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Fig. 1: A representation of the process of recording and collaborating with data hunches. When an analyst looks at a data
visualization and has a hunch about the data, they are able to externalize the data hunch through visual methods that we introduce in
this paper. Following the recording of their data hunch, others can review the hunches and potentially record their own.

Abstract—The trouble with data is that it frequently provides only an imperfect representation of a phenomenon of interest. Experts
who are familiar with their datasets will often make implicit, mental corrections when analyzing a dataset, or will be cautious not to be
overly confident about their findings if caveats are present. However, personal knowledge about the caveats of a dataset is typically not
incorporated in a structured way, which is problematic if others who lack that knowledge interpret the data. In this work, we define such
analysts’ knowledge about datasets as data hunches. We differentiate data hunches from uncertainty and discuss types of hunches.
We then explore ways of recording data hunches, and, based on a prototypical design, develop recommendations for designing
visualizations that support data hunches. We conclude by discussing various challenges associated with data hunches, including
the potential for harm and challenges for trust and privacy. We envision that data hunches will empower analysts to externalize their
knowledge, facilitate collaboration and communication, and support the ability to learn from others’ data hunches.

Index Terms—Data Visualization, Uncertainty, Data Hunches

1 INTRODUCTION

While data-driven decision-making and reasoning is now considered
the gold standard across many fields such as business [10], sports [64],
and science [22], data workers are also aware of the incompleteness
and imperfections of data [8, 50]. In scientific data analysis, for exam-
ple, caveats about the data are often captured in (digital or paper) lab
notebooks, as comments in analysis scripts, and as datasheets recorded
alongside a dataset [26], and they are discussed with colleagues in lab
meetings, and reported to a general audience in methods sections of
scientific papers.

These processes, however, detach a person’s knowledge about
caveats to the data from the tools in which the data is analyzed. For
example, if a caveat about the data is recorded in a graduate student’s
lab notebook, their successor who is asked to re-analyze the data may
not have access to the notes and may interpret the data differently. Even
if a caveat is noted in the methods section of a paper, a casual reader
might skip that section and misinterpret a visualization of the data.

We encountered this challenge in a design study where we collab-
orated with clinicians who analyze data about blood transfusions to
improve patient outcomes and reduce the use of valuable blood-bank
resources [43]. When we showed a clinical collaborator a prototype
of our visualization tool, he expressed concern about what he saw in
the data: that the amount of recycled blood—a patient’s own blood that
is reused during surgery—was much lower than he expected. In his
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experience, almost all surgeons make extensive use of blood recycling;
he had a hunch that the low blood recycling values were due to the data
frequently not being recorded during surgeries. A second collaborator
focusing on patient blood management was promoting a more data-
driven approach in his workplace and worried that when clinicians saw
these discrepancies, they would lose trust in the visualization tool. De-
spite these concerns, we had no way of recording and communicating
the clinicians’ hunches in the visualization.

Just like in this example, we frequently find that interactions with a
visualization tool trigger experts to express knowledge about problems
with data, but that these tools leave few options for them to communi-
cate that knowledge. This knowledge is personal and not available to
others, a phenomenon reported in other design studies [47, 51, 54].
However, what if experts could record their hunches directly in a
visualization tool in a way that allowed others to interpret the data
alongside their hunches? What if a visualization tool supported—and
encouraged—the explicit incorporation of expert knowledge during
data analysis?

In this paper, we address these questions by proposing a new concept,
data hunches, to describe the knowledge that analysts bring to their data
analysis process that augments and complements their perception of the
data, and in turn becomes part of their interpretations as demonstrated
in Figure 1. Data hunches are personal knowledge about caveats to the
data, such as knowledge about implicit errors [47] or ambiguities [51].
We argue that conceptualizing data hunches provides a new perspective
on how to design visual analysis tools for expert, collaborative settings,
allowing for the sharing of knowledge about the ways that data is
imperfect, partial, and uncertain. This new perspective opens design
possibilities for how we might build visualization tools that support
both the recording and communicating of hunches.

To this end, our work includes three core contributions:



• A conceptualization of data hunches: We define the term data
hunches and discuss its relationship to uncertainty, elevating the
role of personal knowledge in visual data analysis.

• An exploration of ways to record and communicate data
hunches: We demonstrate how data hunches can be recorded
and communicated within a visualization context using visual
techniques to facilitate collaboration.

• A set of design recommendations for data hunches: We reflect
on design and ethical considerations for supporting data hunches
within visualization systems.

We speculate how recording and communicating data hunches could
be implemented through a demo tool, available at https://vdl.sci.
utah.edu/data-hunch/. For transparency and rigor, we include
a brief discussion of our methodology in Section 8. We discuss the
potential of data hunches, for both good and bad outcomes in Section 10.
Despite open questions about how to design for data hunches in ethical
and usable ways, we consider this work a step toward a wealth of
productive opportunities for valuing and including personal knowledge
in visual data analysis.

2 UNCERTAINTY
Measurement errors, modeling assumptions, heterogeneous data record-
ing methods, and missing context are just some of the ways in which
values stored in a dataset are neither a perfect nor complete view of
a phenomenon in the world. The visualization community has a long
history of researching methods to characterize, quantify, and visual-
ize the limitations of data under the heading of uncertainty. Within
this literature, explicit definitions for uncertainty are sparse, with the
definitions that do exist covering a range of interpretations. For exam-
ple, Hullman refers to uncertainty as “the possibility that the observed
data or model predictions could take on a set of possible values” [32],
whereas Bonneau et al state that “uncertainty is the lack of informa-
tion” [6]. Fields outside of visualization add additional interpretations
of the term, such as Walker et al.’s general notion of uncertainty as
“any deviation from the unachievable ideal of completely deterministic
knowledge of the relevant system” [68], and Covitt et al.’s experiential
definition of uncertainty as the “ways in which scientists recognize and
analyze limits in their studies and conclusions” [14].

Researchers have openly acknowledged the ill-defined nature of
uncertainty, such as Boukhelifa et al.’s statement that “there is no
unified single definition of uncertainty across all domains. The general
consensus is that there are different meanings and that the term itself
encapsulates many concepts” [8]. Brodlie et al. go further and argue
that the lack of a clear, consensus definition has held the field back: “the
self-referential problem of uncertainty about uncertainty terminology
has been a notable stumbling block in this avenue of inquiry” [9].

In this paper, we do not attempt to rectify the uncertainty about
uncertainty. Rather, we point out the difficulty of precisely positioning
theoretical perspectives in relation to existing uncertainty literature.
Despite this challenge, we situate data hunches within the visualization
uncertainty literature because this body of work has focused on under-
standing and characterizing how people, visualizations, and imperfect
and partial data come together. More specifically, the uncertainty lit-
erature focuses on the ways that data is limited representations of the
world, and how people (can) become aware of these limitations. Such
perspective is in contrast to other visualization research threads that
focus on expert knowledge more broadly, such as work on insight that
considers different types of expert knowledge that impacts insight gen-
eration [38]. In this section, we briefly summarize the literature on
quantitative and qualitative uncertainty, and argue that data hunches
complement the existing work in this area.

2.1 Quantitative Uncertainty
Researchers provide a variety of characterizations of uncertainty
through descriptions of the many ways that data can be uncertain.
Potter et al. [58] use a characterization from computational sciences
that describes epistemic versus aleatoric uncertainty, with the former
describing the ways in which a lack of knowledge about and from
the data induce a computationally unknowable uncertainty, and the
latter encompassing data limitations that can be assumed and modeled

statistically. Padilla et al. compare direct quantitative uncertainties
and indirect qualitative uncertainties [53]. In this framing, direct un-
certainties are quantifiable expressions such as confidence intervals
and probability distributions, whereas indirect uncertainties can be
expressed only qualitatively. Direct, quantifiable expressions of un-
certainty are typically computed from sources of imperfections and
partialities, including limited data collection resources, such as not
being able to sample every person in a population of interest; limited
measurement capabilities, such as the precision of an instrument; or
limited knowledge about the future, such as the unpredictability of
forecasting weather [63].

The visualization community has historically focused on developing
and testing methods for visualizing quantifiable uncertainty [6, 52, 58].
Some approaches attempt to intuitively encode uncertainty through
modifications of a data item’s graphical mark using quantile dot
plots [53], glyphs [37, 52, 73], or value-suppressed color schemes [13].
Other approaches have instead explored visual representations that
directly display summary statistics [12, 56, 57] or use animations show-
ing hypothetical outcomes [34]. Researchers have also developed
uncertainty-specific evaluation techniques, such as eliciting users’ in-
ternal models of probability distributions, recording the effects of un-
certainty on decision-making, and assessing participants’ sense of con-
fidence after viewing uncertainty visualizations [33].

The community’s characterization of what types of uncertainty are
quantifiable would seemingly place our blood-reuse example in Section
1 as something that could be quantified, a limitation of the measurement
capabilities. In principle, we could attempt to model and quantify this
limitation, but any metric is likely to be grossly inaccurate because of
the abstracted nature of the knowledge about the imperfections, a point
raised by Thomson et al.: “In addition to uncertain measures, analysts
are concerned with abstract uncertainties such as the credibility of a
particular source or the completeness of a set of information. As the
uncertainty becomes more abstract, it is more difficult to quantify, repre-
sent, and understand” [63]. Instead, researchers adopt different perspec-
tives for abstract sources of uncertainty—qualitative perspectives—that
focus on the knowledge people have about the limitations of data.

2.2 Qualitative Uncertainty
Qualitative uncertainty—also referred to as indirect or epistemic
uncertainty—has been described as “the quality of knowledge con-
cerning how effectively facts, numbers, or hypotheses represent real-
ity” [53]. Definitions of qualitative uncertainty make explicit references
to knowledge, shifting the emphasis from exploitable information about
the data, to inaccessible subjective knowledge: “Epistemic uncertainty
generally, but not always, concerns past or present phenomena that
we currently don’t know but could, at least in theory, know or estab-
lish” [65]. In contrast to quantitative uncertainty, qualitative uncertainty
is not easily quantified, and is generally conveyed through “caveats
about data” [65].

The sources of qualitative uncertainty stem from the same imperfec-
tions and partialities that metrics for quantifying uncertainty pertain
to. Boukhelifa et al. [8] classify these sources as imperfect, messy,
and missing data; imperfect and limited models; (approximate) digital
representations of data in a visualization interface; and cognitive differ-
ences between interpretations from individual analysts. Most relevant
for the work in this paper are sources of qualitative uncertainty from
data, defined by McCurdy et al. as implicit error: “a type of measure-
ment error that is inherent to a dataset but not explicitly recorded, yet
is accounted for qualitatively by experts during analysis, based on their
implicit domain knowledge” [47].

The predominate way that visualization designers encode qualitative
expressions of uncertainty is through text-based annotations. In her
interview study with visualization practitioners, Hullman reports that
“uncertainty as a qualitative expression of a gap in knowledge came up
in most interviews with interviewees as well as several survey responses.
62% of survey respondents had used text to warn their viewers of the
potential for uncertainty in results” [32]. Other approaches use visual
approaches to communicate qualitative uncertainty, such as the use of
perceptually imprecise visual encoding channels like sketchiness [7]
or glyphs [51]. A different approach taken in both the visualization
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and machine learning communities is to explicitly expose information
about the data collection process, providing analysts with contextual
information that allows them to incorporate personal knowledge about
potential shortcomings of the data during their interpretations [2,26,54].

Several visualization systems explore ways for recording expert
knowledge about qualitative sources of uncertainty. For example, in
their tool for supporting public health experts, McCurdy et al. [47]
designed a template with structured questions that enabled the experts
to record what they knew about implicit errors in the data. The recorded
results were marked on the visualizations with glyphs that provided
annotations when clicked. Similarly, Franke et al. [23] collected confi-
dence about data sources from historians through a web interface. These
varying levels of confidence were then presented alongside other data
in a hierarchical tree view, representing the distribution of confidence
along different dimensions of the data source in question.

These two examples demonstrate that experts know about limitations
of their data; that the sources of uncertainty can be known. This, how-
ever, is in contrast to existing definitions of qualitative uncertainty that
position it as something unknowable: “epistemic uncertainty describes
uncertainties due to lack of knowledge and limited data which could,
in principle, be known, but in practice are not” [58]. This focus on
the unknowable also appears in more general uncertainty characteriza-
tions [6]. This contradiction leads us to ask the question: unknown by
whom?

The work we present in this paper is a significant shift in how we
think about designing for qualitative uncertainty. Data hunches frame
the knowledge about sources of uncertainty away from the visualization
tool designers, to the experts who conduct the analysis. The concept
of data hunches is an explicit acknowledgment that many sources of
qualitative uncertainty are in fact known—known to the experts who
can articulate the knowledge when triggered by their interactions with
a visualization tool. This shift complements the visualization com-
munity’s perspectives on uncertainty by focusing on knowledge about
sources of uncertainty, and thus opening up opportunities to design new
ways that visualizations can support recording and communicating this
knowledge during data analysis.

3 DATA HUNCHES

Our community’s current framing of uncertainty implies that data work-
ers and tool builders are responsible for identifying, characterizing, and
quantifying sources of uncertainty from data. Data hunches instead
acknowledge and incorporate experts who come to data analysis with
deep knowledge about the limitations of their data. As a complementary
perspective, data hunches focus on knowledge about data, capture that
knowledge from a diverse set of stakeholders, and are embeddable in
the analysis process (instead of the data curation pipeline). We argue
that this perspective offers a breadth of new opportunities for recording
and communicating data hunches in support of richer data analysis.

Through data hunches, we elevate the role that personal knowledge
of the data plays in the process of understanding and analyzing it. More
precisely, we define data hunches as an analyst’s knowledge about
how and why the data is an imperfect and partial representation
of the phenomena of interest. These hunches can range from the
abstract—expressing concern about the validity of the data set—to
the concrete—expressing a numerical value that is closer to the phe-
nomenon of interest than the measured data. The scope of a data hunch
can be individual data points, a complete dataset, or anything in be-
tween. Data hunches emerge when an analyst interacts with the data,
triggering reflection about the ways the data is imperfect and partial
based upon their inherent knowledge about the data collection process,
domain, and more. A data hunch can be based on the missing context
necessary to fully comprehend the phenomenon, discrepancies between
a mental model and data, opinions on the quality of the data generation
process, and so on. Data hunches are knowledge about sources of
qualitative uncertainty. During data analysis, data hunches influence an
analyst’s interpretation of the data, derived knowledge, and decisions
made.

We argue that data hunches are prevalent, but often implicit, in data
analysis, and as important as the data itself. The knowledge experts

bring to data analysis is a vital component of data-driven decision-
making [38, 49]; however, such knowledge is often recorded outside of
visual analysis tools. This disconnect then requires mental gymnastics
on the part of an analyst to incorporate back into the data analysis
process, if it is not overlooked completely. In this paper, we envision
that a set of tools that fully utilize what visualization can offer will
provide a more visual and intuitive representation of experts’ knowledge
in visualizations. Using data and data hunches in tandem supports a
richer representation of a phenomenon, leading potentially to improved
analysis. By acknowledging and naming data hunches, we aim to
elevate the potential for personal knowledge to actively and explicitly
contribute to data analysis.

We purposefully scope data hunches for use within collaborative,
expert settings for both pragmatic and ethical reasons. Pragmatically,
previous work on collaborative visualizations highlights the value of
designing tools that support sharing of expert knowledge. In the con-
text of collaborative analysis sessions, Mahyar et al. [44] showed the
importance of recording visualizations and note taking in collaborative
visual analysis. Similarly, Walny et al. [69] studied the use of data
visualizations on whiteboards in corporate offices and found that visu-
alizations as sketches promote team discussions. In another example
of data science workflows that utilize computational notebooks, Wang
et al. [71] found that data scientists annotated screenshots of visual-
izations when collaborating as a way to communicate limitations of a
tool. Ethically, scoping data hunches to collaborative expert settings
reduces potential harm as we expect experts collaborating with peers
to recorded well-reasoned and nuanced hunches. However, experts
can still be biased, and data hunches may help to reinforce biases even
further. We believe that peer-review tools, such as comments or ratings,
may be useful to mitigate the risk of reinforcing biases, yet acknowl-
edge that more research on the topic is necessary. We discuss these and
other issues further in Section 10.

By identifying data hunches as productive and insightful expert
knowledge, we can re-interpret past work on collaborative visualization
tools with this framing. For example, a visualization designer can incor-
porate commenting and discussion features to promote externalization
of data hunches [30, 47]; apply provenance tracking to record actions
they took based on hunches to wrangle the data [15, 19, 24, 25]; use
visualization techniques like linked views and visualization states to
show a collection of data hunches [35, 46, 67]. We see a wealth of
opportunities for incorporating data hunches into old and new ways of
visually analyzing data.

4 TYPES OF DATA HUNCHES
In our development of data hunch classifications, we listed all the data
hunches we encountered in our previous design studies, brainstormed
other forms of data hunches that may surface in data analysis, and
generalized them based on whether they are qualitative or quantitative,
the specificity of the hunches, and the forms they take if expressed. We
identify three types of data hunches in support of determining suitable
methods for reporting and communicating expert knowledge about
limitations of data.

Assessment Hunches: Assessment data hunches speak to the trust-
worthiness or quality of a dataset or individual data items, or simply
provide context. Assessment hunches can take different forms, rang-
ing from ratings (thumbs-up/down, numerical scores, etc.), to written
comments about data items or datasets.

Structural Hunches: Structural data hunches state that certain data
points or relationships should not be included in the dataset (exclusion)
or that a data item or relationship is missing (inclusion). In a network
dataset, for example, an inclusion data hunch could be used to indicate
that an edge is missing. For many data types, inclusion hunches should
also be combined with an estimate of a value of the included hunch.
For example, when indicating that an item is missing from a dataset,
the data hunch could also contain an estimate of the value of the item.

Value Hunches: Value hunches make a statement about how a
specific data value should be different from what is recorded in the
dataset. Value hunches apply equally to numerical, categorical, and
textual/label data. For example, a value hunch for a category could
state that an item should be in category A instead of category B.
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Fig. 2: A set of abstract techniques to record data hunches. We distinguish three spaces: data, visual, and abstract. Recording in data space, such
as through (a) form-based manipulation and (b) model-based manipulation, affords a basic technique where analysts can externalize hunches by
either manually inputting items, or expressing them through models. Recording in visual space, such as through (c) free-form sketching and (d)
direct manipulation, affords visual recording of data hunches, ranging from sketching to dragging graphical elements to represent an analyst’s
hunch. Recording in abstract space, such as through (e) structured elicitation and (f) textual annotations, enables analysts to record hunches that
cannot be recorded in the data and visual spaces.

For practical reasons, we found it useful to further distinguish three
methods of expressing value hunches, reflecting different levels of “pre-
cision” about a value hunch. Directional Hunches express that values
should be different (higher or lower) from the recorded value without
giving a specific value. They are a middle ground between assessment
hunches, which make no statement about directionality, and hunches
that give estimates for actual values. Specific Value Hunches express ex-
actly how values in a dataset should be different. For example, a value
data hunch could state that the value encoded by a bar chart should be
20 instead of 12. Value Range Hunches acknowledge uncertainty about
the value to be specified. Instead of expressing a specific value, they
state that a value should be within a certain range. For example, a range
hunch could state that the value of a bar should be between 18 and 22
instead of 12. We acknowledge that different subtypes of any of the
higher level types of data hunches could be useful in different contexts.

All these types of data hunches can be expressed with different
specificity. For example, a value data hunch could apply to a single
point (this should be twice as much), to a few data points (all of these
items should be twice as high), or to the whole dataset (all data points
should be twice as high). These different types of data hunches also
establish that hunches may not always be precise, supporting analysts
to record some data hunches across varying levels of knowledge. In
the next section, we discuss how we design with data hunches in mind.
With an emphasis on visual methods, knowledge about sources of
qualitative uncertainty can be represented through graphical elements
and interpreted context of the data.

5 RECORDING DATA HUNCHES
A key aspect of data hunches is that they are expressed during analysis
by a diverse set of stakeholders. Hence, visualizations of the data are
the ideal medium to express, record, and consume data hunches. In this
section, we explore the set of approaches that can be used for recording
data hunches on top of a visualization.
5.1 Data Space
A basic method to record a data hunch is to manipulate the data in
data space: before the data has been mapped to a visual element. We
consider form-based manipulation and model-based manipulation as
the two main methods for recording data hunches in data space. Form-
based manipulation, shown in Figure 2a, is concerned with inputting
a data value or an attribute of the data point through a form, a table, etc.,
and is suitable for data hunches for specific data items. Model-based
manipulation, illustrated in Figure 2b, uses a model to bulk-input
or edit data values, e.g., through a mathematical function. Note that
manipulating the data in data space does not imply that the original
data is overwritten.

Previous works have explored ways to express models and values to
record knowledge in visualizations. Marasoiu et al. [45], for example,
presented an interface that allows users to sketch models, which then
generates data points based on the sketch, as a way to facilitate commu-
nication between customers and analysts. Romat et al. [60] included
data editing in their digital ink externalization system, a functionality
requested by participants. Although this functionality was added post
facto, it illustrates a preference for editing data directly in systems.

Data space is not well suited to communicate the data hunches that
have been recorded in the context of visualizations, as e.g., a tabular

representation of data hunches would be detached from the visualization
of the data. Instead, designers will have to consider methods to visualize
data hunches provided in data space in visual space.

5.2 Visual Space
Recording data hunches in visual space on top of a visualization pro-
vides a direct connection between a data hunch and the visualization.
Analysts can think about the data hunch in visual terms as they ma-
nipulate it, and consider other data points that are visualized while
recording their hunch. Another key benefit of recording data hunches
in visual space is that, to a large extent, the same encodings can be used
for recording and communicating data hunches. We suggest two tech-
niques for recording data hunches in visual space: free-form sketching
and direct manipulation.

Free-form sketching refers to adding visual elements directly to a
visualization, using approaches such as pen/mouse-based sketching,
or adding elements to a visualization using functionality similar to a
drawing program (Figure 2c). The technique provides freedom for
analysts to express their data hunch in the way they see fit and can
record a variety of data hunches, including structural exclusion through
crossing out data points, value/directionality (e.g., a value should be
higher in reality) through drawing an arrow, categorical value through
shading an area in a color, and value range through drawing an area
where a value is expected to be. Visual markups have been used for
note taking and communicating though process in visualizations [39,
45, 60], as well as conversation starters [72]. The process of graphical
externalization helps with the understanding of and reasoning about
visual information [31] and supports reading and reflecting on the
visualization [1,40,70]. A downside of markup is that it cannot (easily)
be converted into structured data, and hence is only connected to the
visualization, but not to the underlying data, making reuse of these
hunches in other visualizations of the same dataset exceedingly difficult.

Direct manipulation, illustrated in Figure 2d, involves moving,
resizing, removing, adding, or otherwise changing parts of the visu-
alization that encode data. While restricting analysts to the marks
and channels of the visualization, direct manipulations offer benefi-
cial affordances: dragging a bar element is easier with a mouse than
sketching a new bar, for example. Manipulated marks are also straight-
forward to translate into data space. Previous works have suggested
direct manipulation on visual encodings is a viable way to edit data
and provide visual demonstrations of thought processes. Baudel [5]
presented editing single or groups of data items in a dataset using
graphical manipulations in data visualizations. Saket et al. [61] used
graphical manipulation, through repositioning, resizing, and recoloring
marks in visualizations, to help users express their expected visualiza-
tion with increments in direct manipulations, and in turn, the system
suggests visual transformations. A drawback of direct manipulation is
that each possible manipulation has to be designed and implemented
for each chart type, in contrast to free-form sketching, which can be
implemented once and re-used for all types of hunches and charts.

5.3 Abstract Space
Assessment data hunches can be expressed only through text, com-
ments, or ratings. For example, an analyst might know that a data
source is unreliable, but might not have a concrete idea on what the true
data should be. To record such a hunch, they want to add comments
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Fig. 3: Our prototype showing a variety of data hunches expressed using tailored methods and designs. Note that red annotations have been
added to explain the figure; everything else is as it appears in the prototype. The main chart, showing COVID-19 data and data hunches, is on
the left. In the chart, we demonstrate (a) a categorical value hunch that indicates Austria should be colored in purple as it has relaxed policies
that are not reflected in the data. (b) A directional value hunch expresses that the data value should be higher, without specifying details. (c) A
structural hunch indicates that Canada should not be part of this chart. (d) An assessment hunch is used to comment on the values associated
with France. (e) A range value hunch indicates that German values should be higher within a certain range. (f) A value hunch expressed using
free-form sketching indicates that values for New Zealand should be lower. (g) Two assessment hunches show diverging perspectives about
the quality of Norway’s data. (h) Two value hunches expressed in data space indicate that values in Sweden should be much higher. They are
rendered as arrows/labels as they would break the scale. (i) Two specific value hunches show alternative opinions on how high the values for the
United States should be. (j) A structural hunch indicates that Mexico should be included in the chart and gives an estimate for a value. (k) An
assessment hunch comments on the whole of the dataset. (l) A tool-tip shows information for a selected hunch, including reasoning, confidence,
endorsements, and rejections. (m) A (hide-able) table lists all hunches. [View Demo.]

to the data and the data visualization. Such hunches are recorded in
“abstract space”, as they do not directly suggest a different structure or
value. We identify two methods through which hunches can be recorded
in abstract space: structured elicitation and textual annotations (in
addition to e.g., hand-writing using free-form sketching features).

Structured elicitation (Figure 2e) uses form-based UI elements, rat-
ings, and up/down votes, whereas textual annotations (Figure 2f) are
free-formed notes. Previous works have explored the use of rating,
structured form, and textual annotations in data visualizations. Quispel
& Maes [59] used ratings to investigate preferences of visualization
types between groups of people. McCurdy et al. [47] used structured
forms to elicit data hunches from domain experts, and Goyal et al. [27]
offered more freedom to users by allowing them to use a notepad for
free-form notes during their experiment. Structured elicitation is differ-
ent from form-based manipulation in data space: although both can use
forms, structured elicitation is about assessment, whereas form-based
manipulation is used to express concrete hunches in data space.

6 GUIDELINES FOR DESIGNING FOR DATA HUNCHES
To demonstrate the feasibility of the techniques we proposed in Sec-
tion 5 and to explore possibilities of communicating and recording data
hunches, we developed a prototype, shown in Figure 3, allowing users
to record their data hunches on a simple bar chart. As described in
Section 8, we used an iterative design process to develop the prototype.
We describe insights gleaned from this process for designing visualiza-
tions that support recording and displaying data hunches in the form of
design guidelines.

Do not change the original data. Techniques to express and
communicate data hunches aim to enable analysts to express their
knowledge about the data, but not to alter the dataset. Data hunches and
original data are different entities and should be clearly separated, to
both avoid confusion about the difference between data and data hunch
and to retain the integrity of the original data. Data hunches are also
valuable only in the context of the recorded data that they refer to. For
example, for a value hunch expressed in Figure 3h, we use a sketchy
font and arrows to indicate a different value from the original data, and
place the value hunch next to the original value. Furthermore, while
transparently expressing data hunches, such as doubts or ideas about
what a data point should be, are valuable contributions to the analysis
process, editing data can be considered deceptive or even fraudulent.

From a technical aspect, designers should treat recorded data
hunches as another dataset completely that only references (elements
in) the original dataset. In our prototype, for example, data hunches
are recorded as a separate dataset, which is shown in a table next to
the visualization (Figure 3m). An unfortunate consequence of separat-
ing hunches from data is that off-the-shelf visualization systems and
libraries are unlikely to make it easy to render data hunches in addition
to the underlying data.

Make data hunches distinct. Consistent with our arguments
about not changing the original data, data hunches also need to be
clearly distinguishable from the original data within the visualizations.
Furthermore, the encoding used for data hunches should not only be dis-
tinct from the primary encoding, but also should clearly communicate

https://vdl.sci.utah.edu/data-hunch/?data=COVIDData&vol=2


Fig. 4: Original, non-sketchy design for data hunches. While the
data hunches were distinguishable from the original data by color, the
distinction was not immediately obvious and could be confused with
additional data values that are part of the original data. Hence, we
abandoned this design in favor of sketchy renderings.

that what is shown is not the original data.
In our prototype, we use sketchy rendering [74] for visual elements

and handwriting-style fonts to make data hunches discernible from the
crisp, clean lines of the original visualizations (see Figure 3). The goal
of using sketchiness was to make it obvious, even to first time users,
that data hunches are not original data but that instead they represent
people’s thoughts and knowledge. Wood et al., for example, speculate
that “sketchy [..] visualization has a role to play in constructing visu-
alization narratives where an author’s voice is important” [74]. In our
first designs, shown in Figure 4, we attempted to render data hunches
using a different color, and experimented with gradients and blur to
communicate uncertainty and ranges. However, we abandoned this
design as we realized that it could lead to confusion, as the marks could
be interpreted as belonging to the original data. To avoid this confusion,
we developed a rule we applied throughout our design process that all
data hunches should look as if they were hand-sketched or written on
top of a visualization, to emphasize the humanness of the hunches.

We do not argue that sketchiness is the only, or even the best choice
to communicate data hunches. Other designs, tailored to other visual-
ization techniques and affordances, are conceivable. This reasoning
applies to all the implemented features we describe in this section.

Another consideration is to be mindful of how disruptive data hunch
encodings could be when placed over the original visualizations. The
original visualizations must remain visible to properly interpret data
hunches. For example, in an early design, we rendered a bar represent-
ing a larger data hunch over the original bar. We abandoned this idea in
favor of hatched bars that ensure that the underlying data point remains
visible.

But, make data hunches similar. Data hunches should use
the same or similar visual encodings as the visualizations of the origi-
nal data. While this guideline seems like a direct contradiction of the
guideline on making data hunches distinct, we believe that data hunches
and the original data should be read together without the need for men-
tal conversion. For example, a value data hunch could be expressed as
a written numerical value on top of a bar chart. However, we argue that
this would make it difficult for an analyst to judge the relative differ-
ences between the original value and the data hunch. Comparisons are
easier if both are expressed using the same visual channel (size/position
in the case of a bar chart). Our prototype uses sketchy bars on top of reg-
ular bars for numerical specific value hunches (Figure 3i), and hatched
color for categorical hunches (Figure 3a), in both cases using the same
encoding channel as the original data. However, some hunches cannot
be expressed using the same visual encoding. For example, a range
value hunch (providing an estimate that a value should be in a certain
range) is not compatible with a bar chart encoding used for the original
data. To address this, we use a position encoding on the same scale as
the bars, showing the middle and the extend of the range (Figure 3e).
We use similar techniques for directional value hunches (Figure 3b)
and hunches that do not fit on the scale of a chart (Figure 3h).

To reconcile this guideline with the guideline of making hunches
distinct from visualizations of the original data, in our demo we relied

(a) Direct manipulation (b) Form-based input

Fig. 5: Recording methods for data hunches, reasoning and confidence.
(a) Recording a data hunch using direct manipulation of a bar. Confi-
dence rating and reason are also elicited through a form. (b) Form-based
input for a categorical hunch. Selecting an option immediately shows a
preview. The input forms are placed close to the selected data point for
clear association with the data point.

on using an additional visual channel that was not used in the original
visualization: sketchy texture.

Keep data hunches close. As assessment data hunches (com-
ments, ratings, etc.) are not expressed in data space, using the same
visual encoding is not feasible. However, designers should ensure that
assessment hunches can still be read easily together with the original
data. For example, instead of showing assessment hunches in a table,
they could be rendered next to the element they are referring to, illus-
trated for annotations in Figure 3d and for ratings in Figure 3g. If a
textual hunch requires more space than is available in the chart, we
truncate the comment and reveal the full text in a tooltip. We also
considered what to do with assessment hunches referring to the whole
dataset and opted for placing a note and an asterisk next to the chart
title (Figure 3k); our reasoning is that analysts might read the title and
caption as they are attempting to understand the visualization.

Use direct manipulation. Data hunches emerge when analysts
explore the data and examine the data visualizations. Hence, the think-
ing and analysis process happens in visual and data space. While we
lay out different approaches for recording data hunches in Section 5, we
argue that recording of data hunches should be done as close to the way
the data and the data hunch are presented as possible. In our prototype,
we trigger recordings by right-clicking on a mark or legend whenever
possible and provide methods to record a data hunch through direct
manipulation of the data hunch as it will appear once it is recorded
(Figure 5a). When recording a hunch in data space, or when recording
an assessment hunch, a visualization can provide visual feedback for
the analysts (Figure 5b). Also, in our prototype, we place the input
forms for data hunches right next to the visual elements in the chart.

Design for data hunches. Not all visualization techniques are
equally well suited to visualize data hunches. In our prototype, we have
chosen a bar chart with categorical values because bar charts are an
important class of visualizations, and because they have affordances
that are compatible with data hunches. For example, an analyst could
express a value data hunch on top of an individual bar without affecting
a neighboring bar. Other visualization techniques, however, do not
equally support such similarities. For example resizing a segment in
a pie chart, or in a stacked bar chart, requires affecting the other data
marks, or overplotting.

Another consideration is the complexity of a chart: the more com-
plex, and the more visual channels are used, the more difficult it will
likely be to find a suitable design for data hunches. Similarly, visu-
alizations that give overviews of large amounts of data, like cluster
heatmaps, will require different approaches for data hunches, as the
manipulation of individual data items is less relevant and the visualizing
of the hunches more challenging.

However, even when using a visualization technique that is well
suited for data hunches, like bar charts, line charts, or scatterplots (see
Figure 2), there are suggestions we recommend that a visualization
designer keep in mind to better support data hunches. For example, our
original design used vertical bars (see Figure 4). However, we quickly
found that vertical bars are problematic for rendering longer comments
(assessment hunches) next to the bar due to the text orientation, so we



switched to horizontal bars. Likewise, our original design had a chart
title and a subtitle at the top, which made it difficult to find a suitable
place for comments on the whole chart. Hence, we moved the title
below the chart, and reserved space below the subtitle for comments.
Finally, we found it useful to leave white-space from the beginning, so
that data hunches can be easily expressed and rendered. For example,
our prototype has large margins to the right of the bar chart, so that
larger value hunches and comments can be effectively rendered. The
designer can also use binning and grouping to organize several data
hunches and associate them with a data point, a technique that Badam
et al. [3] adopted in FacetNotes. While these specific examples may
not directly translate to other visualization techniques, the larger lesson
of thinking about position, layout, and space for data hunches as a
designer creates a visualization, holds.

Design for collaboration. Data hunches are predominantly a
medium to communicate knowledge about data to others, and hence,
data hunches are inherently collaborative. Data analysis activities are
also commonly collaborative efforts in the first place. We argue that
data hunches should be designed with collaboration in mind.

Our prototype acknowledges the importance of collaboration by
allowing multiple people to log in and review data hunches. However,
we also speculate that enabling multiple collaborators to record only
data hunches might be insufficient, as collaborators might also want to
endorse, reject, or comment on others’ data hunches. To address this
aspect of collaborating, we introduce features to endorse or reject a
particular data hunch, using a thumbs-up or thumbs-down metaphor,
illustrated in Figure 6. Another more expressive method is to add
capability to comment on data hunches. This way, a team member can
express their sentiment about a data hunch without having to re-specify
a data hunch they endorse.

Elicit context and accountability. What a data hunch says
about the data is different from why a person has the hunch. The
context of a data hunch is as critical for its interpretation as the context
of the data. Similarly, the reasoning and identity of the data hunch
author can effect how a data hunch is perceived and trusted.

We propose that along with recording data hunches, context is im-
portant for establishing trustworthiness. This may include reasoning
about the data hunch or the identity of person making the hunch. As
designers work with stakeholders to determine how data hunches are
recorded, they should also explore how important contextual informa-
tion can be recorded and shared. In our prototype, we require that
analysts provide reasoning for and express their confidence in a data
hunch when recording it (Figure 5a). Additionally, the identity of the
data hunch author is recorded as an attribute of the data hunch. We then
visualize these attributes in a tool-tip (Figure 3), although other more
salient approaches are conceivable. For example, it might be worth
exploring the use of opacity to encode the confidence of a data hunch.
These attributes not only enrich the recording of data hunches, but also
allow for features such as filtering and sorting.

We acknowledge a tension between revealing identities, to ensure
accountability and leverage networks of trust, and the desire to be
anonymous to record inconvenient opinions or facts. In prior work, for
example, we found that experts in an organization were unwilling to
record hunches under their name due to tensions in the organization.
In addition to logged-in recording of data hunches, our prototype also
provides a “log-in as guest” option to record a hunch without revealing
one’s identity. We further discuss this issue in Section 10.

7 PROTOTYPE IMPLEMENTATION

Our web-based prototype (available at https://vdl.sci.utah.
edu/data-hunch/) implements visualization methods for all types of
hunches we describe (see Section 3). For specific value hunches, we
also provide dedicated methods for larger numbers of data hunches.
The prototype also implements all appropriate methods for recording
data hunches (see Section 5) for each type. A specific hunch, for exam-
ple, can be recorded in data space through form-based manipulation,
through model-based manipulation, as well as in visual space through
direct manipulation and free-form sketching.

Fig. 6: Collaboration and scalability. Collaboration features, such as
endorsing, rejecting, and commenting on data hunches, help in reducing
the need for logging similar data hunches in the first place. Different
visual encodings account for scalability in value data hunches. If more
than three data hunches are logged for a single bar, we replace the
sketchy bars with sketchy ticks.

A concern for designing hunches was scalability: how we can show
many different data hunches reliably on top of a visualization. We ad-
dress scalability in two ways: first, we implement dedicated encodings
for hunches in case too many hunches are recorded. Figure 6 shows
specific value hunches on top of three bars. We use sketchy bars for
one or two hunches on top of a bar, but switch to sketchy ticks for
more hunches, as shown on the top. However, switching from bars
to ticks violates the guideline for making hunches appear similar to
the original marks and hence is a trade-off we have to make. Second,
we support collaborative features. If a data hunch is already present,
another person sharing the hunch could endorse, reject, or comment on
data hunches instead of logging a new data hunch, thereby reducing the
number of hunches that need to be visualized simultaneously.

We use three example datasets: COVID-19 case counts in selected
countries, greenhouse gas emissions across the food supply chain (both
downloaded from OurWorldInData), and the size of research areas at
the School of Computing at the University of Utah. Data is loaded
from CSV files, where data hunches are stored in a Firebase database.
Data hunches can be freely added by guests or after signing-in via
Google. A tabular visualization (Figure 3) gives an overview of all data
hunches and their meta-data, although all relevant information about
data hunches is also available through the visualization interface.

Our prototype is open source; the code is available at github.
com/visdesignlab/data-hunches-package. We use React and
D3 for rendering the UI and the visualizations, and the RoughJS library
(roughjs.com), which is based on the techniques for sketchy render-
ing developed by Wood et al. [74], to render visual elements for data
hunches in sketchy patterns.

8 METHODOLOGY
Our methodology for theorizing about data hunches and developing a
framework for recording and communicating data hunches was based
on reflective practices [21, 62]. We began by reflecting on our ex-
periences working with a variety of domain experts who have rich
knowledge about their data, knowledge that was not captured in their
datasets. Through group discussions about our experiences, we recog-
nized the missing formalization of personal knowledge and its impact
in data analysis. We began mapping out the scope of data hunches, the
relationship between data hunches and existing visualization concepts,
and how hunches have been reported in the existing literature. This
process included a literature search into data feminism, critical data
studies, and uncertainty, as well as searching works on design stud-
ies and reviewing any reported sources of qualitative uncertainty in
previous design studies.

After investigating the landscape of data hunches, we iteratively
developed our understanding of data hunches. The iterations critically
reflected illustrative examples from our prior experiences, and design
spaces proposed for interactive visualization interfaces, uncertainty
visualization, and collaborative sense-making. We additionally received
feedback from our research lab and colleagues and made adjustments
accordingly. We used the design space to re-imagine visualization
systems presented in several design studies [30, 43, 47].

Initially, we considered our framework for recording data hunches
as a medium for collecting input and knowledge about a dataset from a
general audience. Our reasoning was that the crowd might have insights
about datasets based on their own experiences, such as collective and
local knowledge about a COVID-19 dataset. We came to appreciate that
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Fig. 7: A usage scenario showing the data hunches of two faculty members about the size of research areas in a CS department. [View Demo]

a key challenge of data hunches, however, is that they could be used to
explain away inconvenient data points, or that they could exacerbate
the problem of confirmation bias [20, 42]. We thus made the decision
to argue for scoping data hunches to collaborative settings with groups
of experts who are supported by networks of trust [55]. We discuss
the potential benefits and harms that could be associated when data
hunches are implemented for general audience systems in Section 10.

Finally, we used an iterative design and development process for
our prototype system, with the intent of embodying our ideas and
evaluating their feasibility. Over a period of six months, we sketched
alternative design ideas and implemented promising solutions, which
we then evaluated within our team of four authors and discussed within
our research lab. We designed and implemented many variations that
we subsequently abandoned for various reasons (see the supplementary
material for examples). We describe the lessons learned from the entire
process that stretched over more than a year as guidelines in Section 6.
9 USAGE SCENARIO
Here we illustrate how data hunches could be used in a scenario with
real data about the size of research areas in the University of Utah’s
School of Computing, shown in Figure 7. To begin, a faculty member,
also a co-author of this paper, first noticed that while the largest bar
was for UNKNOWN students, there was another bar labeled N/A. He
recorded a hunch that N/A should be removed (a structural hunch) and
that UNKNOWN should be bigger (a value hunch).

Upon reviewing the classification of research areas into larger fields,
he expressed concern that Databases is classified as Data and Visual-
ization, given his knowledge about the type of research conducted by
the database groups at the University of Utah, and that it should rather
be in the Computer Systems category — he recorded his hunch about
the different classification of the bar (a value hunch). He expressed a
similar data hunch for Graphics, which should be in the Other bin.

When reviewing the number of Architecture researchers, he was
surprised by the seemingly high number. He provided a value hunch
that he considered closer to reality, and added a comment speculating
that some Electrical and Computer Engineering students advised by
Computer Science faculty are included in this count. Finally, he realized
that Robotics is likely shown smaller than it is, probably because some
students are incorrectly classified as AI instead. He left a value range
hunch also noting his reasoning. This faculty member then passed
on the visualization to a second faculty member, another co-author of
this paper, who reviewed his hunches, upvoted several, and left some
additional hunches about her own thoughts on where the data did not

reflect the make-up of the department.

10 DISCUSSION AND FUTURE WORK

Inspired by the breadth of opportunities that data hunches open up, in
this section we present a series of discussion threads and future work
possibilities. Some of these threads reflect on ethical considerations
for ensuring data hunches are used in productive and positive ways,
and others consider a number of technical and design challenges for
consideration. We end with a brief statement about the opportunity that
data hunches point to for considering new perspectives on knowledge.

Challenges for Designing with Data Hunches. As a proof of
concept, we used a bar chart to demonstrate how data hunches can be
implemented in data visualizations. As we developed the prototype,
we realized how quickly the additional layers of data hunches can
complicate the visualizations. It was challenging to add data hunches
in the chart while keeping the original visualization legible. For data
hunches to become established, we need to develop designs for a wide
range of visualization types. We believe that our guidelines apply
broadly, but the specific design decisions in our prototype might not
easily translate to certain types of space-filling visualizations, such as
pie charts, treemaps, or icicle plots. Also, while our framework allows
for structural hunches through inclusion and exclusion, tabular data is a
simple case compared to network data, which has much more complex
structural (topological) information. Hence, we believe that a good
amount of design work remains to be done to make data hunches work
well with such datasets.

Potential for Harm. In our advocacy for data hunches, we focus
only on the use cases for analysts with rich knowledge about their
field. Narrowing the target audience ensures that the data hunches
are based on analysts’ knowledge and experience of the field, and can
provide a richer view of the phenomenon that the data represents. The
limitation can also avoid misuse and misinformation in data hunches.
In an ideal world, our definition of data hunches implicitly assumes
that all users are positively contributing to the visualizations when
expressing their opinions and knowledge of the data. However, even
with good intentions, there is a risk that data hunches could be used
to explain away inconvenient data points, or to reinforce an analyst’s
preconceived ideas. Because of such risk, it is critical that data hunches
are treated fundamentally different from data, even if they are recorded
in the same space. A design for data hunches should go to great lengths
to avoid any confusion between the data and the data hunch. Such
risk also makes it important that data hunches come with explanations
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and justifications. Using these techniques, analysts can evaluate a data
hunch holistically and judge whether it is reasonable.

Much remains to be explored when considering how to support the
public with the ability of recording data hunches on visualizations.
Data hunches can encourage open conversations about data and visu-
alizations, similar to current online Q&A forums. Previous research
concluded that identity-based trust, social feedback, and exposure all
have positive effects on knowledge contribution [28]. Visualizations
supporting data hunches are similar to online forums, where users can
communicate their knowledge or opinions about the data through a
set of techniques and receive feedback (such as upvotes, downvotes,
and comments) from other users in the community, and the associ-
ation with identity, feedback, and exposure can positively promote
conversation and knowledge sharing about the data. However, what if
a hunch is wrong? Or worse, what if a hunch is maliciously intended
as misinformation? Previous research has discovered that data can be
used in contradicting ways, depending on how people understand the
phenomenon [42]. It is possible that a system that supports recording
and visualization of data hunches can be used with malicious intent to
fulfill a personal agenda. Moderators, allowing voting, and providing
reports mechanism can potentially help with the issue, but it remains
an open question that requires further investigations.

Trust and Privacy While we suggest that identities behind data
hunches can play a big role in building trust for data hunches, privacy
can become an issue and concern for analysts. In some settings, the
politics of an organization or field could cause vulnerable people to
remain silent about contradictory hunches, depriving others of impor-
tant perspectives [48]. Anonymity, however, can be equally caustic by
invoking negative behavior toward others with opposite views [4]. How
to ensure the value, credibility, trustworthiness, and transparency of
data hunches is an important, yet open, question.

Another interesting, open question is what happens to someone’s
trust in a visualization and the underlying data when data hunches are
communicated in a tool. Previous work [41] has reported that social
information can affect a user’s trust and memorability about the data
visualization. We anticipate similar effects with the inclusion of data
hunches. We argue in this paper that data is an imperfect representation
of reality, and making that imperfection visible is one goal of our work.
However, if data hunches make people less trusting, will designers
avoid including them, as they sometimes do with uncertainty [32]?

A reader may trust the visualization more when data hunches are
provided by experts, or when data hunches are highly rated. On the
other hand, if too many data hunches disagree with the original data,
the reader may trust the source of the visualization less. In the end,
the goal of conceptualizing data hunches and proposing a design space
for them is to formally recognize the role of personal knowledge in
understanding data and empower users to express their views. Design-
ers should fully consider the possible impacts of data hunches before
committing to including or excluding them. The work we present in
this paper is only the first step in exploring a rich space about how, why,
and when to include personal knowledge about data in visualizations.

Application Scenarios Another important consideration is what
types of visualization systems and scenarios are most appropriate for
implementing mechanisms that support data hunches. We believe that
most visual data analysis involves hunches, but designing and develop-
ing tools that support externalization and communication of multiple
data hunches is likely to require significant effort. We see two possi-
ble application scenarios that we think justify this effort. On the one
hand, data hunches could be integrated in widely used off-the-shelf
visualization libraries. For example, adding the capability to visualize
and record data hunches to a library such as Altair [66], an interactive
visualization library for Python and Jupyter notebooks, could make data
hunches accessible to a wide range of audiences. A second possible
application is bespoke systems that support recording and communi-
cating data hunches to be implemented primarily in scenarios where
the topic of the data is of shared interest among larger communities
of experts. For example, a recent project elicited feedback from the
scientific community on an animation of the SARS-CoV-2 protein struc-
ture [36]. Unlike visualization tools designed for an individual research

lab, such applications target a wider audience with shared interests,
where visualizing data hunches can lead to deeper impact compared to
casual visualizations. Finally, as designs for data hunches become more
common and libraries to add data hunches to visualization become
available, it might be feasible to integrate recording and visualization
of data hunches into a wider set of visualization tools.

Data Hunches as Structured Data Depending on the type of
hunch and the method for recording it, data hunches can also become
structured data. Value hunches recorded via data space or direct manipu-
lation, for example, are either directly available in the same space as the
original data, or can be easily translated back into data space. They are,
hence, different from e.g., annotations provided on top of a figure, as
they can be reused whenever a dataset is reused. For example, if a data
hunch is recorded for a visualization of a dataset in a Jupyter notebook,
the data hunch could be shown not only in that one visualization, but
could also be propagated to all subsequent and prior visualizations that
are based on that dataset, thereby surfacing the hunch at all stages of
the analysis process. Data hunches could also be preserved as datasets
are updated, as long as the structure is preserved. For example, if a
dataset is refined over time, possibly because of discrepancies recorded
as data hunches, a new version of a dataset could be overlaid with data
hunches recorded for the old version of the dataset, to see whether
the hunches expressed still apply. Overlaying data hunches could be
combined with an explicit comparison of datasets [24]. However, such
a workflow would incur additional visual complexity and hence would
require dedicated methods to manage that complexity.

Epistemology The visualization community has characterized the
imperfect and partiality of data as uncertainty; however, this is not the
only available classification. Within the fields of critical data studies
and digital humanities, data is an artifact of decisions and situated
contexts that reflect one captured slice of reality: “Data are capta,
taken not given, constructed as an interpretation of the phenomenal
world, not inherent in it” [18]. Data, then, as an object of decision-
making practices, is one representation of many possibilities. This
recognition is important because it highlights the non-neutrality of
data [11,16,17]. These perspective stem from different epistemological
roots. Feminist perspectives on data are based on the theory of situated
knowledges [29]. This theory posits that knowledge cannot be obtained
from a single source, but rather is best derived through a collection
and collaboration across partial and overlapping perspectives. Data,
similarly, cannot fully represent the natural world. From this theoretical
grounding, data and data hunches would capture different perspectives
of reality but contribute to a richer more complete picture. This is only a
musing, however, leading us to bigger questions such as: In what ways
could other epistemologies be productive in visualization research?
Could we better characterize and describe the entangled relationship
between data, visualizations, and people?

11 CONCLUSION
In this work, we framed the personal knowledge about how representa-
tive data is, defining such knowledge as data hunches, and analyzed the
implication of supporting data hunches in data analysis. We proposed
techniques for recording and communicating data hunches in data vi-
sualizations, listed design guidelines, and implemented a prototype to
demonstrate data hunches in action. The ultimate goal of this work is
to formalize and recognize the significant role that personal knowledge
has in understanding data, which many works overlook, and elevate
this personal knowledge into another form of information that can be
explicitly recorded and utilized. Through this work, we seek to question
the notion of data being the gold standard of representing phenomena
in the world, and open up the potential to grow visualization research
beyond constrained notions of data.
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