common items with items in J, we divide by the given de-
nominator. As small overlaps of one or two items were generally not
interesting for our collaborators, we include a threshold for the mini-
mum number of common items. The score is calculated for all pairs
(i, j), which in turn can be used to rank columns in the relationship
view. However, a column only shows items of a single type, although
the score is defined for pairs. Therefore, we use the maximum score,
given by ri,K,J = max∀ j∈J(si, j(K)) to determine the rank of every item
i in its column. We display this score as a horizontal bar next to the
item. To see the item pairs, the paired columns can be nested, as shown
in Figure 6. While the parent items show the maximum score, the child
items indicate the scores achieved with their parent.
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Fig. 7. Enrichment for i in j via K: si, j(K) = (1/2)/(2/4) = 1

7.5 Implementation
The ConTour visualization technique is a plugin for Caleydo3, an
open-source data visualization framework. Caleydo is implemented
in Java and uses OpenGL/JOGL for rendering. The chemical com-
pound structures are rendered using the Chemistry Development Kit
(CDK) [25], an open-source Java library for structural chemo- and
bioinformatics. The source code is available on GitHub4. ConTour
will be part of the next major release of Caleydo.

8 CASE STUDIES

ConTour is the result of a user-centered development process [20],
which included regular meetings with our collaborators to iteratively
develop and refine the system according to their needs. Together with
our collaborators, who are chemical biologists, we conducted case
studies to illustrate the applicability of ConTour on real-world prob-
lems. The overall goal of these case studies was to find out whether the
biological fingerprints that were used as descriptors for compounds are
able to detect meaningful biological similarities between compounds
and reflect their effect on the cell and, ultimately, on the organism as
a whole. If they prove to capture a compound’s biological actions in
a comprehensive manner, they can be used as a connecting module
to identify relationships between compounds, targets, pathways, and
diseases. In the following, we describe how our collaborators used
ConTour to explore heterogeneous pharmaceutical and biological data
and report on the gained insights.

8.1 Investigating phospodiesterase 4 inhibitors and their
cluster neighbors

A straightforward way to explore the ability of the used descriptors
to group compounds in a biologically meaningful way is to analyze
the fingerprints of compounds that are known to modulate the same
protein target. Therefore, the expert started by focusing on a partic-
ular protein target, the enzyme phosphodiesterase 4 (PDE4), which
is represented by multiple different enzyme subtypes (PDE4A-D) in
the dataset. She added a selection-based filter to limit all displayed
items to those related to PDE4A-D. By applying an attribute filter to
the activity data, our collaborator set an upper threshold for AC50 val-
ues of one µM, which resulted in ten different compounds that inhibit
PDE4. Encouragingly, the fingerprints of four of the ten compounds
belonged to cluster 56, proving that their shared target activity was
reflected by similar fingerprint activity patterns. She was then inter-
ested what other compounds were found in Cluster 56. Therefore, she
added all items related to Cluster 56. Overall, the cluster consisted
of ten compounds. By ranking the protein targets by their enrichment
of Cluster 56, she learned that two of the newly added compounds
bind to beta-adrenergic receptors (ADRB1, ADRB2), which are evo-
lutionary unrelated to PDE4. Also, when she displayed the compound
structures, she saw that these compounds were structurally very dis-
tinct from the PDE4 inhibitors. At first glance, it seemed surprising
that structurally diverse compounds binding to different proteins have
similar biological fingerprints and cluster together. However, this ob-
servation became better understandable when she integrated the ther-
apeutic group column into the analysis. As shown in Figure 8, five
compounds from Cluster 56, among them modulators of both PDE4

3http://www.caleydo.org
4https://github.com/Caleydo/
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Fig. 8. The gene column on the left shows protein targets ranked by
the enrichment of Cluster 56. The selected (orange frame) enzyme
subtypes of phosphodiesterase 4 (PDE4A-D) and beta-adrenergic re-
ceptors (ADRB1, ADRB2) rank among the top. The highlights in the
compound column, which is nested within the fingerprint and cluster
columns, reveal that compounds binding to these targets fall into the
same fingerprint cluster, Cluster 56. Differences in the chemical struc-
tures between compounds binding to ADRB1-2 and those binding to
PDE4A-D can be seen in the detail view. When looking at the compound
column nested within the therapeutic groups column, the highlights in-
dicate that four out of the seven compounds that modulate ADRB or
PDE4 map to the group bronchodilators. This group refers to com-
pounds that are used for the treatment of breathing difficulties. Thus,
the common bronchodilatory effects of compounds modulating these
two target classes might be the reason why their fingerprints cluster to-
gether.

and adrenergic receptors, are mapped to the group bronchodilators,
which refers to compounds that are used for the treatment of breath-
ing difficulties. Indeed, it is known that both phosphodiesterases and
adrenergic receptors are protein targets that are involved in airway dis-
eases [17, 1]. Hence, as hoped for by the expert, the biological de-
scriptor, i.e., the clustered fingerprints were able to find therapeutic
effect similarities between compounds. In summary, ConTour helped
to reveal complex relationships between compounds, their evolution-
ary unrelated targets, and diseases; and supported the hypothesis that
compounds in Cluster 56 induced therapeutically relevant, similar cel-
lular phenotypes. Based on this finding, it would be straightforward
to suggest experiments that test the other compounds in the cluster for
their bronchodilatory effects and their use for treating airway diseases.

8.2 Exploring overrepresentation of compounds with the
same therapeutic effect

The previous case study has shown that compounds used for the treat-
ment of airway diseases cluster together. To find out whether this ob-
servation could also be made for other therapeutic groups, our col-
laborator defined an enrichment score to systematically calculate the
enrichment of therapeutic groups in the fingerprint clusters. By set-
ting a minimum overlap threshold, she constrained the results to only
contain therapeutic groups that are related to at least three different
compounds in a cluster. The ranking of therapeutic groups by the en-
richment score revealed that many different therapeutic groups were
overrepresented in individual clusters. For example, seven therapeutic
groups showed a strong, more than 20-fold enrichment in at least one
cluster. Thus, the observation made for airway diseases was not a sin-
gular case but clustering of compounds that are administered for the
same therapeutic indication is generally observed across the data set.

The highest enrichment score (87.9) was obtained for the group

Fig. 9. To find out whether similarities in the fingerprints of compounds
correlated with the compounds’ classification in therapeutic groups, an
enrichment score was used to calculate the enrichment of therapeutic
groups in the fingerprint clusters. The highest score was achieved by
Cluster 25 and the group hormone replacement therapy (selected item
with orange frame), which was thus ranked on top of the therapeutic
group column. As indicated by the highlight, this group and Cluster 25
have 7 compounds in common. The detail view of these compounds
reveals that they are also structurally similar.

hormone replacement therapy. Of eight compounds mapping to this
therapeutic group, seven fell into Cluster 25 and were grouped to-
gether with four more compounds of which two were annotated for
hormone-related therapies. In accordance with the therapeutic role of
the compounds, known targets that were enriched in this cluster were
progesterone, androgen, and estrogen (sex hormone) receptors. Fur-
thermore, displaying chemical structures revealed that all eleven com-
pounds were chemically very similar steroids (see Figure 9). Hence,
in this case, the chemical similarity of compounds correlates very well
with their biological similarity.

8.3 Explaining cluster compositions by pathways

Finally, our collaborator wanted to find out whether compounds mod-
ulating different targets in the same biological pathway had similar
biological fingerprints and thus cluster together. This could be ex-
pected considering that all targets in a pathway work together and that
modulations of different targets in the same signaling cascade of a
pathway should be propagated, ultimately leading to similar cellular
phenotypes. Our collaborator started the analysis by selecting the im-
portant JAK-STAT signaling pathway shown in Figure 10. This path-
way is evolutionary conserved across many different species and plays
a role in the regulation of the immune system. When she opened the
pathway in the detail view, she found four clusters that contained at
least two compounds mapping onto the pathway. Interestingly, for all
four clusters, it could be observed that their compounds modulated
different targets in the pathway. The most prominent example was
Cluster 69, in which six of overall 17 compounds in the cluster modu-
lated one or more targets in the pathway. Of the six compounds, four
inhibited different members of a protein family known as kinases, i.e.,
Janus kinases (JAKs) and the Pim-1 kinase, in the pathway. The other
two compounds modulated the pathway by inhibiting the signal trans-
ducer STAT and the protein BCL that regulates transcription, i.e., gene
expression. The collaborator confirmed that, without pathway infor-
mation, clustering of compounds with diverse target activities is often
difficult to reconcile. However, ConTour makes it possible to explain
similar biological fingerprints of compounds with diverse target activ-
ities by showing that their targets act in a concerted manner in the cell
by contributing to the same signaling event.



Fig. 10. The detail view shows the JAK-STAT signaling pathway. Se-
lecting the block of Cluster 69 on the top left shows that the compounds
of this cluster map to several different targets (graph nodes highlighted
with an orange frame) in the pathway. The selection also highlights the
genes and compounds in the relationship view. The (recursive) nest-
ing of the gene column within the compound column displays the exact
compound-target mappings and reveals that the compounds bind to dif-
ferent targets. This observation suggests that despite the compounds
binding to different targets, their fingerprints clustered together because
their targets are part of the same pathway.

9 DISCUSSION

By using ConTour our collaborators gained several insights that sup-
port the hypothesis that biological fingerprints indeed reflect similari-
ties among compounds and their biological effects on both the target
protein and pathway level. By observing our collaborator during the
analyses, we found that she picked up ConTour’s concepts quickly.
She used selections to identify relationships of individual items and
filters to focus on the data of interest. The expert excessively used
nesting, as she argued it helped understanding relationships of mul-
tiple items much better when she had to identify relationships across
columns. To our surprise, she used nesting not in a static “set up once”
approach, but constantly refined, removed, and added nestings to an-
swer specific questions. We observed that she continuously used a
combination of reasoning based on visualization and refinement using
analytical processes and queries. For example, she relied on ranking
by various scores and filtering to identify interesting items, but then
refined her queries and adjusted her next steps based on the visual rep-
resentations.

The combination of the query-driven relationship view and the var-
ious detail views proved highly valuable to our collaborators. Espe-
cially the compound detail view was frequently used to reason about
whether observations made for compounds may be caused by their
chemical properties, but also the pathway view was employed to con-
textualize the findings. In summary, the case studies confirm that the
interplay of ConTour’s building blocks is an effective approach for ex-
ploring relationships in drug discovery.

Scalability As a tool for exploring multi-relational data, ConTour
needs to scale with respect to the number of columns, the number of
items inside the columns, the number of nested columns, and the num-
ber of detail views it can handle effectively. In the case studies we
demonstrated that ConTour can comfortably deal with about a dozen
columns. Depending on the kind of data, we observed a limit of about
20 columns on a full-HD display. To even further increase the upper
limit for the number of displayable columns, it would be possible to

add a level-of-detail approach that lets the user manage larger num-
ber of columns. In terms of scalability of items, we have successfully
worked with multiple columns containing up to 14,000 items. How-
ever, conceptually the column-based approach in combination with
our task-dependent sorting of items scales to datasets with many more
items. Regarding the recursive nesting of columns we found that more
than four levels of nesting are rarely used in practice. Our current im-
plementation supports about as many levels of recursions as columns
for 1:1 relationships between datasets (i.e., about 20), while this num-
ber shrinks to about five for the n:m case. The number of detail views
that can be shown simultaneously depends on the nature and size of
the data and the used visualization. For compounds, we observed up
to 8 simultaneously used views, while pathways were limited to one.

10 CONCLUSION

In this paper we introduced ConTour, a visual analysis system de-
signed to facilitate the exploration of relationships in large cohorts
of biological and pharmaceutical data. The system was developed in
close collaboration with a team of chemical biologists at the pharma-
ceutical company Novartis. The main interface of the system displays
entities of diverse datasets in a simple yet effective column-based lay-
out. By combining sorting, filtering, and ranking strategies, analysts
can drill down to the relevant items. Diverse interaction techniques
allow users to browse the relationships of items in an environment of
tightly interlinked views. Although the analysis of such complex inter-
related data still poses many challenges, our collaborators confirmed
that ConTour is an efficient tool to analyze multi-relational data for
drug discovery.

In the future, we plan to investigate how our analysis approach can
be applied to data graphs that contain cycles, as this property imposes
challenges in terms of path ambiguities when resolving relationships
in the graph traversal. A related problem is to also consider relation-
ships between items of the same entity, for instance, relationships be-
tween genes in a pathway. To remedy this, we plan to merge the data
graph with the complex cellular interaction networks that are captured
in the pathways.

Our collaboration partners noted that they possess many similarly
structured datasets that they plan to analyze using ConTour in the near
future. Although we have designed ConTour specifically for the re-
quirements in drug discovery, we argue that the approach can also be
applied to both other biological and non-biological domains if the data
is structured similarly. As the data structure closely resembles those
of data stored in relational databases, we expect a broad applicabil-
ity. For example, we are currently working with cancer researchers
who use ConTour for the combined analysis of annotated tumor tissue
images and mutation data.
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