Ferret: Reviewing Tabular Dataset for Manipulations Supplementary Material

Devin Lange, Shaurya Sahai, Jeff M. Phillips, Alexander Lex

Case Study: DS-Driving

Retraction: https://doi.org/10.1073/pnas. 2115397118
Blog: http://datacolada.org/98
This psychology study claims that signing an honesty pledge at the top of a document leads to more honest reporting than at the bottom. This dataset is from an experiment that asked participants to report the odometer mileage of their car both before and after some period of time.

The dataset is sorted into rows. Each row corresponds to an insurance policy number. Each policy can have between 1 and 4 cars on it. As a result, there are four sets of before/after odometer columns.

Half of the rows appear to be generated by adding a small amount of noise to the original values. In addition, "after" columns appear to be generated by adding a random number between 0 and 50,000 to the "before" number.

Formatting artifacts indicate fabricated rows

On initial load, it is evident that there is some different styling in the odometer reading for the first two cars.

OMR Version Policy \# (masked) Odom Reading 1 ... Odom Reading 1 ... Odom Reading 2... Odom Reading 2...
$1 \frac{1}{5} \cdot .$.
1! \cdots
$1 \frac{1}{5}$...
$1 \frac{1}{3}$...
$1 \frac{1}{9}$...
$1 \frac{1}{5}$...

Sign Top	1	896 \|CDUNUND	39198 DVIDVDI				
Sign Bottom	2			47605			
Sign Bottom	3	21340 \|\|\|				37460 \|\|\|\|\1. 44998	59002
Sign Bottom	4	23912 \|\IDIVII					
Sign Bottom	5	16862					
Sign Top	6	147738	167895 \|CWU				
3 125820	164688						
Sign Bottom	7	18780	49811 \|\W				
\1 45402	54824						
Sign Top	8	41930		229852			
Sign Top	9	28993 /DVIDNDI		28165			
Sign Bottom	10	78382	127817 \DVWDV1				
Sign Top	11	58500					
Sign Bottom	12			95179			
Sign Bottom	13	93231	98047 (1) WUWVI				
Sign Bottom	14	83443 DVIVNDI	105094 WUWVID				
Sign Bottom	15	22008 (1) WIDID	26486 (1) WVID				
Sign Bottom	16	27950		126309			
Sign Bottom	17		100475 WUWU				
27617	74443						
Sign Bottom	18	32753	76724 (1) WDVID				
Sign Top	19	33044	70775 NWWND				
Sign Bottom	20		109961				
W							
\1 19548	47796						
Sign Bottom	21	121699	137849 \WWW\a				
Sign Top	22	16094	45489				
159167	200316						
Sign Top	23	78182 WVWNDV	122739 \UWCD. 21730	37863			
Sign Bottom	24	21735 IDIDIVID		77258			
Sign Top	25	47473		47293			
Sign Bottom	26	121416		86852			
Sign Bottom	27	4616 NDNDND					
Sign Bottom	28	13604 NDWNDI	31750 NDCND\a				
Sign Bottom	29	125000	139801 \|l				
Sign Top	30	40463	70095 (1) WVIDI				
Sign Top	31	34823	78262 NWWNW,				
Sign Top	32	120296 DVIWDI	137162				
1 138617	169196						
Sign Top	33	79173					
Sign Bottom	34	110372 WNCWN)	142100 NDVWVa				
Sign Bottom	35		41419				
WVW\3							
Sign Top	36	26017 WWWWW	60347				
W							
12996	17179						
Sign Top	37	149000	177873 WWWW				
,							
Sign Top	38	15939 /DVWUNW	17025 (1) WIDIDI				

On closer inspection, the difference is due to a difference in font between Cambria (Blue), and Calibri (White, no highlight).

After switching to the Structural Overview, the pattern appears to continue through the entire 13,488 rows of the table:

Odom Reading 1 ... Odom Reading 1 ...
$\downarrow \frac{1}{9} \cdots$
1! \cdots

However, sorting by the odometer 1 reading results in several interesting patterns:

The values under 100 are almost entirely Calibri font. The values between 100 and 1000 are predominantly in Cambria.

Throughout the column, there are regular chunks of Calibri only font. These appear around round numbers. Cambria does not have the same large repeated regions around these large numbers. Larger runs of Cambria appear to be spurious (see below), and do not contain repeated numbers.

For the high values of the column you see rows altering back and forth between Calibri and Cambria.

Expanding the rows provides more detail. On closer inspection, it appears that every Calibri value has a Cambria equivalent that is within 1000 values.

Odom Reading 1 ... Odom Reading 2... Odom Reading 3... Odom Reading 4...

This is especially strange if you sort by the number of cars in the policy so you can easily see all of the policies with four cars. For each row with four cars in Calibri, there is an equivalent in Cambria where the odometer reading is within 1000 miles for each car.

Odom Reading 1 ... Odom Reading 2... Odom Reading 3... Odom Reading 4...
$2 \downarrow \frac{1}{9}$...
$\downarrow \frac{1}{9} \cdots$
$1 \frac{1}{9}$...
$\downarrow \frac{1}{9}$...

	100512	163756	
0	120000	125000	146000
13	130240	37910	80791
	131045	38591	80980
	120126	125099	146367
1053	134778	175000	132000
1995 DVDNDDD	135427	175847	132596
8907	104849	35094	91640
	105406	35642	92607
10111	145650	176230	147569
10991 \| DDV 1	145902	176424	148268
11652	71000	13938	17911
	71384	13946	18711
14437	13640	17879	33864
14846 (1) WDUND	13821	18864	33985
17330	106000	43218	104591
18235 /DIDNDID	106253	43457	104916
18904	13024	103791	96954
19827 DUDUDUD	13425	103939	97538
34114	64000	34000	98885
34840 NDNDNDI	64523	34667	99180
41279	73641	45283	112415
41588 DVIDVID	73757	46236	112457
47600	6500	15000	39000
	6901	15105	39364
49675	17709	27357	64428
	18421	27714	64784
51016	244058	120336	172906
51046 / WDCNDID	244307	120958	173372
57000	123663	16000	90000
57640 (1) DDVIDI	123666	16469	90026
58826	244390	122407	176373
59132	127063	26508	105626
59535 DCDUDVI	245203	123282	176947
	127872	27090	106443
89027	30	169777	143537
89625 (IDIDIDII	1006	170410	143617
90367	14781	170958	147750
	15425	171105	147822
128392	124477	87000	14255
128516 (1) WDVIJ	124659	87127	14862
128628	132997	88688	145681
129585 DIDNDID	133119	89193	146241
602368	152327	130210	152600
603001 NDNWND	153284	130947	153254

These attributes indicate that rows were copied to a temporary worksheet, then increased by a random noise function between zero and 1000, and added back into the original worksheet.

Numerical artifacts and deviations from domain expectations indicate fabricated columns

Moving beyond the formatting to the numerical artifacts. There appears to be a difference in how many duplicates are in a column in the Previous column compared to the Update column. The previous column contains many duplicates of round numbers such as 50000 .

Duplicate Numbers			
Odom Reading 1 (Previous)	Odom Reading 1 (Update)	Odom Reading 2 (Previous)	Odom Reading 2 (Update)
$1 \frac{1}{9} \mathrm{~F}$	1! $\dagger \cdots$	$1 \stackrel{1}{9} \boldsymbol{\gamma}$	\downarrow_{9}^{1} Y
$0-\square 117$	$82090-\square$	$0-\square 7882$	$0-\square 7839$
$10-\quad 35$	$98047-{ }^{3}$	50000-19	67697-3
$60000-30$	$42286-\square 3$	60000-16	$45151-3$
$50000-{ }^{26}$	$50109-3$	75000-16	18714-2
$70000-23$	$49240-\quad 3$	100000-16	$51738-2$
$0 \quad 50 \quad 100$	$\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$	$\begin{array}{lll}0 & 4,0008,000\end{array}$	$\begin{array}{lll}0 & 4,0008,000\end{array}$
expand 770 more items	expand 498 more items	expand 275 more items	expand 99 more items

Since some blank fields are appearing as zero here, we can choose to ignore zero from our analysis to make the relevant data more clear.

In addition, to which numbers are duplicated a lot, we can see how many times a number has been duplicated in the replicates chart.

In addition, to duplicate numbers, looking at duplicate sequences of digits again reveals that the Previous column includes the digits " 000 " much more frequently than the Update column.

Duplicate Digits			
Odom Reading 1 (Previous)	Odom Reading 1 (Update)	Odom Reading 2 (Previous)	Odom Reading 2 (Update)
15 T ...	1\% T ...		11 Y \ldots
${ }^{000}-1974{ }^{160}$	${ }^{109-\square}{ }^{132}$	$0^{000-528}$	${ }^{113-\square}$
	${ }_{1102-}^{116}$		${ }_{117}^{119}-$
${ }_{200-302}^{100}$	$116-$ $108-$	${ }_{\text {coser }}^{100-147}$	$117-$ $108-$
$600-243$	$100-\square$	$300-103$	$100-54$
1,500	- $50 \quad 100$	0200400600800	O $20 \quad 4060$
expand 995 more items			

Finally, if we look at just the final trailing digit of each number, you can again see the much higher frequency of zero in the Previous column compared to the Update column.

Trailing Digits			
Odom Reading 1 (Previous)	Odom Reading 1 (Update)	Odom Reading 2 (Previous)	Odom Reading 2 (Update)
1t $\mathrm{T}^{\text {... }}$	1t $\mathrm{T}^{\text {... }}$	$1{ }^{1} \mathrm{~T}$...	$1{ }^{1} \mathrm{~T}$...
$\begin{aligned} & 0.2-\square \\ & 0.1-\square\| \|\| \|\| \| l\|l\| l \mid \end{aligned}$	$\begin{aligned} & 0.10-10-1 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.10- \\ & 0.05- \end{aligned}$	
	0.00 -		

With all of these charts, it is clear that there is a rounding effect present in the Previous column but not in the Update column. This may lead you to question the relationship between the Previous and Update column.

With the general visualization analysis tool in Ferret, it is easy to plot scatter plots of these two columns for the four different pairs of columns.

These plots reveal a strange correlation between the Previous and Update columns. That is, the miles driven falls below 50,000 miles.

It is believed that the Update column was generated by adding a random number between zero and 50,000 miles.

Interestingly, this plot also hints at the duplicated rows. Examining the tails closely will reveal that points are always grouped in pairs. There is always at least one point within 1000 miles in the x -axis for any specific x value.

Bonus, including font as a column

All analysis prior to this, was done with the original excel data sheet within Ferret. Adding a categorical column to track the font and loading it back into Ferret provides a few more options.

First, the observations of pairs at the extreme are strengthened by the fact that the pairs always include one Calibri formatted cell and one Cambria formatted cell.

Furthermore, if we plot a violin plot of the previous column faceted by the font, you see they are extremely similar, again strengthening the hypothesis that these data are nearly copies.

Lastly, we can also observe the lack of rounding effects in the Cambria plot using the trailing digit frequency visualization combined with dynamically filtering out one font compared to another.

Case Study: DS-Gaming

Retraction: https://doi.org/10.1038/s41598-020-66798-w
Blog: http://steamtraen.blogspot.com/2020/04/some-issues-in-recent-gaming-research.html

This study looked for a relationship between video gaming habits and sleep habits. A survey was sent over email asking about video gaming habits, demographic information, and sleeping habits. The paper contains a table with summary statistics based on survey responses. Nick Brown, the author of the blog associated with this dataset converted the table into an excel file which we have utilized.

Repeated Regions

Since this table only contains 68 rows in total, the amount of duplicate numbers is a bit high, though it may not be enough to be conclusive on its own.

After highlighting some numbers, however, repeated regions become more clear.

Case Study: DS-Covid

Retraction: https://grftr.news/why-was-a-major-study-on-ivermectin-for-covid-19-just-retracted/ Blog: http://steamtraen.blogspot.com/2021/07/Some-problems-with-the-data-from-a-Covid-study.html

This dataset collected data on how effective and safe ivermectin is for testing Covid-19.

Unexpected Formatting

This dataset contains many instances of unexpected formatting. Excluding the cell data format from the formatting highlighting makes it easier to identify relevant formatting discrepancies, such as outlier fonts:

By including the data format of cells in the styling criteria it is easier to spot issues with the actual malformed data. Such errors and inconsistencies are immediately obvious in the detailed view of the table.

The overview mode can also be helpful in reviewing how many errors of this kind exist. For instance, here, the left column is recording date values. Orange rows are correctly formatted as a date in Excel, whereas white and yellow rows are strings. In this figure, roughly half of the rows are recorded correctly.

The right column is recording numerical values. The teal rows are correctly formatted as numbers, and the white ones are invalid numbers formatted as strings, such as " 9.0% "

These types of errors are likely the result of entering data into a spreadsheet manually.

Unexpected Trailing Digit

There are four columns within this dataset that show a strange preference for even numbers over odd ones. This can be in the following Trailing Digit visualizations. The blog for this post dataset does mention asymmetry in odd/even values for the Age column, however, it does not mention it for the other three columns identified by Ferret.

DS-Spider: Dataset Description

Blog: https://laskowskilab.faculty.ucdavis.edu/2020/01/29/retractions//
The three spider studies share some common authors and were retracted in the same wave. The three datasets are related to each other but have different structures and attributes.

All of the datasets include a "boldness" of spiders. This "boldness" was measured by recording how long it will take spiders to reemerge from their enclosure after a simulated predator attack.

Case Study: DS-Spider-E

Retraction: https://doi.org/10.1098/rspb.2020.0077

Duplicate Numbers Artifact

The five Boldness columns in this dataset, all show a very large number of 600s. Since these are time measurements, 600 seconds corresponds to 10 minutes, the maximum amount of time they waited for a spider to reemerge. In other words, there is a reasonable explanation for these duplicates.

Their presence distorts the bar chart scale, making it difficult to see other duplicate values.
. Ignoring 600 globally removes it from the analysis and strikes out the 600 s in the table view. This is different from removing any row that contains a 600 as that would remove a large relevant data to examine.

----Boldness 1	Boldness 2	Boldness 3	Boldness 4	Boldness 5
$\downarrow_{9}{ }^{\text {T }}$.	1\% ${ }^{1}$	$1 \frac{1}{9}$ ¢	$1 \stackrel{1}{9}$...	1\% 7 .
$338-\square$	$16.52-{ }^{3}$	$104-\square 3$	$43.51-3$	484.74
$1.23-\square$	$180-\square$	$313.37-{ }^{2}$	$500-\square$	$184.62 \square{ }^{2}$
1512.34- $\square{ }^{2}$	$204.62-2$	$502-2$	$232.69-\square$	$164.62-2$
$13.24-\square$	$1.23-\square$	$64.51-2$	$555.64-2$	50.41
$85-\square{ }^{2}$	$97-12$	$93-12$	$15.62-2$	$151.34-2$
0.00.5 1.01 .51 .52	$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$	$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$	$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$	012
expand 3 more items	expand 12 more items	expand 30 more items	expand 8 more items	expand 5 more items
225.97	590.53	600.000	600.00	600.00
60.00	85.00	101.660	405.32	13.21
600.00	400.34	600.000	354.62	600.00
468.00	101.24	176.590	39.10	600.00
600.00	171.28	313.370	600.00	184.62
547.00	424.84	542.360	180.03	545.64
87.00	55.25	97.120	13.33	44.64
. 3.38.00	.592.16	-.4.52.13.L	566.18	-- 4.97 .6 .1

The amount of remaining duplicates is still large for this dataset of 350 rows, especially with the two degrees of precision listed. Highlighting 104 in the Boldness 3 column makes it easy to examine the neighborhood of cells.

Repeated Regions Artifacts

Highlighting more values makes it more obvious that at least one duplicated row exists in this dataset.

Unexpected Varied Precision Artifacts

The precision analysis reveals an interesting pattern. There are more values with 0 digits of precision than there are with 1 digit of precision. Since these are time measurements, you would expect most values to have two digits of precision (e.g. 3.12 seconds), less with one digit of precision (e.g. 3.1 seconds), and very few to have zero digits of precision (e.g. 3 seconds).

This anomaly is not due to the large numbers of 600s. The chart above is ignoring 600s. The chart below is what it would look like with 600s included.

The expected results are easy to simulate. The charts below are created from an excel spreadsheet that used round(rand(),2) in five columns by 350 rows (the same dimensions as the real data) to simulate the last two digits of a stopwatch.

This unexpected distribution of precision is not mentioned in any blog posts.

Case Study: DS-Spider-P

Retraction: https://doi.org/10.1098/rsbl.2020.0062

Duplicate Numbers Artifact

Similar to DS-Spider-E there is a duplicate numbers artifact in this dataset of 479 rows. Again 600 is ignored from the analysis.

Repeated Regions Artifact

Highlighting the most duplicated value (2.33) in the Prosoma columns shows that these values are from actually repeated regions.

Ordering Artifacts.

The image above also illustrates an ordering artifact in this dataset. The ROW column is the original row value in the dataset (automatically inserted by Ferret). The Expt.colony and ID columns share a strange relationship with ROW.

Sorting by the ID column reveals that 2.33 appears even more like a repeated region with the data sorted by ID (which it is likely to have been at some point). In addition, this sort shows that

ID and Expt.colony also share a strange relationship with each other. This ordering artifact is not mentioned in any blog posts.

Case Study: DS-Spider-I

Retraction: https://doi.org/10.1086/708066
This dataset is still related to the same boldness measurement of spiders. However, it is formatted differently than the previous two - it is in long format. Before each row contained all of the boldness scores for a single spider. In this long format, each row corresponds to one observation. So there are 5 rows of observation for each spider.

Ordering Artifacts

There are a few unusual ordering patterns in this dataset.

The obs column generally follows a repeated structure, of 1,2,3,4,5. Alternating through the 5 observations for each individual spider. However, this pattern is broken several times.

There is also unexplained ordering in the Percent.mass.change column.

This column is monotonically increasing for a majority of the dataset with the exception of the very first value, and the last few values. It is not clear how this ordering could occur. Neither of these ordering artifacts are mentioned in any blog post.

Duplicate Numbers Artifacts

Similar to the other spider datasets, the boldness columns contain many duplicates.
Since this dataset is in long format, there are only two columns. Pre.boldness and Post.boldness. With 1745 rows.

expand 308 more items

expand 272 more items

Repeated Regions

We know that this dataset contains repeated regions thanks to the blog post written about it by one of the co-authors of the retracted paper. That blog mentions the duplicate numbers found in the data in this form, then describes how when the wide formatted version of this data contained repeated regions. Since Ferret does not support the ability to convert between long and wide data formats we were not able to identify this known artifact in this dataset.

Case Study: DS-Glioma

Retraction: https://doi.org/10.1021/acs.molpharmaceut.9b00837
Blog: NA - found via retraction watch.
This dataset contains numerical measurements of fold change of mouse embryonic stem cells.

When loading this dataset, it is evident there are a few outlier cells with regard to formatting.

Formatting artifacts

These four outlier table cells still have an unset font and font-size. In excel these 4 cells are displayed and listed as Arial/10. However, there is a still difference in how the cells are saved, indicating some difference in formatting happened to these cells compared to the others at some point. This formatting artifact has not been mentioned in any blog post.

Duplicate Numbers Artifact

Switching to the numerical analysis, we can see that the Fold change only has one value duplicated (4.8206), but it is duplicated 13 times in a dataset of under 84 rows.

By highlighting the frequent value and switching to overview mode, we can clearly see the repeated region. This repeated region artifact has not been mentioned in any blog post.

Case Study: DS-Fly

Editor's Note: https://www.doi.org/10.1098/rspb.2021.0505
Blog: https://pubpeer.com/publications/70DDAFDEA32DD2D9181998DBF1EECB

This biology experiment was studying the behavior of flies. This dataset contained two separate sheets. The first contains a column named diameter, which is the diameter of the flies. The second sheet includes dispersal, which measures the distance a fly has flown.

Formatting artifacts

In the first analysis of Sheet 1, an outlier in formatting can be quickly spotted:

Switching to the overview mode reveals a bigger picture. This column contains three different kinds of formatting (ignoring the cell data format). This formatting artifact has not been mentioned in any blog post.

In the second sheet we see that dispersal is formatted differently than the rest of the sheet. On closer investigation, it has the same font as the green cells from sheet 1 (Verdana, 10-point).

Stepping through the numerical artifacts in dispersal column appears to have some unexpected variation in precision.

Ordering artifact combined with precision artifact

In Sheet 1, the diameter column has this same variation in precision. There also appear to be some ordering effects with respect to if values have 2 degrees of precision, or many.

The first three regions of non-null diameters all have 2 digits of precision.

ROW	T diam	
-	lı̂z Q	
28	-	
29	-	
30		20.19
31		22.22
32		19.99
33		21.42
34	-	
35	-	
75	-	
76		15.68
77		18.95
78		21.02
79		16.78
80		19.11
81		19.85
82		16.52
83	-	
84	-	

\cdots		
101		
102		16.23
103		18.25
104		14.75
105		19.22
106		17.24
107		16.98
108		
109		

In the next region, every number has high precision:

129
$130 \quad 19.182055669222805$
13119.250352060765866
13219.225638308856986

134

After this, there are larger regions of nun null values. These vary, but they are predominantly filled with high precision numbers, with a few low precision numbers near the bottom of the region.

213
-
$214 \quad 12.233923184938636$
$215 \quad 17.023932759034206$
$216 \quad 18.282996426388973$
$217 \quad 20.688780448623383$
$218 \quad 20.71885488335425$
$219 \quad 20.88786368060483$
$220 \quad 21.626116559670525$
$221 \quad 23.375222757418683$
22519.5
$226 \quad 16.24$
227 -

	-
319	-
320	17.665179804485
321	19.682002079175124
322	21.050236949953526
327	16.24
328	-
	-
512	-
513	13.590875280868142
514	15.021849729490205
515	15.45706703080656
516	15.58543819176719
517	16.591257829707036
518	16.70496590594684
519	22.170371221034777
522	15.45
523	17.8
524	-
	-
580	-
581	13.273803525640387
582	15.357050841163028
583	20.31891757217873
584	22.41311229861569
589	15.42
590	20.4
591	-

Case Study: DS-Priming

Retraction: https://link.springer.com/article/10.1007/s11002-016-9401-6
Blogs:

- https://blog.openmktg.org/2021/07/retracted-article-why-money-meanings.html
- https://www.tandfonline.com/doi/full/10.1080/01973533.2015.1124767

This psychology study measured different priming effects on charitable behavior. Specifically, if there was a difference in being primed with words related to cash vs. credit cards. They provided word completion tasks and counted the number of words the participant responded with that indicated a benefit of volunteering (NumBen) and the number of words that correspond to a cost of volunteering (NumCost). The original dataset included an experimental condition with four values. For convenience we have added a new column to the beginning of the dataset (CashOrCredit_Ferret)

Deviations from domain expectations in response distribution

The primary numerical data from this dataset is the number of cost words and benefit words selected by each participant. One way to view this data is through a scatterplot

Due to overplotting, opacity is used to distinguish points with a few participants (light gray) and many participants (dark gray). In the first scatterplot you see can many participants near the boundaries (5 benefit words, 0 cost words), and (0 benefit, 5 cost words). Applying a color and shape encoding reveals more information, that most of the $(5,0)$ participants are in the credit condition and the $(0,5)$ are mostly in the cash condition.

Switching to faceted strip plots reveals that in $(5,0)$ and $(0,5)$ there is only one outlier.

Repeated Regions of word responses

Back in the tabular visualization sorting by NumBen and NumCost is a convenient method to surface the $(0,5)$ group in the table. Examining the word responses reveals that most of the participants in this group produced the same word across multiple different trials.

	NAP	SPOOK	RECOVERY	0	5
FOOT	NAP	SPOOK	RECOVERY	0	5
FOG	NAG	SPOKEN	RECOMMEND	0	5
FOND	NAP	SPOOK	RECOVERY	0	5
FOOT	NAP	SPOOK	RECOVERY	0	5
FOOT	NAP	SPOOK	RECOVERY	0	5
FOOT	NAP	SPOOK	RECOVERY	0	5
FOOT	NAP	SPOOK	RECOVERY	0	5
FOOL	NAP	SPOOK	RECOVERY	0	5
FORT	NAP	SPOT	RECONSTRUCT	0	5
FOOL	NAP	SPOOK	RECOVERY	0	5

Case Study: "Clean" Dataset

Paper: https://pubmed-ncbi-nlm-nih-gov.ezproxy.lib.utah.edu/28783718/

Dataset Source:

https://www.cbioportal.org/study/summary?id=metastatic solid tumors mich 2017

We assume that this data is not fraudulent. We picked it by randomly selecting a medium-sized dataset listed on the first page of https://www.cbioportal.org/.

Duplicate Numbers

The first numerical column is age, which records the age of the patient as a whole number. Here we can see that duplicate ages are present. However, the number of duplicates are not alarming. There are roughly 100 possible values, and 500. If the ages were uniformly distributed you would expect 5 duplicates of every age. However, as we can see the ages are not uniform, with a peak between 50-70 years of age. The most frequently duplicated values are in this common range. This is an expected pattern.

\qquad

Trailing Digits

For Column TMB (nonsynonymous) there is a strange pattern for the trailing digits at first glance:

TMB (nonsynonymous)

There is a very high frequency of 3 s and 7 s . However, a quick review of the first few numbers below gives a reasonable explanation for this. The numbers appear to be fractions converted to numbers.

TMB (nonsynonymous)

$$
\begin{array}{r}
203.8333333330000 \\
101.1333333330000 \\
80.0666666667000 \\
74.0000000000000 \\
59.5666666667000 \\
57.3333333333000 \\
50.2333333333000 \\
49.7666666667000 \\
47.6333333333000
\end{array}
$$

With some extra effort, it can be seen that these are all fractions of 30 :

- $26 / 30=0.833333$
- $4 / 30=0.133333$
- $2 / 20=0.066666$
- $0 / 30=0.00000$
- $17 / 30=0.56666$
- $10 / 30=0.33333$
- $7 / 30=0.233333$
- $23 / 30=0.766666$
- $19 / 30=0.633333$
- ...

Precision

Similarly, precision may appear strange at first, but can be explained by the same phenomenon.

TMB (nonsynonymous)

Domain expectations

It is not possible for me to effectively determine if data breaks domain expectations in an unexpected way. That said, I did notice that two variables appear to be perfectly correlated, specifically Mutation Count and TMB (nonsynonymous)

However, after a quick google search, I found this article https://www-ncbi-nlm-nih-gov.ezproxy.lib.utah.edu/pmc/articles/PMC7710563/

Which defines TMB as "... the number of somatic mutations per megabase of interrogated genomic sequence, varies across malignancies." So it does seem reasonable that the values are directly related to each other.

