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Abstract

Implement Gibbs Sampling in R; Draw samples from bivarate distribution with known conditional
distribution but with marginal distribution unknown. Compute the variance of the sample mean, sample
variance of the samples generated by Gibbs sampling. Estimate probability density function by Gibbs
sampling and compare three methods.1.

1 Gibbs Sampling and Monte-Carlo Estimate of the variance

As a variant of Metropolis-Hastings sampling, Gibbs Sampling are often used for multivariate distribution
sampling, where we know conditional distribution but do not know the joint distribution. Often the condi-
tional distribution is in simple form like χ2 or normal distribution, so we can have all random variable fixed
but only one, and draw samples from the conditional distribution f(xi|x1, x2 . . . xi−1, xi+1 . . . xd).

One can use a single long Gibbs sequence. After some ‘burn-in’ period ( will take about this later), say 2, 000
sampling from x1 to xd, where d = 2000, the Marcov-Chain is believed to be stationary, and we accept all
m samples from xd+1 to xd+m. The samples may still be dependent, but the empirical distribution of these
samples converges to f(x)[1]. In my test I used this method (as method 2 in the slides) to generate samples,
and estimate pdf using these samples.

Or we can use multiple Gibbs sequences. For each single Gibbs, we only preserve the final observation of
the samples. Because different Gibbs sequences are independent, the samples are accordingly, independent.
This method usually takes longer time than single Gibbs sequence, as each sequence need a ‘burn-in’ time.
It could be run in parelled to improve the performance. I used this method (as method 1 in the slides) to
generate samples and estimate the pdf.

In the experiment of this part, I implement the Gibbs sampling on a bivariate normal distribution with mean
µ1, µ2 and variance σ2

1 , σ2
2 , and correlation ρ. And[3]

f(x1|x2) ∼ N(µ1 +
ρσ1

σ2
(x2 − µ2), (1− ρ2)σ2

1) (1)

f(x2|x1) ∼ N(µ2 +
ρσ2

σ1
(x1 − µ1), (1− ρ2)σ2

2) (2)

Because the sample mean and variance is also random variable and may be inconsistent, I also used monte-
carlo method to compute the variance of the sample mean and sample variance. Besides the 2 Gibbs sampling
method above, I also draw the sample with another variant of Gibbs Sampling (method 3), and a regular
R’s method (the mvrnorm in MASS library) for comparison perpose. The results is in table 1.

From talbe 1, it is hard to see which one is better. As these statistics is also random variables, I used
Monte-carlo to repeat Gibbs sampling 50 times and compute the variance of these sample statistics, and the
results in table 1

1part of this document came from the slides of the presentation, which I also uploaded with name as ‘final.pdf’.
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µ σ2 ρ
multiple Gibbs -0.022 1.008 -0.74
Single Gibbs with sampling interval 0.025 1.000 -0.76
Single Gibbs with continous sampling -0.115 1.046 -0.73
R method 0.009 0.947 -0.75
true 0 1 -0.75

Table 1: Sample mean µ, sample variance σ2 and sample correlation ρ computed from the samples generated
by four methods. Single Gibbs with sampling interval means after the ‘burn-in’, we pick out one sample
every rth samples, to eliminate the correlation between adjacent samples. R method refer to the mvrnorm
function in R’s MASS lib. The methods is, unfortunately unknown.

Var(µ) Var(σ2) Var(ρ)
multiple Gibbs 0.009 0.018 0.002
Single Gibbs with sampling interval 0.010 0.021 0.001
Single Gibbs with continous sampling 0.030 0.041 0.005
R method 0.009 0.021 0.002

Table 2: variance of the sample mean, sample variance and correlation between two random variables

From table 1 we can see among the three Gibbs smapling method, multiple Gibbs sequence have least
variance on the µ, σ2 and ρ. This is reasonable because multiple Gibbs have indepent samples, while the
other two methods do not. The R’s method have similar variance with multiple Gibbs.

2 Estimate pdf with Gibbs Sampling

Gibbs sampling can be used to estimate the density distribution. Here we do not use the samples x1 . . . xm

with kernel density estimation. Instead, we can make use of the conditional densities (which we assume is
already known). Take bivariates as example, we can use the average of f(x|y = y(i)) as a approximation of
f(x). Here we use y(i) as the ith observation of random variable y. And the formula is

f̂(x) =
1
m

m∑
i=1

f(x|y = y(i)) (3)

The theory behind this is the marginal distribution can be seen as the expected value of conditional distri-
bution, i.e.

f(x) =
∫
f(x, y)dy =

∫
f(x|y) · f(y)dy (4)

In the experiment of this part, I compare the density functions recovered from samples generated by three
emthods (didn’t try the Gibbs sampling with continous sample because of its low performance)

1: Generate i.i.d samples x2(i) by equation 1 and 2 from m Gibbs sequences, and compute f(x1) based
on conditional distribution by formula 3.

2: Generate samples x(i)
1 (correlated) from one long Gibbs sequences by extracting every rth observation,

and compute f(x1) by kernel density estimation. Here I choose r as 1000, which is long enough to
eliminate most of the dependence between x(i) and x(i+1).

3: Generate samples by mvrnorm in R (MASS library), and compute f(x1) by kernel density estimation.
For ernel density estimate, I just use the density function in R with the default Gaussian kernel.

The estimated pdf is in figure 2. We can see the multiple Gibbs sampling have better estimation than the
other two. The overlappd estimated pdf is in 2
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Figure 1: estimated density function by 3 methods: Multiple Gibbs, single Gibbs, and regular R method

Figure 2: Overlapped density function by 3 methods: Multiple Gibbs (in red color), single Gibbs (in blue
color), and regular R method (in black color). The true pdf is also given in green color.
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3 Discussion

There are two explanation that Gibbs sampling with conditional distribution is better. One is it makes use
of the conditional distribution, which is a analytical form and have more information than just samples. The
explanation can also be found in Rao-backwell theorem[2].

A Comments on the R code

The R function var est is the main function for estimating the variance of the sample mean, variance and
correlation. It calls multigibbs, longgibbs and naivegibbs function to generate the following three Gibbs
sequence: 1) Multiple Gibbs sequence of method one, 2) Single long Gibbs of method 2 (with gaps between
samples), and 3) the single Gibbs with continous sampling. The var est also call regmethod, which use R’s
package MASS to generate samples.

The function pdf est is the main function for estimating pdf.
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