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Gibbs sampling refresh

I Introduced by Geman and Geman[3] as a special case of
Metropolis-Hastings sampling.

I the random sample is always accepted (i..e α = 1).

I Often used to generate multivariate distribution.

I Assume all conditional distributions are available and easy to
generate samples from them.

I By sampling from conditioinal distribution, Gibbs sampling get
samples from marginal distribution, without having to
calculate the density itself. Conditional distribution p(x|y) is
easier to compute than integration of joint density

∫
p(x, y)dy
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Prodedures of Gibbs Sampling

Consider byvariate random variable (x, y). Assume pdf f(x|y) and
f(y|x) are known and can easily generate samples, but the density
f(x) and f(y) may be hard to get.

Step 1: Initialized 1st sample y0

Step 2: Draw xi and yi from the conditional distribution as follows:

xi ∼ p(x|y = yi−1)
yi ∼ p(y|x = xi)

Step 3: Accept every candidate from x1 . . . xN
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Estimate probability density

Gibbs sampling can be used to estimate density by averaging the
final conditional densities from multiple Gibbs sequence[1]. For
bivariate,

I Generate m Gibbs sequence, and get y1 . . . ym, the final Y
observations from each Gibbs sequence.

I Estimate f(x) by

f̂(x) =
1
m

m∑
i=1

f(x|yi)

The theory behind this: Because f(x, y) = f(y) · f(x|y), the
marginal density f(x) =

∫
f(x, y)dy =

∫
f(x|y) · f(y)dy

4/10



Compare the density

Example: bivariate normal distribution with mean µ1, µ2 and
variance σ2

1, σ2
2, and correlation ρ. And[4]

f(x1|x2) ∼ N(µ1 +
ρσ1

σ2
(x2 − µ2), (1− ρ2)σ2

1)

f(x2|x1) ∼ N(µ2 +
ρσ2

σ1
(x1 − µ1), (1− ρ2)σ2

2)

Compare the density functions recovered from samples generated
by three emthods.

1: Generate i.i.d samples x2 from m Gibbs sequences, and
compute f(x1) based on conditional distribution.

2: Generate samples x1(correlated) from one long Gibbs
sequences by extracting every rth observation, and compute
f(x1) by kernel density estimation.

3: Generate samples by mvrnorm in R (MASS library), and
compute f(x1) by kernel density estimation.
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Test on 3 methods by nenerating 1000 samples
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Compare the 3 methods

It’s hard to see which is best from only sample mean and variance.
µ σ2 ρ

multiple Gibbs -0.022 1.008 -0.74
Single Gibbs 0.025 1.000 -0.76
R method 0.009 0.947 -0.75
true 0 1 -0.75
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estimated pdf with 3 methods
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estimated pdf with 3 methods
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Discussion

The f(x|yi) have more information about f(x) than x1 . . . xN

alone, and will get better estimates. The intuition behind this
feature is the Rao-Blackwell theorem[2].
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