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Figure 1: We present Shotviewer, software that supports visual analysis of spatial and nonspatial ballistic simulation data for
vulnerability analysis. It consists of three linked views: a) the Shotline View displays an abstract representation of shots’ paths
through a vehicle; b) the Geometry View shows shots’ 3D spatial context; and c) the System View visualizes the propagation of
damage through a vehicle’s systems. In this example, the green shot damages the vehicle’s radio which impacts the vehicle’s
mobility and firepower capabilities.

Abstract
Increasing the safety of vehicles is an important goal for vehicle manufacturers. These manufacturers often turn
to simulations to understand how to improve a vehicle’s design as real-world safety tests are expensive and time
consuming. Understanding the results of these simulations, however, is challenging due to the complexity of the
data, which often includes both spatial and nonspatial data types. In this design study we collaborated with
analysts who are trying to understand the vulnerability of military vehicles. From this design study we contribute
a problem characterization, data abstraction, and task analysis for vehicle vulnerability analysis, as well as a
validated and deployed tool called Shotviewer. Shotviewer links 3D spatial views with abstract 2D views to support
a broad range of analysis needs. Furthermore, reflection on our design study process elucidates a strategy of view-
design parallelism for creating multiview visualizations, as well as four recommendations for conducting design
studies in large organizations with sensitive data.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces]: User Interfaces—GUI

1. Introduction

Simulations enable engineers to test designs in ways that
may be too expensive or time consuming for the real world.
For example, vehicle manufactures use simulations to un-
derstand how a vehicle may perform in extreme conditions,
such as during a collision [Hau81], providing insights that
can ultimately lead to safer vehicles as engineers revise de-
signs based on the simulation results. Similarly, military or-
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ganizations use ballistic simulations to understand the vul-
nerability of their vehicles, allowing them to improve safety
by modifying vehicle designs.

In these military applications, analyzing the vulnerability
of vehicles relies heavily on ballistic simulations [Bal03].
Consuming these simulation results, however, requires hu-
man insight as analysts must find trends, patterns, and out-
liers in vehicle vulnerability that require experiential knowl-
edge to spot. Furthermore, the analysts must reason about
multityped data: output attributes from physics-based sim-
ulations, computer-aided design (CAD) models, and hierar-
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chical relationships between the model’s components. Ana-
lysts use their findings to debug simulation inputs, identify
components likely to be damaged, plan live-fire testing, and
ultimately make recommendations about vehicle design. The
complete analysis process is labor intensive and relies heav-
ily on analyst’s expert knowledge. As one senior vulnerabil-
ity analyst told us, consuming ballistic simulation results is
"more of an art than a science."

In this design study we worked closely with three vulner-
ability analysts to demystify the process of consuming bal-
listic simulation results. The collaboration also enabled us
to design and deploy a prototype visualization system that
leverages multiple linked views for supporting reasoning
about spatial and non-spatial vulnerability data. As a result,
several novel contributions arise including a problem charac-
terization, data abstraction, and task analysis for the vulner-
ability analysis domain, as well as Shotviewer, a carefully
justified and validated software prototype for visual vulnera-
bility analysis. Furthermore, reflection on our design process
illuminates a strategy for exploiting view-design parallelism
while creating multiview visualizations, and a list of four
recommendations for conducting design studies in large or-
ganizations with sensitive data.

2. Methods

We describe our methods using the design activity frame-
work [MMAM14], a process model for visualization design,
as it provides the vocabulary necessary to describe the paral-
lel nature of our design process and maps to the well-known
nested model for visualization design [Mun09]. The frame-
work identifies four discrete design activities: understand
the users’ needs; ideate, or generate ideas, to support those
needs; make tangible prototypes of the ideas; and deploy
visualization prototypes to users. We discuss our methods
in the context of these activities after describing our project
constraints; namely developing remotely, designing for sen-
sitive data, and working within a large organization.

The design study was conducted over the course of fifteen
months. We worked remotely throughout the project as we
were two time zones away from our collaborators. We met
weekly via video conferences, and spent three weeks onsite
with analysts. Unless otherwise specified, all the methods
were conducted in video conferences, making it challenging
to develop rapport as video conferences can be impersonal.

The challenges of working remotely were exacerbated by
our collaborators’ sensitive data that could not be moved
from their secure machines, machines that were not con-
nected to outside networks. We had access to their real data
during our onsite visits, but otherwise used simplified test
data which is shown in all of the figures in this paper.

Our collaborators are employees of a large organization,
which is characterized by specialized individuals relying on
cooperation to accomplish tasks coupled with decentralized
authority over workflows [SIB11, Dru88]. Thus, we sought

Figure 2: The timeline of our design study. After conduct-
ing initial understand and ideate activities, we decided on a
multiple linked view system. We designed each of these views
in parallel and ultimately combined them into a full system.

input from various individuals who fulfill different roles in
the organization. In particular, we spoke with engineers who
create input data for the analysts and the analysts’ customers
who communicate results to the vehicle manufacturers.

For the understand activity we initially conducted un-
structured interviews with one analyst and one fellow tool
builder [SMM12] to learn domain vocabulary and to cre-
ate an initial data abstraction. We refined the abstractions
and performed a task analysis through onsite contextual
inquiry [WFB96] with three analysts. To engage the ana-
lysts and convince them of the potential for visualization
to improve their workflow, we conducted three visualization
awareness workshops by following Koh and Slingsby’s user-
centered model [KS11].

For both the ideate and make activities we used paral-
lel prototyping [DGK∗10] and participatory design [MK93],
but with prototypes of varying fidelity for the two ac-
tivities. For instance, we used low-fidelity paper proto-
types during the ideate activity compared to higher fidelity
data sketches [LD11] in the make activity. To elicit feed-
back about our prototypes, we used the rose-bud-thorn
method [Ins14], where individuals are prompted to give
three comments on an idea: one positive (rose), one nega-
tive (thorn), and one identifying an opportunity for future
work (bud). This allowed us to elicit both positive and neg-
ative feedback even though our collaborators were initially
reluctant to criticize our ideas.

We deployed our final visualization system, Shotviewer,
to three analysts who have used it in their daily work. Wide-
scale deployment, however, requires integrating it with ex-
isting vulnerability analysis software. We discuss the pro-
posed integration in Section 5 and it is currently being im-
plemented by developers at our collaborator’s organization.

Although we discuss the design activities linearly here,
we performed them in a parallel and staggered fashion as
shown by our project’s timeline in Figure 2. Our software
design consists of three linked views to display spatial and
nonspatial data, and each row in the timeline corresponds
to per-view activities. For simplicity, we do not show the
iterative nature of the design process which often involves
backward movement through activities. Section 7 contains
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Figure 3: A cell plot output from ballistic simulations. Cell
color encodes the quantitative damage that each shot inflicts
on this vehicle’s mobility or firepower capabilities. Analysts
understand cell plots by comparing cells to their neighbors
of different colors, such as the highlighted cells marked here.

our strategy and justification for designing multiple linked
views in parallel.

3. Problem, Data, and Tasks

In this section we discuss our problem characterization, data
abstraction, and task analysis contributions for the domain
of ballistic vulnerability analysis. First we characterize the
domain problem by providing a high-level overview of bal-
listic simulations and describing the broad goals of vulner-
ability analysts. Next we propose a data abstraction for the
simulation, followed by the specific tasks the analysts need
to conduct in order to understand the simulation results.

3.1. Problem Characterization

Our collaborators focus on understanding ballistic simula-
tion outputs. These outputs are best explained by examin-
ing the origin of ballistic simulation software: an optical
ray tracer [Mat67,BS07]. Ray tracers compute photon paths
through an environment, shade surfaces using physically-
based lighting models, and output pixel color based on pri-
mary visibility rays. Ballistic simulations replace photons
with shots, a projectile being simulated, and compute energy
transfer using physically-based penetration models. Histor-
ically, the simulations output statistical summaries such as
the total vulnerable area of a vehicle, but these summaries
have a relatively nebulous definition that make it almost im-
possible to reason about why a vehicle may be vulnerable.

To understand simulation outputs in greater detail, ana-
lysts rely on images output from the ballistic simulations,
called cell plots as shown in Figure 3, where cell color rep-
resents vehicle capability damage from a shot for a given
trajectory. The number of cell plots and cell size vary be-
tween vehicles and analyses. Typically, analysts run sim-
ulations for between three and forty-two industry-standard
trajectories around a vehicle, with a cell size ranging from
10-100mm [Bal03]. Unfortunately, consuming cell plots is
labor intensive as they are ambiguous: they contain no infor-
mation about why a cell is a certain color. These colors are
derived from a variety of information, both spatial and non-
spatial, related to a vehicle’s 3D geometry and capabilities.

Vulnerability analysts rely on their extensive domain knowl-
edge to intuit about the cause of a cell’s color, which they
use to identify patterns and outliers in vehicle vulnerability.

3.2. Data Abstraction

Figure 4 contains an overview of the simulation data rele-
vant to understanding cell plots. The vehicle inputs are col-
lections of 3D meshes, called components, shown in Fig-
ure 4(a). A dependency graph, shown in Figure 4(b) de-
scribes the functionality of the vehicle in terms of its com-
ponents [VGRH81]. The graph’s leaves are critical compo-
nents, a subset of the vehicle’s components that directly con-
tribute to its capabilities. The graph’s internal nodes are ag-
gregations of components called systems, and its roots are
aggregations of systems called capabilities.

Figure 4(c) shows the simulation launching a shot at
the vehicle. For a given trajectory, the simulations compute
shotlines, the path of a shot through the vehicle. These shot-
lines contain the physical properties of the shot — quanti-
tative attributes such as mass and velocity defined along the
1D line. Shotlines also contain per-component quantitative
values that represent the amount of damage to intersected
components [Bal03]. Simulations aggregate per-component
damage up the dependency graph from components to capa-
bilities in order to compute per-shotline capability damage
values. Each cell in a cell plot, which represents a single
shotline, is then colormapped to encode the damage value.

These damage values, and resulting cell plots, are an in-
effective representation of the simulation output as they ag-
gregate complex spatial and abstract data into a single value.
We focus on unpacking and visualizing the information be-
hind cell plots in order to understand the rich and descriptive
simulation data.

3.3. Task Analysis

The high level goal of this work is to enable a deeper under-
standing of the data behind cell plots. Analysts use cell plots
to debug simulation inputs and to understand vehicle vul-
nerability. In both cases, they must explain the color behind
an individual cell or a group of cells to check the validity
of their inputs or to identify trends in vulnerability. Our task
analysis revealed that analysts understand cells in the context
of their spatially adjacent neighbors. For instance, the differ-
ences between red and white cells highlighted in Figure 3
can be used to explain what components are being damaged
by the central group of red cells. To understand differences
between shots, analysts perform the following tasks per-shot
and compare their outcomes:

T1 Understand a shot’s degradation and component damage.
T2 Understand a shot’s spatial context.
T3 Understand a shot’s systemic impact.

These three tasks require understanding the simulation
output, i.e., shots and component damage, in the context
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Figure 4: An overview of ballistic vulnerability analysis data: a) vehicles consist of various 3D meshes called components; b)
a subset of these components appear in a dependency graph which describes the vehicle’s capabilities; and c) the simulations
trace shots through the vehicle and aggregate per-shot damage using the dependency graph.

of the simulation input, i.e., the vehicle’s geometry and de-
pendency graph — we describe these tasks in greater detail
through our design requirements in Section 5. Currently, an-
alysts understand a shot’s degradation and component dam-
age (T1) using textual debugging logs. These logs are mas-
sive and not particularly human readable — in our test data
one of the debugging logs is 2.7Gb in size. Furthermore, an-
alysts trace a shot’s systemic impact (T3) by viewing yet an-
other textual description of the dependency graph. Finally, to
see a shot’s spatial context (T2) the analysts rely on offline
rendering software or their own mental models. We postulate
that effectively making sense of this multityped simulation
data requires a multiview visualization that combines both
the abstract 2D and the spatial 3D data.

4. Related Work

To our knowledge, no previous research has focused on vi-
sualizing ballistic simulation results. Recent work within the
vulnerability analysis domain involves accelerating simula-
tions with modern ray tracers [BS07] and designing soft-
ware for preparing simulation inputs [SUR13]. Ours is the
first project to analyze the consumption of simulation re-
sults. Due to the lack of existing visualization software for
vulnerability analysis, in this section we discuss the research
related to the challenges of our design study, specifically:
creating 2D representations of inherently spatial data and de-
signing multiview visualizations for multityped data.

Visual comparison of inherently 3D data is made chal-
lenging by occlusion, clutter, and difficult navigation. To
avoid these issues, we project 3D geometry and shot data
into 2D while preserving spatial relationships. This is in-
spired by Keefe et al. [KERC09], who derive 2D represen-
tations of 4D animations with geometry tracers. Similarly,
Landge et al. [LLI∗12] project 3D network structures to a
2D view in order to avoid occlusion while preserving spa-
tial relationships. Also, Weber et al. [WRH∗09] and Meyer
et al. [MMDP10] represent embryo cell position using a
lossless 2D parameterization of its structure. Recently, Al-
Awami et al. [AABS∗14] propose a 2D representation of
brain connections that preserves spatial relationships. Sim-
ilar to these designs, we use a 2D projection of 3D geometry
and shot data.

We also use linked multiform 2D and 3D views. Closely
related to our work is the SimVis application [DGH03] as it

combines spatial 3D and abstract 2D views, though the 2D
representations are limited to scatterplots and histograms.
Similarly, the GRACE application [MMH∗13] combines 3D
spatial brain data with abstract functionality data, but does
not consider 2D projections of the 3D data. Chang and
Collins [CC13] augment 3D views with 2D views contain-
ing summaries of vehicle damage from highway reports, but
they do not consider the resulting vehicle functionality from
that damage. Design studies on in-car communication net-
works [SBH∗09, SFMB12] also combine 2D abstract views
with 3D spatial views, though they do not apply to the prob-
lem of vulnerability analysis.

5. Shotviewer

In this section we present Shotviewer, a prototype visualiza-
tion system that combines spatial and nonspatial data for bal-
listic vulnerability analysis. Its three linked views, inspired
by the multiform encodings of Maries et al. [MMH∗13], cor-
respond to the tasks of understanding cell plots: the Shot-
line View enables comparison of shot degradation and com-
ponent damage (T1); the Geometry View provides infor-
mation about a shot’s spatial context (T2); and the System
View displays a shot’s systemic impact (T3). We have re-
leased Shotviewer’s source code and a sample dataset at:
http://www.ethankerzner.com/projects/shotviewer

We discuss Shotviewer by identifying per-view require-
ments and using them to justify our design decisions. We
preface this with two application-wide requirements:

Support current workflow and offer new capabilities. Ana-
lysts read text files to make sense of cell plots, allowing them
to compare two shotlines at a time. We created Shotviewer
to visualize from one to four shotlines simultaneously. Al-
though Shotviewer will not scale to more than four shotlines,
it supports analysts current workflow and offers new capa-
bilities [SIBB10] that we discuss for each view. Shotviewer
also incorporates textual data representations where possible
to help analysts build trust in the visualizations as they can
verify that the encodings match the data.

Interface with existing tools. We designed Shotviewer so
that analysts may launch it from their existing software.
Existing software [SUR13] displays cell plots to which
Shotviewer then provides details-on-demand. We propose
that cell plots act as a legend by assigning a categorical color
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Figure 6: The Shotline View consists of three subviews. The Table View (top) provides human-readable details about the shot.
The Compare View (center) uses a 2D projection of shotlines to enable visual comparison through juxtaposition [GAW∗11].
The two Line Plots Views (bottom) show trends in shot degradation.

Figure 5: We propose that cell plots serve as an interactive
legend for Shotviewer. Here, the user selected four shotlines
which have been assigned categorical colors that are used
within Shotviewer.

to each cell, as shown in Figure 5. We use these colors to
identify shots within our application.

5.1. Shotline View

The Shotline View in Figure 6 shows information about the
shots’ degradation and the damage to intersected compo-
nents. This information is shown in three subviews: a Table
View (top); a Compare View (center); and Line Plot Views
(bottom). While the Table View supports existing workflows
with textual data representations, we based the other sub-
views on the following requirements:

Show shotlines as linear events. The Compare View uses a
lossless 1D parameterization of shotlines. The shot’s vehicle
entry point is at the far left and horizontal position encodes
distance from it. We represent shots with straight lines as
penetration models do not allow for refraction. This linear

display corresponds to reading textual shot descriptions from
the entry point through the vehicle.

Differentiate between air and components, while preserv-
ing thickness of arbitrarily sized components. We represent
air and components along a shotline using a horizontal set
of rectangles. Since analysts focus on component damage,
rectangles representing components have larger height than
those representing air. Rectangle width encodes the com-
ponent thickness. This is particularly useful as component
thickness is important in physically-based ballistic models.
Rectangle color has no inherent meaning, but rather alter-
nates to distinguish between components. This is necessi-
tated by the varying width of components, for instance, rang-
ing from an engine block to an electrical wire. Our param-
eterization and damage representations were inspired by the
linear gene representation in Variant View [FNM13].

Display damaged components. The Compare View shows
component damage using the height and color of a fixed
width glyph above each component. We set the width to a
fixed size to show damage of small and large components
with equal salience. This encoding is particularly useful in
vehicles with complex electrical wiring, which is common
in our collaborators’ sensitive data.

Enable comparison of shot degradation between and
within shotlines. Shot degradation is the change in mass, ve-
locity, and other quantitative values defined on the shotline.
We initially considered encoding these in the Compare View,
for instance, by using rectangle height, but with such encod-
ings it is difficult to compare values between shotlines. We
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instead use the two Line Plot Views to display the shots’
physical degradation: the x-axis uses the same lossless pa-
rameterization as the Compare View and the y-axis encodes
the physical properties. These views enable comparison both
along and between shotlines, allowing analysts to verify that
the physically-based simulations work as intended.

Identify components hit by multiple shots. Interaction al-
lows analysts to highlight components that have been shot,
which is useful for identifying components hit by more than
one shot, such as the valve_assembly in Figure 6 which has
been hit by two shots. Moving the mouse over a component
in any of these sub-views highlights it throughout the appli-
cation in order to support reasoning about the component’s
spatial location and systemic impact.

5.2. Geometry View

The Geometry View in Figure 7 displays shots’ 3D position
in the context of the vehicle geometry. We designed this view
from the following requirements:

Represent shots and shot components in 3D. The Geom-
etry View displays shotlines as 3D cylinders. Similar to the
Shotline View it uses colors to identify shots and cylinder
radius to differentiate between air and components. It also
renders each of the components intersected by the shots.

Show spatial context with respect to vehicle geometry.
Rendering just the shotlines and intersected components pro-
vides insufficient spatial context about the entire vehicle.
Rendering the entire vehicle, however, is impractical due to
slow rendering performance and visual clutter. While we ini-
tially considered exploded geometry views [LACS08], they
failed to provide information about the true spatial relation-
ships of components needed by our analysts. Instead, we
observed the analysts using offline renderers to draw inter-
sected components along with the geometry of known lo-
cations such as crew or wheels in order to place the com-
ponents in their mental model of the vehicle. Based on
this observation we developed the concept of landmark ge-
ometry, a user-defined set of recognizable components. In
Shotviewer we allow analysts to define landmark geometry
with regular expressions.

Display spatial context with respect to specific systems.
Aliasing leads to unexpected simulation results as shot-
lines simulated by infinitely thin rays fail to intersect high-
frequency geometry, such as wires. Often, analysts will ver-
ify that aliasing occurred by looking at a shot with respect to
an individual system they expect to be damaged. We support
this reasoning by letting users select systems rendered with
the shotlines, shot components, and landmark geometry.

Customize colors used in 3D rendering. In their existing
tool chains, analysts have little control over color schemes
used in 3D rendering. As one analyst complained, the vehi-
cles "look like clown cars." The analysts would often manu-
ally color geometry images when presenting results to their

Figure 7: The Geometry View renders 3D representations of
the shotlines along with user-defined landmark geometry to
provide spatial context while avoiding clutter and occlusion.
Here, the crew and wheels serve as landmark geometry.

peers or customers. Thus, in Shotviewer we allow users to
control the geometry color and opacity. Although this feature
may seem insignificant, improving the visualization aesthet-
ics significantly improved our rapport with analysts.

5.3. System View

The System View in Figure 8 visualizes systemic impact of
component damage using a node-link diagram. Although the
simulations output a list of damaged components, these lists
fail to sufficiently describe the impact of that damage. For
example, in Figure 8 the valve_assembly has been damaged
and it would be difficult to intuit that this is a part of the en-
gine system without the dependency graph for context. The
idea of showing the dependency graph structure appears in
our design requirements for the System View:

Show only relevant components, systems, and capabili-
ties. Dependency graphs often contain up to thousands of
nodes. While we initially considered space-efficient repre-
sentations of these graphs, such as treemaps [JS91], analysts
found these hard to understand. We instead filter the depen-
dency graph to only nodes impacted by selected shots.

Clearly encode parent-child relationships and damage.
Analysts must understand the damage propagation through
a dependency graph, from the components (leaves) through
the systems (internal nodes), and to the capabilities (roots).
We use a hierarchical node-link diagram layout (computed
with graphviz [GN00]) as it encodes parent-child relation-
ships both with connections and spatial position. We display
damage with the height of a vertical bar to the right of each
node, and we identify the shot causing damage with the bar’s
color. Links represent damage propagating up the tree. Mov-
ing the mouse over a node highlights the path to its parents.

Enable top-down analysis (from capabilities to compo-
nents). Before our design study, analysts could only under-
stand systemic impact by aggregating component damage up
to the capabilities. In essence, manually aggregating the de-
tails to get an overview of the data. In Shotviewer, we addi-
tionally allow analysts to select a node of interest and filter
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Figure 8: The System View uses a node-link diagram to show the systemic impact of damaged components. The full dependency
graph is filtered to only show damaged components (leaves) and their parents (systems and capabilities). The vertical bars on
the right of each node encode damage, and color identifies the shots causing the damage. Using this view analysts can filter the
damaged capabilities to focus on one of interest. Here, highlighting enables the user to trace the valve_assembly damage up to
the vehicle’s mobility.

the graph from the top-down, showing only damaged nodes
that contribute to their selection. This top-down workflow is
novel in the vulnerability analysis domain.

5.4. Implementation

We implemented Shotviewer using C++ and Qt. We focused
on rapid prototyping in order to quickly get user feedback
and iterate on designs. We also considered the following re-
quirement in our implementation:

Develop where we deploy. We treated the hardware and
software available to analysts as constraints. For instance,
analysts did not have graphics-processing units, so we used a
CPU ray tracing library [WWB∗14] to render the 3D geom-
etry. We also found that virtual machines did not reproduce
the behavior of analysts’ machines (for example, with win-
dowing libraries that use hardware-accelerated rendering) so
we instead developed on real machines that matched their
configurations. This enabled fast installation and feedback
of our prototypes.

6. Validation

We validate both our task analysis and Shotviewer’s design.
Early in the project, we interviewed our analysts’ customers
to find immediate validation on our choice of understanding
cell plots. After completing the design study, we sought in-
formal user-feedback from three vulnerability analysts and
two case studies that describe Shotviewer’s usefulness.

Talking to our analysts’ customers provided initial val-
idation of our problem characterization and task analysis.
Through early interviews we began to understand the im-
portance of cell plots as well as how difficult they are to
interpret, leading to our task analysis that focuses on under-
standing these plots. One of the analysts’ customers who is
responsible for communicating vulnerability analysis results
to vehicle manufacturers validated this analysis. In particu-
lar, he stated "we don’t actually do a good job of turning

cell plots into actionable knowledge" and that "the data be-
hind cell plots are intelligible to only a few people." Creat-
ing software to understand cell plots, he confirmed, would
be beneficial to the entire vulnerability analysis community.

We received overwhelmingly positive user feedback on
Shotviewer. One analyst stated that the tool reduced his
time-to-understanding the data behind cell plots from min-
utes to seconds. We have also seen a growing demand for
Shotviewer as our analysts’ coworkers have seen them work-
ing with it and asked to use it for their own work.

Our first case study occurred while demonstrating a fi-
nal version of Shotviewer to an analyst. She was examin-
ing a dataset from a project that she already completed and
shipped to a customer. Although she believed the data to be
bug free, Shotviewer enabled her to discover an error in it.
Particularly, while looking at a shot with a low capability
damage, she noticed a component in the Geometry View that
was hit by the shot. Although she expected that component
to cause a high capability damage, it did not appear in the
System View. After checking the simulation inputs, she dis-
covered an error that caused damage to that component to be
incorrectly aggregated.

We present a second case study from an analyst who used
Shotviewer to understand simulations of a new shot type
against an existing vehicle. After preparing inputs and run-
ning the simulation, she inspected a cell plot. The cell plot
contained some groups of red cells (high capability dam-
age) surrounding a green cell (low capability damage). She
launched Shotviewer to see the data behind these cells so
that she could explain their differences. Using the Com-
pare View’s damage glyphs and interactive highlighting, she
identified a component that was damaged by the three red
shotlines but not by the green one. She hypothesized that
this component caused the high capability damage and used
the System View to confirm this by tracing the path from the
leaf up through its root. Using the Geometry View, she was
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also able to see that the green shotline had passed very close
to the component and that it would have likely been dam-
aged in a live-fire test. She concluded that the outlier was a
result of aliasing and the component in question was vulner-
able to this particular shot. In her old work flow, this would
have involved looking up information from three different
text files and running an offline rendering application to see
the shots’ spatial context.

7. Reflections

In this section we present the two methodological contribu-
tions that result from reflection on our design process. The
first is a strategy that exploits view-design parallelism for
creating multiview visualizations of multityped data. This
strategy proposes designing views in a parallel and stag-
gered fashion in order to effectively use time and resources
while keeping collaborators engaged in the design process.
The second contribution is a list of four recommendations to
increase the efficiency of designing visualizations in a large
organization with sensitive data.

7.1. View-Design Parallelism

View-design parallelism complements the growing area of
design study process models [SMM12, GDJ∗13, WBD14,
MMAM14]. While these models focus on the iterative and
multilinear nature of design, including the execution of par-
allel design activities, they do not directly address the chal-
lenges that we as designers face in problem driven work:
potentially overwhelming amounts of data and collaborators
who expect tangible prototypes early on in the design pro-
cess. View-design parallelism is a divide-and-conquer strat-
egy for effectively designing individual views of a multiview
visualization system. We present this strategy in the context
of our work with Shotviewer, where it enabled us to avoid
paralysis caused by staggering amounts of data and uncount-
ably many design possibilities. It allowed us to quickly de-
liver tangible prototypes which refined our understanding of
the problem and further engaged our collaborators.

The need for multiview visualizations arises when a sin-
gle view is not optimal for all necessary tasks [Mun15], such
as with ballistic simulation data. In the case of Shotviewer,
we knew early on that we would need multiple views to sup-
port the three different types of data. At first we were over-
whelmed while trying to understand all of the data and as-
sociated tasks at once. We noticed that by trying to stick to
the understand activity for all three data types, our efforts
turned counter productive as we, and our collaborators, be-
came mentally exhausted. To overcome this, we pushed on
to the ideate and make activities for one of the data types,
while still understanding the other two. This injected new
energy into the project, gave us tangible results to pass onto
our collaborators, and also helped us to better understand the
nuances of the data and tasks overall.

We continued to design the three views in a staggered and
parallel fashion, a strategy we call view-design parallelism.

The key idea of view-design parallelism is to begin with the
understand activity for one data type, and then when moving
onto the ideate activity, beginning the understand activity for
a second data type, and so on — this continues for each data
type and individual view. This strategy is shown in our time-
line in Figure 2. However, this strategy leaves open the ques-
tion of how to decide which data type and view to focus on
first, second, etc. To answer this, we advocate the use of the
following considerations to rank each data type:

1. Availability: do we have the necessary data and support?
2. Usefulness: will our collaborators use the visualization?
3. Impact: will the visualization impact our collaborators?
4. Time: how quickly can we deliver the visualization?

The first item is a constraint: it is impossible to design
views without data and support such as parsers [SMM12].
The other items are considerations that may vary between
projects. In essence, when we have the opportunity to begin
designing a view, we select one that is useful, that will have
a large impact, and that can be designed quickly.

While building Shotviewer we exploited view-design par-
allelism. We started with the Shotline View as we had access
to the shotline data while waiting on access to parsers for the
other data types. Next, we built the System View as we be-
lieved it would have a significant impact by enabling a new
way of looking at the dependency graph through top-down
analysis. We concluded by building the Geometry View as
it was the most labor intensive in terms of implementation.
Throughout our design process we were able to transfer in-
sights between the design of each view. For instance, in de-
signing the System View we used the encoding of vertical
height to show per-component damage values that we had
already designed and tested for the Shotline View.

After designing the individual views we began to think
about how to combine them into a multiview system. At this
point, we benefited from getting user feedback on the views
individually, as well as connected to each other. Through in-
formal experiments we observed that presenting just single
views to users elicited feedback on the individual encod-
ings, while presenting views linked together elicited feed-
back on the choice of interaction and linking. This observa-
tion helped us decide which views to show users in order to
focus feedback appropriately.

In summary, view-design parallelism is a strategy for de-
signing visualizations that overcomes the challenges of un-
derstanding overwhelming data, of quickly creating tangi-
ble prototypes, and of diminishing returns for time spent
on individual design activities. We believe it is particularly
useful when designing multiview visualizations. A useful
metaphor to describe the strategy is to compare visualiza-
tion design to a reduced instruction set CPU architecture that
exploits instruction-level parallelism [HP11]. The design of
each individual view is like a CPU instruction — just as CPU
pipelines overlap and stagger instruction execution to effi-
ciently use limited hardware resources (e.g., for instruction
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fetch, decode, arithmetic, and memory access), view-design
parallelism overcomes our limited mental resources (e.g.,
time and energy dedicated to a single activity). Instruction-
level parallelism increases CPU throughput, and similarly
we believe view-design parallelism increases productivity of
visualization design.

7.2. Recommendations

Data constraints have become increasingly common with
problem-driven research — in our case, these constraints
arose from working on sensitive data within a large organiza-
tion. While researchers are sometimes able to obtain surro-
gate data with similar characteristics to the real data, such as
Walker et al. [WSD∗13] who used online business reviews in
place of human-terrain reports, there are domains where no
such surrogate data exist, such as in vulnerability analysis.
In other cases metadata can be used to create visualizations
without direct data access [MEV14], but metadata does not
exist for our domain. Thus, we were forced to work with
simplified test data, and we identify the following recom-
mendations based on our experience. These recommenda-
tions are an extension of previously identified design study
pitfalls [SMM12] and recommendations for evaluating visu-
alizations in large organizations [SIBB10].

Sample the relevant data pipeline. By talking with the pro-
ducers and consumers of our analysts’ data, we built a more
accurate data abstraction. These conversations also allowed
us to validate our initial choice of explaining data behind cell
plots early in the design process.

Recognize test data is not real data. By talking with our
collaborators about how our test data differed from the real
data we were able to develop visualizations that were more
likely to work on the real data, for instance, by handling
high-frequency geometry in the Shotline View.

Budget time for transitioning to real data. During our on-
site visits we realized that the real data did not always match
the format of our test data. By budgeting time at the begin-
ning of our onsite visits specifically for debugging our ap-
plication with real data, we were able to ensure we could
demo a working system to our collaborators with their real
data, maximizing our productivity during the limited time
we could spend with them.

Automate everything. By automating the installation pro-
cess of Shotviewer we were able to more quickly get feed-
back from analysts on new designs. This was particularly
useful when we could not remotely access our analysts ma-
chines due to their data’s sensitive nature.

Although these four recommendations appear obvious in
hindsight, they are solutions to pitfalls that we encountered
throughout our project. We believe they are worthwhile con-
siderations for future design studies conducted within large
organizations and with sensitive data.

8. Conclusion and Future Work

In this paper we present the results of a fifteen month de-
sign study in the domain of vulnerability analysis. The con-
tributions of this work include a problem characterization,
data abstraction, and task analysis for this domain, as well as
Shotviewer, a prototype vulnerability visualization tool that
uses multiple linked views to display spatial and nonspatial
data. We validate Shotviewer with user feedback and two
case studies. Reflections on our design process also present
two methodological contributions: view-design parallelism,
a strategy for designing multiview visualizations; and four
recommendations for conducting design studies in large or-
ganizations with sensitive data.

This design study focuses on effective encodings for mul-
tiview visualizations of multityped data. Future work could
formally describe and evaluate user-interactions with mul-
tiview systems. We are also interested refining the process
of problem-driven research in the context of large organiza-
tions, in particular by identifying a methodology for balanc-
ing research with product development.

Our design ultimately addresses one small piece of the
vulnerability analysis pipeline: explaining the results of in-
dividual simulations. In the future, we hope to use visualiza-
tion to aggregate and summarize large numbers of ballistic
simulation results.
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