Supplemental Figures and Tables

	Calibration Period, Location	Sensors	Activities	Gravimetric Concentration ^a (MiniVol)
Home I (built in 2002; 5 occupants)	20 th - 25 th May, 2016, Bedroom #1	Grimm DustTrak AirU (4) UMDS (10)	Cooking (kitchen), burning candle, using a humidifier and air purifier, Febreze TM , hairspray	17.2 μg/m ³
Home II (built in 1942; 2 occupants)	15 th - 21 st October, 2016. Bedroom #1	Grimm (2), DustTrak UMDS (4)	Laundry, burning candle, cooking, vacuuming	19.7 μg/m ³

Table S1. Summary of annotated events during the calibration period in both homes.

^a Average concentration for the calibration period.

Table S2. Slopes of the linear regression model for indoor sources during calibration in home I^a.

	AirU (μg/m ³)	UMDS (count per	AirU (µg/m ³)	UMDS (count per
	vs. DustTrak	0.01 ft ³) vs.	vs. GRIMM	0.01 ft ³) vs. GRIMM
	(µg/m³)	DustTrak (µg/m ³)	$(\mu g/m^3)$	(μg/m ³)
Cooking	0.539	82.3	1.99	302
Candle	0.467	97.2	1.89	380
Febreze TM	0.398	42.7	2.39	199
Hairspray	0.443	103	0.889	211
Unknown	0.094	43.5	0.0506	28.7

^a UMDS count is the count of the small minus the large bin. The dependent variable (x) is the reference instrument.

Table S3. Slopes of the linear	r regression model of indo	or sources during calibration	in home II .
--------------------------------	----------------------------	-------------------------------	--------------

	UMDS (count per 0.01 ft ³) vs. DustTrak (μg/m ³)	UMDS (count per 0.01 ft ³) vs. GRIMM 1 (μg/m ³)	UMDS (count per 0.01 ft ³) vs. GRIMM 2 (µg/m ³)
Cooking	43.9	288	128
Candle	28.2	299	116
Vacuum	73.4	475	84.2
Unknown	72.1	562	234

^a UMDS count is the count of the small minus the large bin. The dependent variable (x) is the reference instrument.

Table S4-a. Bias corrections obtained for individual sensors in home I. To obtain AirU PM_{2.5} mass concentration (μ g/m³), multiply the raw PM_{2.5} concentration by the following bias correction for each sensor. To obtain UMDS PM_{2.5} mass concentration (μ g/m³), multiply the raw PM_{2.5} count (small-large, per 0.01 ft³) by the following bias correction for each sensor.

AirU corrected PM _{2.5} (μg/m ³)	UMDS corrected PM _{2.5} (µg/m ³)
AirU 2 (μ g/m ³) * 1.46	UMDS 110 (count per 0.01 ft ³) * 4.85e-3
AirU 6 (μ g/m ³) * 1.58	UMDS 113 ^b (count per 0.01 ft ³) * 4.56e-3
AirU 8 (μ g/m ³) * 1.30	UMDS 115 (count per 0.01 ft^3) * 4.71e-3
AirU 3 (μ g/m ³) * 1.56	UMDS 124 (count per 0.01 ft ³) * 4.97e-3

* UMDS 113 was not utilized in the calibration week. The average bias correction for all UMDSs was used for this sensor.

Table S4-b. Bias corrections obtained for individual sensors in home II. To obtain UMDS PM_{2.5} mass concentration (μ g/m³), multiply the raw PM_{2.5} count (small-large, per 0.01 ft³) by the following bias correction for each sensor.

UMDS corrected PM _{2.5} (µg/m ³)		
UMDS 114 (count per 0.01 ft^3) * 5.29e-3		
UMDS 116 (count per 0.01 ft^3) * 4.78e-3		
UMDS 117 ^a (count per 0.01 ft ³) * 4.55e-3		
UMDS 121 (count per 0.01 ft^3) * 4.64e-3		
UMDS 124 ^b (count per 0.01 ft ³) * 1.43e-3		

^a The average bias correction was used for this sensor.

^b The outdoor bias correction was used for this sensor.

Table S4-c. Correction factors for different indoor activity sources. Multiply this CF by the DustTrak PM_{2.5} concentration to obtain the aerosol-corrected PM_{2.5} concentration. These same factors is for the low-cost sensors after bias correction.

Source	CF
Candle	0.371
Cooking	0.133
Febreze, Hairspray and Unknown	1.33

	Home I		Home II	
	AirU (R ²)	UMDS (R^2)	UMDS (R^2)	Slope
Living Room	0.933	0.02	0.712	0.644
vs. Bedroom				
Living Room	0.00	0.0389	0.974	0.832
vs. Kitchen				
Kitchen vs.	0.011	0.00	0.678	0.731
Bedroom				

Table S5. Coefficients of determination for the fitted linear model (R^2) between low-cost sensors in different rooms in home I and home II.

Table S6. Range of Air Exchange Rates (AER) in different rooms in home I and home II.

	Home I (hr ⁻¹)	Home II (hr ⁻¹)
Living Room	0.27-0.67	0.51-2.10
Kitchen	0.36-2.76	0.54-2.66
Bedroom	1.30-1.96	0.33-1.86

Fig. S1. Top view showing the floor plan with location of sensors in home I and home II. All sensors were placed on a table approximately 0.75-80 m above the ground and at least 0.3 m away from the nearest wall. The network icon indicates the location of the sensor in the room.

Fig. S2. Scatter plots and coefficients of determination (R^2) from the linear regression (low-cost sensor and GRIMM) for 5-minute rolling average of PM_{2.5} concentrations ($\mu g/m^3$) for several types of aerosols measured with a GRIMM (uncorrected), average of 4 AirUs (uncorrected) and average of 10 UMDS, uncorrected (PM_{2.5} count, small minus large bin, per 0.01 ft³) during 20th - 25th May, 2016 (home I).

Fig. S3. Scatter plots and coefficients of determination (\mathbb{R}^2) from the linear regression for 1-minute PM_{2.5} concentrations (μ g/m³) for 4 AirU sensors (uncorrected) during 20th - 25th May, 2016 (home I). The top right corner of the figure shows the slopes of linear regression of the fitted model (columns are the x-axes).

Fig. S4. Scatter plots and coefficients of determination (\mathbb{R}^2) from the linear regression for 1-minute UMDS PM_{2.5} count (small minus large bin, per 0.01 ft³) between each sensor (uncorrected) during 20th - 25th May, 2016 (home I). The top right corner of the figure shows the slopes of linear regression of the fitted model (columns are the x-axes).

Fig. S5. Comparison of co-located 5-minute rolling average of $PM_{2.5}$ concentrations ($\mu g/m^3$) measured by two GRIMM, DustTrak, and the average of four UMDS ($PM_{2.5}$ count, small minus large bins, per 0.01 ft³) for the calibration period of 15th-21st October 2016 (home II). The concentrations measured by all sensors were uncorrected, raw data.

Fig. S6. Scatter plots and coefficients of determination (R^2) from the linear regression (UMDS and DustTrak) for 5-minute rolling average of PM_{2.5} concentrations ($\mu g/m^3$) measured with a DustTrak (uncorrected), average of 4 UMDS, uncorrected (PM_{2.5} count, small minus large bins, per 0.01 ft³) during 15th – 21st October, 2016 (home II).

Fig. S7. Scatter plots and coefficients of determination (R^2) from the linear regression (UMDS and GRIMMs) for 5-minute rolling average of PM_{2.5} concentrations ($\mu g/m^3$) measured with 2 GRIMMs (uncorrected) and the average of 4 UMDS, uncorrected (PM_{2.5} count, small minus large bins, per 0.01 ft³) during 15th – 21st October, 2016 (home II).

Fig. S8. Scatter plots and coefficients of determination (R^2) from the linear regression for 1-minute UMDS PM_{2.5} count (small minus large bin, per 0.01 ft³) during $15^{th} - 21^{st}$ October, 2016 (home II). The top right corner of the figure shows the slopes of linear regression of the fitted model (columns are the x-axes).

Fig. S9. PM_{2.5} levels in the bathroom when using a hairspray product (home II) as measured by a UMDS sensor bias corrected with a CF from the calibration week (Table S4-b).

Fig. S10. PM_{2.5} levels in the bedroom during cleaning activities (home II) as measured by a UMDS sensor bias corrected with a CF from the calibration week (Table S4-b).

Fig. S11. Change in PM_{2.5} levels caused by the furnace (30th January, 2017) (home II). Sensors were individually bias corrected with a CF from the calibration week (Table S4-b).

Fig. S12. Outdoor and indoor PM_{2.5} levels as measured by the AirU sensor on the 4th of July, 2016 (home I). Sensors were individually bias corrected with a CF from the calibration week (Table S4-a).

Fig. S13. Comparison of PM_{2.5} concentrations from the AirU and UMDS sensors with relative humidity (RH) measured by the respective sensors (home I). The UMDS and the AirU were located within 0.5 m of each other. Although the exact RH measurements from the two sensors do not agree with each other, the trends are consistent with high-quality RH measurements (from MesoWest, 2018 and Weather Underground, 2018) in the vicinity. The gaps in the left panel indicate the missing data from the AirU.

REFERENCES

MesoWest, 2018. MesoWest Data. URL http://mesowest.utah.edu/ (accessed 4.9.18).

Weather Underground (www.wunderground.com), 2018. Salt Lake City, UT Forecast. URL https://www.wunderground.com/weather/us/ut/salt-lake-city (accessed 4.9.18).