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ABSTRACT 
 

The World Health Organization estimates that 4.3 million deaths globally in 2012 were attributable to household air pollution, 
of which particulate matter (PM) with a diameter of 2.5 µm or less (PM2.5) is a significant contributor. When integrated with 
a wireless network, low-cost PM measurements potentially provide personalized information on indoor concentrations in 
real time so that individuals can take action. The objectives of this study were to (1) deploy a network of research-grade 
instruments and low-cost sensors in a home environment and evaluate the performance, (2) characterize activities and 
conditions that increase PM concentrations, and (3) identify how these activities affect the PM levels in different rooms of 
a home. The wireless sensor network included low-cost PM sensors, a gateway, and a database for storing data. Based on 
the commercially available Dylos DC1100 Pro (Utah Modified Dylos Sensor) and Plantower PMS sensor (AirU), the low-cost 
sensors were compared to three research-grade instruments—the GRIMM, DustTrak, and MiniVol—in two households in 
Salt Lake City during summer and winter, with the results suggesting that the low-cost sensors agreed well with the 
DustTrak. Of the activities, frying food and spraying aerosol products generated the largest increase in PM, both in the room 
of the activity (the kitchen and bedroom, respectively) and the adjacent rooms. High outdoor PM concentrations during a 
cold air pool episode also caused indoor levels to rise. In addition, different PM sources triggered different sensor responses. 
Consequently, obtaining accurate estimates of the mass concentration in an indoor environment, with its wide variety of PM 
sources, is challenging. However, low-cost PM sensors can be incorporated into an indoor air-quality measurement network 
to help individuals manage their personal exposure. 
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INTRODUCTION 

 
The World Health Organization (WHO) estimates that 

4.3 million people die annually from household air pollutant 
exposure (World Health Organization, 2014), and particulate 
matter (PM) is one key driver of air pollution’s adverse 
health effects. Particles with an aerodynamic diameter of 
2.5 µm or smaller (PM2.5) are a particular concern because 
these particles can penetrate deeply into the lungs and can cause 
serious health effects, including cardiac arrhythmia, coronary 
heart disease and premature death (Sorensen et al., 2003; 
Brook et al., 2010; Anderson et al., 2012). Consequently, 
the WHO and government organizations have set ambient  
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air quality standards for PM2.5. For example, the U.S. National 
Ambient Air Quality Standards (NAAQS) for PM2.5 are 
35 µg m–3 (24 hour) and 12 µg m–3 (annual average) (U.S. 
Environmental Protection Agency, 2014). The WHO PM2.5 
standards are 25 µg m–3 (24-hour mean) and 10 µg m–3 
(annual average) (World Health Organization, 2006). Indoor 
levels of PM are significant contributors to an individual’s 
exposure because people typically spend up to 90% of their 
time indoors (Spengler and Sexton, 1983; Zhang and Smith, 
2003; Zhu et al., 2015), and PM concentrations indoors can 
surpass outdoor levels (Klepeis et al., 2001). In addition, 
individuals with chronic health conditions often spend a 
greater portion of their time indoors and are more vulnerable 
to the adverse impacts of indoor PM exposure. Sources of 
indoor PM include aerosol sprays, cooking, burning candles 
or heating/cooking with solid fuel, inadequately tuned gas 
stoves and furnaces, pets, dust mites, cleaning and tobacco 
smoking. In addition, indoor air is also affected by 
infiltration of outdoor air (Goyal and Kumar, 2013). Indoor 
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PM concentrations can be affected by infiltration of outdoor 
air. Depending on the outdoor PM levels, this infiltration can 
result in increasing or decreasing indoor PM levels (Morawska 
et al., 2001; Kumar and Morawska, 2013). 

Numerous studies have measured PM concentration indoors 
by pulling air through a size-selective inlet and collecting 
PM on a substrate/filter that is subsequently weighed (Braniš 
et al., 2005; Fromme et al., 2007; Hering et al., 2007; Fromme 
et al., 2008; Braniš et al., 2009) or have used passive 
samplers that rely on particle settling onto a substrate that is 
subsequently weighed (Amaral et al., 2015; Bo et al., 2017). 
However, these methods suffer from limitations. First, the 
substrate/filter measurements are integrated over time (from 
several hours to several days) and do not capture temporal 
variations in particle concentration. Second, they are time-
consuming to collect and analyze, and results may not be 
available for several days after sampling is complete (Amaral 
et al., 2015; Kumar et al., 2016). Third, many of these 
samplers require a pump, and are bulky and noisy for indoor 
use. For passive samples that require long sampling times, 
there is a risk of loss of sampled material (Kumar et al., 
2016). Research-grade instruments based on optical detection 
methods have also been used to measure indoor PM levels 
(Amaral et al., 2015). They can provide accurate, time-
resolved, rapid PM measurements, but the cost for these 
ranges from $5,000 to $20,000, making them too expensive 
to deploy many instruments in multiple indoor environments 
or for use in population-based studies. 

Commercially available low-cost PM sensors are becoming 
more widely available, and with their rapid response they offer 
the potential for gathering large quantities of high-resolution 
spatio-temporal air-quality information in indoor and 
outdoor environments (Kumar et al., 2016). They typically 
use light scattering to estimate PM concentrations, and light 
scattering is a common measurement strategy for research-
grade PM monitors. The cheapest PM sensors cost less than 
$20. Examples include the Shinyei PPD42NS Dust Sensor 
(Shinyei Corp.), Sharp GP2Y1010 (Sharp Corp.), Plantower 
PMS series (Plantower Technology), and Honeywell HPM 
series particle sensor (Honeywell Inc.). These sensors require 
an interface with an external microprocessor and either a 
display or a way to transmit data to the user. Adding these 
features can significantly increase the price, above $100 
(e.g., Alphasense OPC from Alphasense). However, once 
integrated with a microcontroller, these types of sensors are 
well suited for deployment in a sensor network.  Slightly 
more expensive sensors, costing between $200 and $500, 
push their data to the cloud for viewing through a user 
interface (e.g., Air Quality Egg from Wicked Device, LLC) 
or an on-screen display (e.g., Dylos monitors from Dylos 
Corporation or Speck from CREATE Lab, Carnegie Mellon 
University) (Jovašević-Stojanović et al., 2015). These more 
expensive sensors may require modifications to allow 
integration with a sensor network. 

However, low-cost PM sensors have their drawbacks. They 
are not as accurate as gravimetric sampling methods (Dacunto 
et al., 2013) or reference PM instruments (Manikonda et al., 
2016). These sensors can also be affected by humidity (Wang 
et al., 2015), temperature (Gao et al., 2015) and the same set 

of sensors can perform inconsistently (Gao et al., 2015; 
Zikova et al., 2017). In addition, most sensors lack guidance 
on deployment and calibration data under different conditions. 
Furthermore, light-scattering PM measurements require 
regular calibration and an appropriate correction factor (CF) 
for the aerosol types (Dacunto et al., 2015) and environmental 
conditions under which the sensors are operating (Kelly et 
al., 2017; Sayahi et al., 2019). Low-cost PM sensors may be 
more sensitive to particle properties than research-grade 
monitors (Kelly et al., 2017). Also, laboratory performance 
observed by these sensors are often not reproducible under 
field conditions, where they exhibit lower correlations with 
reference instrumentation (Castell et al., 2017). In spite of 
these limitations, the sensors can provide valuable information 
on relative levels of PM, aid in estimating personal exposure 
and help identify strategies for reducing these exposure 
levels. For example, real-time monitoring can aid health 
researchers in determining which measures, e.g., maximum 
10-minute concentration, are most relevant to health outcomes. 
They are also valuable for development of intervention 
measures and for meaningful public health metrics, which 
are accessible to the general public. 

Several studies have evaluated the performance of low-
cost optical PM sensors in laboratory settings and found 
moderate to strong correlations with reference instruments, 
which include Dylos vs. TSI DustTrak (R2 > 0.81; Northcross 
et al., 2013), Dylos vs. GRIMM (R2 > 0.86; Vercellino et al., 
2018), and Shinyei PPD42NS vs. TSI Aerodynamic Particle 
Sizer Spectrometer (R2 > 0.66; Austin et al., 2015). Wang et 
al. (2015) used the TSI SidePak AM510 and a TSI Scanning 
Mobility Particle Sizer to evaluate sensor performance and 
found R2 > 0.78 for the Shinyei PPD42NS, Samyoung 
DSM501A, and Sharp GP2Y1010AU0F. Manikonda et al. 
(2016) evaluated the performance of four low-cost PM 
monitors (Speck, Dylos, TSI AirAssure, and UB AirSense) 
against co-located reference instruments (Grimm 1.109, TSI 
APS 3321 and TSI Fast Mobility Particle Sizer 3091) in a 
laboratory chamber and found R2 > 0.85 between the four 
monitors and APS 3321. 

Outdoor studies have also found moderate to strong 
correlations. For example, Holstius et al. (2014) compared 
Shinyei performance with a Federal Equivalent Method (FEM) 
beta-attenuation monitor (BAM) 1020, a Grimm 1.108 and 
a DustTrak (R2 > 0.6). Gao et al. (2015) studied a network 
of Shinyei PPD42NS sensors in an urban environment and 
found strong correlations (R2 > 0.87) between the DustTrak 
and Met One BAM but only a moderate correlation with 
mass-based measurements (R2 > 0.5).  

A few studies have deployed low-cost PM sensors in indoor 
environments, some to evaluate performance and others to 
understand events that affect indoor air quality. Zikova et al. 
(2017) evaluated sixty-six Speck monitors collocated with a 
Grimm 1.109. They found a poor correlation during indoor 
measurements (R2 = 0.2–0.3), but when the measurements 
were divided into combustion and non-combustion particles, 
the R2 rose to 0.5. Patel et al. (2017) deployed a network of 
five Sharp GP2Y1010AU0F sensors in two different homes 
to measure PM levels from solid-fuel cookstoves. They 
found reasonably good correlation (R2 = 0.713) between the 



ART 
 
 

Hegde et al., Aerosol and Air Quality Research, 20: 381–394, 2020 383 

Sharp sensors collocated with a TSI SidePak AM150. Weekly 
et al. (2013) designed a wireless PM sensor network consisting 
of five Samyoung DSM501A, three Shinyei PPD20V 
sensors and Met One GT-526S laser particle counter to infer 
resuspension of coarse (≥ 2.5 µm) particles caused by 
movement of occupants. Li et al. (2017) used a wireless 
network of low-cost sensors (Sharp GP2Y1010AU0F) in a 
woodworking shop to develop an estimate of worker PM 
exposure. Jeon et al. (2018) proposed an IoT-based occupancy 
detection system in indoor environments using a low-cost 
PM sensor, SEN0177. 

The objective of this study was to deploy a wireless PM 
sensor network in two home environments, evaluate sensor 
performance, characterize activities (i.e., cooking, spraying 
aerosol products, burning a candle and cleaning) that affect 
indoor air quality by household room, identify conditions 
that affect PM concentrations, and identify how these 
activities affect different rooms in a home. 
 
MATERIAL AND METHODS 
 
Study Locations and Measurements 

This study was performed in two homes in two different 
seasons, summer and winter (Fig. S1). The residents of these 
two homes volunteered to host the sensors, and they kept a 
logbook where they manually recorded activities that could 
generate PM (i.e., cooking, candle burning, etc.). All sensors 
were placed on a table approximately 0.75–0.80 m above 
ground and at least 0.3 m away from the wall. The first study 
was conducted between 19th May to 19th July 2016 in a two-
story home with a finished basement in Cottonwood Heights, 
Utah (Home I). A finished basement has been outfitted in a 
manner making it suitable as a living space. In this study, the 
occupants were using the finished basement as a living area. 
The following analyses focus on one calibration week (20th–
25th May) (Table S1) and one week of deployment when events 
are annotated, from 1st to 7th June. This home built in 2002 
was located in a suburban, residential area, near the I-215 
interstate (364 m away) in Utah’s Wasatch Front (with a 
population of 2.21 million; U.S. Department of Commerce, 
2010). The home was 3300 sq. ft. with 1650 sq. ft. in the 
basement and 1650 sq. ft. on the first floor. This home was 
located 16 km from the nearest state air-quality monitoring 
station (Hawthorne). Although some sensors were placed in 
the basement, there were no annotated events, and the basement 
was not used for this study. The study in Home II (built in 
1942) occurred from 16th January to 16th February 2017 in a 
two-story house in an urban, residential neighborhood of Salt 
Lake City, Utah, with a calibration study from 15th–21st 
October 2016 (Table S1). The home was 1500 sq. ft. with a 
finished basement. The calibration in Home II was conducted 
in the basement, and the basement was not used for the later 
part of the study. This home was located 8 km from the 
nearest state air-quality monitoring station (Rose Park). 

At each of the homes, a 1-week calibration experiment 
was performed to assess sensor precision and accuracy by 
collocating the low-cost sensors with four research-grade 
PM instruments (two GRIMM 1.109s from GRIMM Aerosol 
Technik, GmbH; one DustTrak II aerosol monitor from TSI 

Inc.; and one filter-based measurement, Airmetrics MiniVol) 
(Table 1). In Home I, ten Utah Modified Dylos DC1100 Pro 
sensors (UMDSs) were placed alongside four custom AirU 
sensors for comparison, and in Home II, four UMDSs were 
deployed. The state of the doors in each home can affect PM 
levels and the time required for PM levels to change. During 
the calibration period, doors were closed, but during the 
remainder of the study the occupants behaved normally, 
with no control on the state of the door. After the calibration 
week, sensors were distributed throughout the home and 
placed outside the home (locations shown in Fig. S1). The 
modifications to the Dylos and the AirU sensors are described 
below. 

The GRIMM 1.109 continuously measures particle count 
and mass distribution by light scattering over the size range 
of 0.25–32 µm in 31 class sizes. The signal from the scattered 
light is then classified by size and count, and these counts 
are converted to mass concentrations (Peters et al., 2006). 
During this study, only the GRIMM’s PM2.5 concentrations 
were used. The DustTrak II Aerosol Monitor 8530 (TSI) is 
a light-scattering laser photometer, which measures mass 
concentration (PM1, PM2.5 or PM10) with a size-selective inlet 
(Alvarado et al., 2015). During this study, the DustTrak II 
operated with the PM2.5 inlet. The Airmetrics MiniVol is a 
portable air sampler that was equipped with a size-selective 
PM2.5 inlet and a 47mm Whatman filter (pore size 0.2 µm). 
These filters were replaced every week during indoor testing, 
and the difference in weight along with the flow rate provided 
an integrated mass concentration and allowed for mass 
adjustment of the GRIMM and DustTrak concentrations. 

 
Sensor and Network Description 

The AirU, developed at the University of Utah, consists 
of a small custom printed circuit board with a Plantower 
PMS3003 particle sensor, Bosch BMP180 (temperature, 
pressure and altitude), an SGX SensorTech MiCS-4514 (CO 
and NO2), an Aosong Electronics DHT22 (temperature and 
humidity) and an Adafruit Ultimate GPS chip all interfaced 
with a custom printed circuit board and a Beaglebone Black 
(BBB). The component costs of the AirU are approximately 
$175. The Plantower PMS sensor reports PM1, PM2.5 and 
PM10 concentrations (µg m–3) every 60 seconds. This study 
focused on the AirU’s PM2.5 measurements. The AirU can 
store up to 500 MB of data to an onboard microSD card or 
it can send readings directly through our gateway to a database 
(discussed below). This Plantower PMS sensor is described 
in detail in Kelly et al. (2017), and its PM2.5 concentration 
correlated well with Federal Reference Method (FRM) PM2.5 
concentrations during several winter clean air and cold air 
pools (CAPs; R2 > 0.88) and with research-grade instruments 
exposed to alumina oxide particles in a wind tunnel (R2 > 
0.83). The Plantower PMS sensors were also evaluated by the 
South Coast Air Quality Management District (SCAQMD) 
and correlated well with an FEM (R2 > 0.93). 

Each UMDS includes a Dylos DC1100 Pro Air Quality 
Monitor (Dylos Inc., Riverside, California, USA). The 
UMDS detects PM concentrations in two size ranges: small 
(2.5 µm and less) and large (10 µm and greater) particles. 
This study estimated PM2.5 counts as the UMDS small count  
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minus the large count. The Dylos sensor was modified to 
allow networking capabilities. This modification included 
adding a BBB microprocessor unit with a Wi-Fi module, a 
compact USB Wi-Fi Adapter with 4ʺ Antenna (UWN200), 
an SHT21 relative humidity and temperature sensor and an 
RGB LCD display. The BBB collects all sensor data, displays 
information (temperature, humidity, small and large particle 
count) to the RGB LCD display, and transmits data to the 
cloud server via our gateway. Data from the sensors are also 
stored on a microSD card so that no data is lost if power is 
lost to the sensor. 

Our in-home sensor network architecture consists of three 
components—the sensors, a gateway, and database. The 
data from all low-cost sensors were collected using a 
gateway, which can support various wireless protocols like 
BLE (Bluetooth Low Energy), Wi-Fi, and ZWave. The 
gateway runs on a Raspberry Pi 3 and is connected through 
Ethernet to a home’s wireless router. A custom component 
was written that automatically discovers and pulls data from 
the UMDS and AirU sensors. CoAP (Constraint Application 
Protocol) was used as the communication protocol between 
the sensors and gateway. CoAP is a UDP (User Datagram 
Protocol)-based protocol with similar semantics to HTTP. In 
our architecture, the AirU and UMDS sensors act as CoAP 
servers, and the gateway acts as a CoAP client. Periodically, 
the gateway will send a discovery message (a GET request 
to CoAP’s specified multicast address) looking for new 
sensors. When a sensor receives this message, it responds 
back with information about itself, such as its type (AirU or 
UMDS) and ID. Once a sensor has been discovered, the 
gateway periodically pulls data from it. After the gateway 
receives data from a sensor, it tags the data with a unique ID 
for that gateway, and it uploads data to a central database. 
The gateway is the central hub of communication for our 
architecture. The gateway and sensors are co-located in the 
home, and the database (InfluxDB) is in the cloud. 
 
Data Analysis 

The data analysis focused on the following four components: 
calibration measurements, the distributed deployment, detection 
limits, and air exchange rates (AERs). The calibration 
measurements included evaluations of the time-series PM2.5 
concentrations/counts and linear-regression modeling for 
each AirU and UMDS versus the mass-adjusted DustTrak 
PM2.5 concentrations (described below) for different types 
of aerosols. This enabled each sensor to be bias corrected. In 
addition, the GRIMM PM2.5 concentrations were included in 
the time-series evaluations, and the average of all AirUs and 
the average of all UMDSs were fit with a linear model versus 
the mass-adjusted GRIMM PM2.5 mass concentrations. During 
the calibration period in Home I, one of the GRIMMs lost 
data for 1 day, and the other GRIMM registered an unknown 
peak not identified by the other two research-grade instruments 
or any of the fourteen low-cost sensors. Consequently, the 
majority of this evaluation focused on the low-cost sensors 
and the DustTrak PM2.5 measurements.  

The raw mass concentrations from the GRIMM and 
DustTrak were multiplied by a mass-adjustment factor 
(MAF) to provide the mass-adjusted DustTrak or GRIMM 
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measurements: 
 

2.5,

2.5,_PM

_ PM
av

vg

g

a

MV
MAF

LS
  (1) 

 
where MAF = mass adjustment factor (unitless), MV_PM2.5,avg 
= MiniVol mass concentration during the calibration period 
(µg m−3), and LS_PM2.5,avg = light-scattering instrument’s 
(DustTrak or GRIMM) average concentration during the 
calibration period (µg m−3). 

The MiniVol flow rate was confirmed using a Bios 
Defender 520 AirFlow Calibrator. The filters from the 
MiniVol were conditioned for 24 hours at 20°C and 20–30% 
relative humidity before and after sampling, and all samples 
were weighed in triplicate using a Mettler AE160 balance. 

During the distributed study, each individual AirU and 
Dylos PM2.5 concentration/count was bias corrected, as 
described in the previous paragraph, and then an aerosol-
specific CF was applied to obtain the best estimate of actual 
PM2.5 mass concentration. Only the DustTrak was used to 
develop the CFs, and CFs were generated for PM from 
candle burning, cooking, CAPs (outdoors with the UMDS) 
and general/unidentified PM events (Table S4). The CFs for 
candle burning and cooking were developed by collocating 
the DustTrak and MiniVol next to the PM generation source. 
The filter collection and weighing procedure are described 
in the previous paragraph. The candle burning was performed 
in a 0.3 m high, 0.3 m diameter cylindrical chamber and 
included burning/extinguishing six unscented tealight candles 
during a 4-hour period. For cooking, the DustTrak and 
MiniVol were collocated next to an outdoor gas grill, where 
vegetables and meat were grilled for 2 hours. The CF for the 
AirU and UMDS for candle burning and cooking were obtained 
by multiplying the AirU or UMDS by its corresponding 
MAF (bias correction) and then by the DustTrak/MiniVol 
(aerosol-specific CF). It was not possible to obtain filter 
measurements and CFs for Febreze™ and hairspray due to 
the volatile nature of Febreze™ and stickiness of the hairspray. 
Consequently, the CF for each individual AirU or UMDS 
obtained from the entire calibration week was used for the 
Febreze™, hairspray and other unidentified activities. In 
addition, two of the UMDSs were collocated with the Utah 
Division of Air Quality’s Thermo Scientific 1405-F Tapered 
Element Oscillating Microbalance (TEOM) during an 8-day 
period at the Hawthorne monitoring site to develop a factor 
for converting the UMDS small minus large particle count 
to PM2.5 mass concentration during CAPs (factor in Table S4). 
During this outdoor CAP calibration period, the PM2.5 levels 
ranged from 0 to 59.5 µg m–3 with a mean of 26.8 µg m–3.  

Limited data is available regarding the limit of detection 
(LOD) for the PMS and Dylos sensors. Sayahi et al. (2019) 
reported that the PMS sensors had a LOD ranging from 2.62 
to 11.5 µg m–3 (field evaluation), and Northcross et al. (2013) 
reported that the Dylos had a LOD of 1 µg m–3 (laboratory 
evaluation). An estimated LOD of 5 µg m–3 for the PMS 
sensor was selected from the reported range. The fraction of 
AirU measurements below 5 µg m–3 and UMDS measurements 
below 1 µg m–3 were considered in the discussion of the 

measurements. The effect of measurements below the 
estimated LODs on the fit coefficients from the linear 
regression were also considered. However, none of the data 
(whether below the reported LODs or not) were excluded 
from the evaluation.  

The AERs were estimated for the different rooms in each 
home (Table S6) based on four PM spikes, using the method 
described by Burgess et al. (2004) and the time required for 
the PM2.5 concentration to decline by 90% from its peak 
value after the PM generation ceased: 
 

max

min

1
ln

C
AER

C t

 
   

 
  (2) 

 
where Cmax and Cmin = maximum and minimum PM2.5 
concentration (µg m–3) and Cmax/Cmin = 10, t = time (h) required 
to reduce the concentration from Cmax to Cmin, and AER = 
number of air changes per hour (h–1) and is a function of 
ventilation rate that has been normalized by the room volume. 

The estimated AERs assume that the air is well mixed and 
that the concentration of PM2.5 in the incoming air is small 
compared to Cmax and Cmin. It is important to note that the 
AER measurements during this study are representative of 
the AER at the time of the annotated activity and that at other 
times of the day, AER can vary significantly from the ones 
calculated. 
 
RESULTS AND DISCUSSION 
 
Calibration of Sensors 

Fig. 1 shows how PM concentrations from the low-cost 
and research-grade sensors respond to a variety of household 
events during calibration week in Home I (Table S1) 
although some activities that increased PM levels were not 
annotated. PM2.5 concentrations increased rapidly when 
cooking and heating oil in the kitchen, which is close to the 
bedroom (Fig. S1), when spraying Febreze™ and using the 
humidifier in the bedroom (Table S1). Cooking activity in 
the kitchen (Table S1) caused smaller spikes in PM levels in 
the bedroom compared to candle burning activities, which 
occurred in the bedroom. 

Fig. 2 compares the responses of the average of four 
AirUs and ten UMDSs with the DustTrak to a variety of 
household activities during the 6-day calibration period in 
Home I (Table S1). The different activities from the 
calibration period resulted in a scatter plot with distinct 
strips, and these strips corresponded to PM2.5 from different 
sources. Light-scattering-based measurements depend on 
aerosol optical properties (size, density and refractive index) 
(Jiang, 2010; TSI Inc., 2012), and for accurate mass 
concentration estimates from different aerosols, appropriate 
CFs are required (Jiang et al., 2011). Several researchers 
have found different CFs for different sources. For example, 
Jiang et al. (2011) found CFs for secondhand smoke (SHS), 
incense and toast that differed by more than a factor of 2 
(TSI SidePak). Dacunto et al. (2013) estimated CFs for 
common indoor PM sources including cigarettes, candles, 
cooking and incense using a TSI SidePak. These also varied 
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Fig. 1. Comparison of co-located 5-minute rolling average of PM2.5 concentrations (µg m−3) measured by a Grimm, DustTrak, 
average of 4 AirUs and average of 10 UMDSs (PM2.5 count, small minus large bins, per 0.01 ft3) for the calibration period 
of 20th–25th May 2016 (Home I). The concentrations measured by all sensors were uncorrected raw data. 

 

 
Fig. 2. Scatter plots and coefficients of determination (R2) of the linear model (low-cost sensor and DustTrak) for 5-minute 
rolling average of PM2.5 concentrations (µg m−3) for several types of aerosols measured with a DustTrak (uncorrected), 
average of 4 AirUs (uncorrected) and average of 10 UMDSs, uncorrected (PM2.5 count, small minus large bins, per 0.01 ft3) 
during 20th–25th May 2016 (Home I). 

 

by a factor of 2 depending on the source. The CFs in this 
study for cooking and candle burning differ by more than a 
factor of 2.5 (Table S4(c)). The slopes of the linear regression 
for different activities (aerosols) can be found in Table S2. 
Fig. S2 compares the response of the AirU and the UMDS 
with the GRIMM. Note that one GRIMM detected a PM event 
(not annotated) not detected by the two reference instruments 
or any of the fourteen low-cost sensors. Consequently, the 
comparisons with the GRIMM are presented only in the 
supplementary material. 

Aerosol optical properties depend on their composition and 
size, and common indoor aerosols exhibit a variety of optical 
properties. For example, the main ingredient in Febreze™ is 

a water-alcohol mixture, with a refractive index (RI) of 1.33 
(water)–1.36 (ethanol) (Andher et al., 2015). Hair-care 
products, like hairspray, contain mixtures of polymers in a 
glycol-water solvent, and glycol-water mixtures (10–80% 
ethylene glycol) have a RI in the range of 1.39–1.42 (Sun et 
al., 2005). Cooking emissions from oils contain particles 
with RI of 1.46–1.47 (Lide, 2005). Candle burning results in 
fine carbon particles with a diverse range of RI (1.75–1.95) 
and adsorbed hydrocarbons (Poudel et al., 2017). 

The four AirUs correlated well with each other (R2 = 
0.907–0.985), as did the ten UMDSs (R2 = 0.952–0.997) 
(Figs. S3 and S4). However, for these intra-sensor comparisons, 
the slopes of the linear regressions were not always equal to 
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1. For example, comparing the AirU sensors showed that 
slopes of the linear regressions for two of the sensors agreed 
within 5%, for three sensors agreed within 10% and for all 
of the sensors agreed within 25%. All of the slopes of the 
linear regressions for the UMDS sensors in Home I agreed 
within 40%, while the slopes for five of the sensors agreed 
within 10%. Intra-sensor variability has been previously 
reported for both the PMS and the Dylos sensors (Collingwood 
et al., 2019; Sayahi et al., 2019). 

The correlations between the UMDS and the DustTrak are 
in the range reported in laboratory (R2 = 0.81; Northcross et 
al., 2013) and in ambient studies (R2 = 0.78; Holstius et al., 
2014). In addition, Semple et al. (2013) (Dylos vs. TSI 
SidePak AM510: R2 = 0.86) and Klepeis et al. (2013) (Dylos 
vs. DustTrak: R2 > 0.98) determined the relationship between 
PM2.5 mass concentration and Dylos response for SHS from 
tobacco. Although these studies did not investigate how the 
Dylos responded to other common indoor PM sources, they 
found that the Dylos sensors responded adequately to changes 
in PM levels caused by SHS. In a laboratory evaluation of 
the Dylos, the SCAQMD observed that the Dylos showed 
good correlation (R2 > 0.89) with reference monitors, but it 
overestimated the PM2.5 concentrations as measured by the 
GRIMM (SCAQMD, 2017). Han et al. (2016) made a similar 
observation. Kelly et al. (2017) evaluated the Plantower PMS 
sensor (used in the AirU) during a winter period with several 
CAPs and found an R2 > 0.88 with Federal Reference Methods, 
but the PMS sensors overestimated PM2.5 concentrations 
when PM2.5 levels exceed 10 µg m–3 (Kelly et al., 2017). As 
Fig. 1 illustrates, both the AirU and the UMDS track indoor 
activities that caused significant changes in PM levels. The 
calibration results for Home II can be found in the 

supplemental data (Figs. S5–S8 and Table S3). The correlations 
between the UMDS and the GRIMM (Fig. S2) are in the 
same range as those reported in different settings: ambient  
(Williams et al., 2014: R2 = 0.533; Han et al., 2016: R2 = 
0.778; Holstius et al., 2014: R2 = 0.99) and indoor (Taylor 
et al., 2016: R2 = 0.74). 
 
Effect of Household Activities on Indoor PM2.5 Levels 

During the distributed deployment, the sensors in different 
rooms (Fig. S1) responded to typical activities that occurred 
in the room where the sensor was located as well as activities 
that occurred in adjoining rooms. The home occupants 
periodically noted activities by manually recording the 
events. Tables 2 and 3 summarize the average and maximum 
concentration (obtained by applying the average CF from 
calibration week) during this part of the study for Home I 
and II, respectively. On average, the PM2.5 levels in Home I 
(summer) were well below the EPA and WHO 24-hour and 
annual standards. Home II PM2.5 levels were much closer to 
the EPA and WHO annual standards. The differences between 
homes may be due to seasonal differences in outdoor PM 
levels or differences in the homes and the associated HVAC 
systems. Specifically, Home I was built in 2002 and Home II 
in 1942. Apart from the high PM levels caused by fireworks 
(4th of July), the winter CAP events caused higher average 
outdoor levels than those observed in summer. 

The average PM2.5 concentrations in Home I (Table 2) are 
below the AirU’s LOD of 5 µg m–3 (field evaluation; Sayahi 
et al., 2019) and are close to the UMDS’s LOD of 1 µg m–3 
(laboratory evaluation; Northcross et al., 2013). During the 
calibration week, less than 15% of the AirU measurements 
were below the LOD of 5 µg m–3, whereas, less than 6% of 

 

Table 2. PM2.5 concentrations during the summer sampling period (1st–10th June 2016) in Home I.a 

Room Sensors Average (µg m−3)  Maximum (µg m−3) S.D.b (µg m−3) % of data below LOD 
Outside AirU 3 5.70 33.0 2.31 11.6 

UMDS 110 3.10 54.4 12.8 13.8 
Living Room AirU 8 1.82 18.0 1.98 57.6 

UMDS 115 4.15 90.8 6.89 0 
Kitchen AirU 2 2.57 89.0 4.54 53.1 

UMDS 124 3.45 113 7.12 0 
Bedroom AirU 6 5.62 642.0 27.84 58.9 

UMDS 13 6.71 233.0 17.89 10.3 
a PM2.5 concentrations corrected using an individual bias correction for each sensor based on the calibration week. 
b S.D.: Standard deviation. 

 

Table 3. PM2.5 concentrations during the winter sampling period (31st January–9th February 2017) in Home II.a 

Room Sensors Average (µg m−3) Maximum (µg m−3) S.D.c (µg m−3) % of data below LOD 
Outside UMDS 124 12.0 44.5 14.3 0 
Living Room b UMDS 116 22.0 345 32.8 0 
Front Door UMDS 121 20.4 258 26.0 0 
Bathroom UMDS 114 17.8 471 24.8 0 
Bedroom UMDS 117 20.0 227 21.2 0 

a PM2.5 concentrations corrected using an individual bias correction for each sensor based on the calibration week. 
b The living room in Home II represents a combined kitchen/living area. The cooking events occurred in the kitchen which 
is very close to the living area. 
c S.D.: Standard deviation. 
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the UMDS measurements were below the LOD of 1 µg m–3 
in Home I. In Home II, less than 1% of the UMDS 
measurements were below the LOD. Removing measurements 
below the estimated LOD resulted in a 6% maximum change 
in slope of the AirU vs. DustTrak. Tables 2 and 3 show the 
percent of measurements below the reported LODs in each 
room in Home I and II, respectively. Although the AirUs and 
the UMDSs have similar laser wavelengths, differences in 
their internal configurations and flow patterns may also lead 
to differences in sensitivities related to particle size. Particles 
entering the PMS sensor (AirU) must make three 90° turns 
before reaching the laser, and larger particles do not reach 
the photodetector as efficiently as smaller particles (Kelly et 
al., 2017). In the UMDS, particles make one long, sweeping 
turn before they can reach the laser/photodetector. Kelly et 
al. (2017) also found that the PMS sensors tend to overestimate 
PM mass concentration for small particles and underestimate it 
for large particles. Consequently, the average and maximum 
concentrations exhibit somewhat unexpected trends. For 
example, in Home I (Table 2), the UMDS maximum 
concentration outside is 40% more than AirU, while in the 
living room, the UMDS maximum concentration is 80% 
more than the AirU concentration.  

The room-to-room comparison showed good correlations 
in Home II, with R2 > 0.72 between all the UMDSs, while 
the sensors in Home I showed poor to no correlation 
between UMDSs (R2 > 0.02). The AirU sensors in Home I 
also showed low room-to-room correlations (R2 > 0.01) 
except between the sensors in living room and bedroom (R2 
= 0.92) (Table S5). The size of the home and the proximity 
of the sensors to cooking and heating/burning sources 
appear to be important factors in how well the sensors in 
different rooms correlate with each other.  

Identification of PM sources (or source categories) would 
be needed to select an appropriate CF to convert each low-
cost PM measurement to an improved estimate of PM mass 
concentration. Research is underway to address these 
challenges by annotation and automatic source categorization. 

Tolmie et al. (2016) highlight the importance of annotation 
in networked sensing systems in order to contextualize the 
data and reduce incorrect data interpretation. Fang et al. 
(2016) developed an indoor air-quality sensing system that 
is able to automatically detect and identify up to three sources 
of indoor pollution events. Moore et al. (2018) developed a 
system that allows in situ annotation and real-time interactive 
visualization from air-quality data collected by a network of 
Dylos monitors. Furthermore, even if the source category is 
known, CFs can vary within that category. For example the 
CF for cooking would depend on variables such as type of 
food, method of cooking and temperature (Dacunto et al., 
2013). However, focusing on relative differences may be 
valuable for individuals trying to minimize their PM exposure.  

The highest indoor PM levels occurred in the kitchen and 
bedroom, where the bulk of the annotated events occurred 
(Fig. S1). In addition, Home II was smaller, making the 
rooms with sensors closer to the rooms with the highest PM 
concentrations. In general, cooking that involved frying 
caused some of the highest levels in the kitchen and also 
affected nearby rooms. Use of candles and aerosol products, 
like Febreze™, were the main causes of the high levels of 
PM in the bedrooms. The effect of these events on the PM2.5 
levels in the rooms and their effects in adjacent rooms are 
illustrated in Fig. 3, Fig. 4 and the supplemental data 
(Fig. S9). It should also be noted that room AERs can also 
influence maximum PM2.5 concentrations and decay times 
for an emission source (Ni et al., 2018; Singer and Delp, 
2018). The time required for an aerosol to be removed from 
a room depends on the AER, type of emission source (i.e., 
cooking, cleaning, candle burning etc.) and characteristics 
of the aerosol particles (i.e., density, size, shape). The AER 
ranges observed in both homes (Home I: 0.27–1.96; Home 
II: 0.51–2.66) (Table S6) are in the ranges reported by 
Rosofsky et al. (2019) (0.36–0.74) and Yamamoto et al. 
(2010) (0.37–1.13) for U.S. residences. 

Bekö et al. (2013) report candle burning as a significant 
contributor to high indoor particulate levels. Our study supports 

 

 
Fig. 3. Change in PM2.5 levels in other rooms when blowing out a candle (Home II). PM2.5 measurements from the UMDS 
(bedroom, living room, front door) were individually bias corrected with a CF for candle smoke (Table S4). 
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Fig. 4. Increase in PM2.5 levels in the room of activity and adjacent rooms when spraying Febreze™ (Home II). PM2.5 
measurements from the UMDS (bedroom, living room, front door) were individually bias corrected with a CF for the 
calibration week (Table S4). 

 

this (Fig. 3). Initially, lighting the candle in the bedroom 
generated a spike, but the largest spike (5-fold increase in 
PM levels) came from extinguishing the candle, as reported 
by Afshari et al. (2005) and Hussein et al. (2006). Dacunto 
et al. (2013) also found that the vast majority of PM2.5 
measured by a Dylos was emitted while candles were being 
extinguished. In this study, the increased PM2.5 levels from 
candle extinguishing lasted between 3 and 5 hours. Blowing 
out a candle also affected PM levels in adjacent rooms, 
causing a spike 3 to 4 times the background PM level in that 
room. 

The use of aerosol products like Febreze™ air freshener 
(Fig. 4) and hairspray (Fig. S9) caused a sharp transient 
spike in PM levels with a long decay time, which was also 
observed during the calibration week. For example, spraying 
Febreze™ (bedroom) showed an initial sharp spike, with 
PM2.5 levels above 75 µg m–3 for up to 20 minutes, and PM 
levels required up to 6 hours to decay to background levels. 
PM2.5 levels for hairspray showed a similar trend with PM2.5 
levels increasing above 200 µg m–3 and decay time of up to 
2 hours. Hairspray used in the bathroom did not appear to affect 
PM2.5 levels in other rooms, perhaps because the door was 
closed. Isaxon et al. (2015) also observed hairspray to cause 
an increase in PM1 levels, with levels close to 100 µg m–3. 

In the kitchen, cooking (frying) activities increased PM2.5 
levels up to 150 µg m–3 (Fig. 5). Both homes had 4-burner 
electric stoves. Home I had an over-the-range microwave 
fan filtered the cooking emissions, while Home II did not 
have any hood or venting system. Dacunto et al. (2013) and 
Jiang et al. (2011) found that cooking generally did not 
generate very high PM levels unless it involved frying or 
burning of food. Dacunto et al. (2013) reported that frying, 
particularly frying meat in oil tended to produce greater PM 
emissions than burning candles or incense. Loo et al. (2014) 
developed a wireless network that included a PMS Lasair II-
110 and a TSI AeroTrak optical particle counter that measured 
a 10-fold increase in PM levels from cooking. A particularly 
interesting event occurred in Home II when cooking steak, 

which showed that the indoor levels rose above outdoor PM 
levels, even during a winter CAP when PM2.5 levels were 
high. The sensor host did not annotate other cooking activities 
during the calibration or the distributed deployment. 

PM levels during other common household activities like 
cleaning depended on the type of activity, the duration of the 
activity and its intensity. For example, making a bed 
generated a smaller spike, of a 2-fold increase, and vacuuming 
generated larger spikes, between 2- and 3-fold increases, 
where particles lingered for about 60 minutes (Fig. S10). 
Indoor PM levels in Home II on a winter day displayed a 
sawtooth pattern, which appeared to be caused by the furnace 
turning on and off (Fig. S11). The furnace caused PM level 
to vary from 20–42% over background levels. These regular 
increases may be caused by resuspension of particles in the 
heating ducts. 
 
Outdoor PM2.5 and its Effect on Indoor Levels 

Ambient sources of PM are an important contributor to 
indoor PM levels (Qing et al., 2005; Wheeler et al., 2011; 
Goyal and Kumar, 2013). In this study, we identified one case 
where elevated PM levels outdoor had a significant effect on 
indoor air and one where it did not. In Home II, the PM levels 
outside were consistently high (between 30 to 40 µg m–3; 
corrected UMDS) and opening a window (31st Jan) for a 
mere 5 minutes raised PM levels inside the house in all three 
rooms for up to 50 minutes. Jin et al. (2015) also found that 
opening a window for an hour caused PM2.5 levels indoors 
to increase (by 9% when outdoor levels were 100 µg m–3 and 
by 20% when outdoor levels were 300 µg m–3). Rodes et al. 
(2001) found that indoor PM2.5 concentrations, on average, 
were only 45% of outdoor concentrations, but reached 80% 
when homes were ventilated through open windows (April–
May). In addition, the baseline PM2.5 concentrations slowly 
increased over the course of the CAP (Fig. 6). During a 
week-long CAP period when outdoor PM2.5 levels were 
close to 35 µg m–3, PM levels indoors began to increase 
from a background level of 5 µg m–3 (25th Jan) to 10 µg m–3  
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Fig. 5. High PM2.5 levels in Home II caused by cooking steak in the kitchen/living room (31st January 2017). PM2.5 
measurements from the UMDS (bedroom, living room, front door) were individually bias corrected with a CF for cooking 
(Table S4). PM2.5 measurements from the Outside UMDS was corrected with the CF for the CAP (Table S4). 

 

(29th Jan) (Fig. 6). In two studies made in different climate 
zones by Kulmala and Vesala (1991) and Morawska et al. 
(2001), indoor concentrations followed the outdoor 
concentration changes in a smoothed and delayed pattern. 

In contrast to the CAP event, on the 4th of July holiday, 
the AirU sensor showed high outdoor PM levels beginning 
around 9 PM associated with the fireworks display 
(Fig. S12). These high outdoor levels caused by fireworks 
were consistent with previous studies that found large 
increases in PM levels associated with fireworks (Lin, 2016: 
9-fold during fireworks in Western countries; Seidel and 
Birnbaum, 2015: 42% increase in the U.S.). However, the 
elevated levels of PM2.5 were not seen inside the home, 
which had windows closed.  
 
Effect of Humidity on Light-scattering Measurements 

During this study, outdoor humidity levels outside Home 
I appear to follow a similar pattern to outdoor PM2.5 levels 
(Fig. S13). This diurnal humidity pattern is typical of RH 
during summer in Salt Lake City. Both the AirU and the UMDS 
use light scattering to estimate PM2.5 concentrations/particle 
count. A variety of factors affect particle light scattering, 
including particle size, shape, composition and relative 
humidity (RH) (Johnson et al., 2016). Since many aerosols 
are hygroscopic, changes in humidity can affect particle size 
and consequently particle mass estimated by light scattering. 
Both the UMDS and AirU contained sensors for measuring 
humidity. The UMDS had an SHT21 Sensirion humidity 
sensor, while the AirU had an Aosong Electronics DHT22 
humidity sensor. Although the RH levels from the two 
different RH sensors are offset, the trends are consistent with 
each other and with high-quality RH measurements in the 
vicinity (MesoWest, 2018; Weather Underground, 2018). 
During the time period illustrated in Fig. S13, RH varied 
from less than 10 to 75%, and both the lower RH and the 
upper RH levels can affect light-scattering PM measurements. 
Chakrabarti et al. (2004) and Soneja et al. (2014) found that 

at RH of less than 20 or 30%, respectively. Several studies 
have reported that light-scattering instruments substantially 
and nonlinearly overestimated mass concentrations at RH 
levels higher than 70% (Sioutas et al., 2000; Chakrabarti et 
al., 2004; Wu et al., 2005). Other researchers found that when 
RH increased above 50% (Day and Malm, 2001) to 75% 
(Chakrabarti et al., 2004; Soneja et al., 2014) a humidity 
correction was needed for nephelometers. Our results 
suggest that the effect of RH on these low-cost PM sensor 
measurements requires further evaluation. 
 
CONCLUSIONS 
 

This study demonstrated that two low-cost PM sensors, 
the AirU and the UMDS, accurately tracked indoor and 
outdoor variations in PM concentrations (compared to 
research-grade instruments) and also exhibited good intra-
sensor agreement, indicating that they provide reliable relative 
measurements of the concentration, e.g., if the measured 
concentration doubles, it reflects an actual doubling of the 
real concentration. Sharp increases in the PM2.5 levels were 
produced by several indoor activities, including frying food, 
burning candles, and spraying aerosol products, in the rooms 
where they occurred as well as in adjacent rooms. In both 
homes, the highest PM2.5 concentrations were measured in 
the kitchen and the bedroom. Elevated outdoor PM2.5 levels 
during a CAP event also caused indoor levels to rise over 
both the short and the long term. Finally, the sensors 
responded differently to different PM sources due to the 
latter’s varying optical properties. Consequently, obtaining 
accurate estimates of the mass concentration in an indoor 
environment is challenging because it requires a specific CF 
for each sensor and source type, which in turn requires a 
strategy to identify each source. However, low-cost PM 
sensors can be incorporated into an indoor air-quality 
measurement network to help individuals manage their 
personal exposure. 
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Fig. 6. PM2.5 levels during a winter CAP from 24th January to 3rd February 2017 (Home II). PM2.5 measurements from the 
UMDS (bedroom, living room, front door) were individually bias corrected with a CF for the calibration week. PM2.5 
measurements from the outside UMDS was corrected with the CF for the CAP (Table S4). 
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