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A DISCONTINUOUS GALERKIN METHOD TO SOLVE THE EEG
FORWARD PROBLEM USING THE SUBTRACTION APPROACH∗

CHRISTIAN ENGWER† , JOHANNES VORWERK‡ , JAKOB LUDEWIG§ ,

AND CARSTEN H. WOLTERS¶

Abstract. In order to perform electroencephalography (EEG) source reconstruction, i.e., to
localize the sources underlying a measured EEG, the electric potential distribution at the electrodes
generated by a dipolar current source in the brain has to be simulated, which is the so-called EEG
forward problem. To solve it accurately, it is necessary to apply numerical methods that are able
to take the individual geometry and conductivity distribution of the subject’s head into account.
In this context, the finite element (FE) method (FEM) has shown high numerical accuracy with
the possibility to model complex geometries and conductive features, e.g., white matter conductivity
anisotropy. In this article, we introduce and analyze the application of a discontinuous Galerkin (DG)
method, an FEM that includes features of the finite volume framework, to the EEG forward problem.
The DG-FEM approach fulfills the conservation property of electric charge also in the discrete case,
making it attractive for a variety of applications. Furthermore, as we show, this approach can alleviate
modeling inaccuracies that might occur in head geometries when using classical FE methods, e.g., so-
called “skull leakage effects,” which may occur in areas where the thickness of the skull is in the range
of the mesh resolution. Therefore, we derive a DG formulation of the FEM subtraction approach
for the EEG forward problem and present numerical results that highlight the advantageous features
and the potential benefits of the proposed approach.
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1. Introduction. Electroencephalography (EEG) source reconstruction is nowa-
days widely used in both research and clinical routine to investigate the activity of the
human brain, as it is a noninvasive, easy to perform, and relatively cheap technique
[29, 17]. To reconstruct the active brain areas from the electric potentials measured
at the head surface, it is necessary to simulate the electric potential generated by a
dipolar current source in the gray matter compartment of the brain, the so-called EEG
forward problem. The achievable accuracy in solving the forward problem strongly
depends on a realistic modeling of shape and conductive features of the volume con-
ductor, i.e., the human head. Therefore, it is necessary to apply numerical methods
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to solve the underlying partial differential equations in realistic geometries, since an-
alytical solutions exist for only a few special cases, e.g., nested shells [21]. Different
numerical methods have been proposed to solve this problem, e.g., boundary ele-
ment methods [33, 1, 28, 45], finite volume methods [20], finite difference methods
[55, 49, 32], or finite element FE methods (FEMs) [13, 31, 41, 25, 37, 35]. FEMs
were shown to achieve high numerical accuracies [25, 52] and offer the important
possibility of modeling complex geometries and also anisotropic conductivities, with
only a weak influence on the computational effort [51]. The computational burden of
using FE methods to solve the EEG forward problem could be clearly reduced by the
introduction of transfer matrices and fast solver methods [54, 26, 58].

One of the main tasks in applying FE methods to solve the EEG forward problem
is to deal with the strong singularity introduced by the source model of a current
dipole. Therefore, different approaches to solve the EEG forward problem using the
FEM have been proposed, e.g., the Saint-Venant [47, 43, 18, 52], the partial integration
[61, 54, 48, 52], the Whitney or Raviart–Thomas [46, 35], or the subtraction approach
[13, 31, 41, 60, 25, 52]. All these approaches rely on a continuous Galerkin (CG) FEM
(CG-FEM) formulation, also called Lagrange or conforming FEM, i.e., the resulting
solution for the electric potential is continuous.

The use of tetrahedral [31, 25, 51] as well as that of hexahedral [41, 39, 7, 6] meshes
has been proposed for solving the EEG forward problem with the FEM. Tetrahedral
meshes can be generated by constrained Delaunay tetrahedralizations (CDT) from
given tissue surface representations [25, 51]. This approach has the advantage that
smooth tissue surfaces are well represented in the model. On the other hand, the
generation of such models is difficult in practice and might cause unrealistic model
features, e.g., holes in tissue compartments such as the foramen magnum and the optic
canals in the skull are often artificially closed to allow CDT meshing. Furthermore,
CDT modeling necessitates the generation of nested, nonintersection, and nontouch-
ing surfaces. However, in reality, surfaces might touch, for example, the inner skull
and outer brain surface. Hexahedral models do not suffer from such limitations, can
be easily generated from voxel-based magnetic resonance imaging (MRI) data, and
are more and more frequently used in source analysis applications [39, 7, 6]. This
paper therefore focuses on the application of FE methods with hexahedral meshes.
However, the application of the CG-FEM with hexahedral meshes has the disadvan-
tage that the representation of thin tissue structures in combination with insufficient
mesh resolutions might result in geometry approximation errors. It has been shown,
e.g., in [44], that the combination of thin skull structures and insufficient hexahe-
dral mesh resolutions might result in so-called skull leakages in areas where scalp and
Cerebrospinal Fluid (CSF) elements are erroneously connected via single skull vertices
or edges, as illustrated in Figure 1. Such leakages can lead to significantly inaccu-
rate results when using vertex-based methods like, e.g., the CG-FEM, and might be
one of the main reasons why in a recent head modeling comparison study for EEG
source analysis in presurgical epilepsy diagnosis, the use of the CG-FEM with a four-
layer hexahedral head model with a resolution of 2 mm did not lead to better results
than those for simpler head models, i.e., a three-layer local sphere and a three-layer
boundary element head model [14].

In this paper, we derive the mathematical equations underlying the forward prob-
lem of EEG and introduce its solution using the subtraction approach. After a short
explanation of the strengths and weaknesses of this approach, we propose and evalu-
ate a new formulation of the subtraction approach on the basis of the discontinuous
Galerkin (DG) FEM (DG-FEM). We then show that, although the CG-FEM and
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DG-FEM achieve similar numerical accuracies in multilayer sphere validation studies
with high mesh resolutions, the DG-FEM mitigates the problem of skull leakages in
the case of lower mesh resolutions. The results of the sphere studies are complemented
and underlined by the results obtained in a realistic six-compartment head model.

2. Theory.

2.1. The forward problem. The partial differential equation underlying the
EEG forward problem can be derived by introducing the quasi-static approximation
of Maxwell’s equations [29, 17]. When relating the electric field to a scalar potential,
E = −∇u, and splitting up the current density J into a term f , which describes the
current source, and a return current, or flux, −σ∇u with σ(x) being the conductivity
distribution in the head domain, we obtain a Poisson equation

−∇ · (σ∇u) = f in Ω,(2.1a)

σ∂nu = 0 on ∂Ω,(2.1b)

where Ω denotes the head domain, which is assumed to be open and connected, and
∂Ω its boundary. We have homogeneous Neumann boundary conditions here, since
we assume a conductivity σ(x) = 0 for all x /∈ Ω̄.

2.2. The subtraction approach. We briefly derive the classical subtraction FE
approach as presented in [60, 25]. We assume the commonly used point-like dipole
source at position y with moment p, fy(x) = ∇ · (pδy(x)). This choice complicates
the further mathematical treatment, as the right-hand side is not square integrable in
this case. However, when assuming that there exists a nonempty open neighborhood
Ω∞ of the source position y with constant isotropic conductivity σ∞, we can split the
potential u and the conductivity σ into two parts,

u = u∞ + ucorr,(2.2a)

σ = σ∞ + σcorr.(2.2b)

u∞ is the potential in an unbounded, homogeneous conductor and can be calculated

analytically: u∞(x) = 1
4πσ∞

〈p,x−y〉
|x−y|3 . The more general case of anisotropic conductiv-

ities can be treated too [60, 25], but is not especially derived here.
Inserting the decomposition of u into (2.1) and subtracting the homogeneous

solution, again results in a Poisson equation for the searched correction potential
ucorr:

−∇ · (σ∇ucorr) = ∇ · (σcorr∇u∞) in Ω,(2.3a)

σ∂nu
corr = −σ∂nu∞ on ∂Ω.(2.3b)

To solve this problem numerically, [25] proposes a conforming first-order FEM: Find
ucorr ∈ Vh ⊂ H1 such that it fulfills the weak formulation

(2.4)

∫
Ω

σ∇ucorr · ∇vdx = −
∫
Ω

σcorr∇u∞ · ∇vdx−
∫
∂Ω

σ∞∂nu
∞vds.

The weak form can be heuristically derived by multiplication with a test function
v ∈ Vh and subsequent partial integration. Reorganization of some terms and applying
the identity (2.2b) yields the proposed form in (2.4). The subtraction approach is
theoretically well understood. The existence of a solution as well as the uniqueness
and convergence of this solution are examined in [60, 25].
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Fig. 1. Sketch of segmentation that might lead to leakage effects (left). The yellow line shows
the inner skull surface, the red line the original outer skull surface, the blue line the corrected outer
skull surface. Where the red and the blue line overlap, only the blue line is visible. In the magnified
detail, the scalp and CSF show two erroneous connections via single vertices or edges (right subfigure,
where the red and the yellow line touch each other). Such a segmentation can lead to significantly
inaccurate results when using vertex-based methods such as, for example, the CG-FEM.

2.3. Skull leakage effects. As discussed in the introduction, hexahedral meshes
are frequently used in practical applications of FEM-based EEG/magnetoencephalo-
graphy source analysis, due to the clearly simplified creation process in comparison
to CDT meshes. A pitfall that has to be taken into account in this scenario is leakage
effects, especially in the thin skull compartment. If the segmentation resolution, i.e.,
the resolution of the discrete approximation of the geometry, is coarse compared to
the thickness of the skull, segmentation artifacts as illustrated in Figure 1 (yellow and
red lines) occur. When directly generating a hexahedral mesh from this segmentation,
elements belonging to the highly conductive compartments interior to the skull, i.e.,
most often the CSF, and to the skin compartment are now connected via a shared
vertex or edge, although they are physically separated in reality. When using such a
mesh e.g., for, the CG-FEM with Lagrange ansatz functions, these artifacts lead to
skull leakage, as sketched in Figure 2. As a consequence of the vertex-based ansatz
functions, the shared vertices have inadequately high entries in the stiffness matrix,
which result in current leakage “through” these vertices.

This effect remains unchanged even when (globally or locally) refining the reso-
lution of the mesh. An increase of the image—and thereby also the segmentation—
resolution might eliminate this effect, but is usually not possible. Instead, this problem
might be circumvented by artificially increasing the thickness of the skull segmentation
in these areas (blue line in Figure 1). However, this workaround might, again, lead to
inaccuracies in the EEG forward computation due to the now too thick representation
of the skull compartment.

In the following section, we derive a DG formulation for the subtraction FE
approach. This formulation has the advantage that it is locally charge preserving and
controls the current flow through element faces, thereby preventing possible leakage
effects; see illustration in Figure 2.

2.4. A DG formulation. Preserving fundamental physical properties is very
important in order to obtain reliable simulation results. As discussed in the previous
section, a correct approximation of the electric current is crucial for reliable simulation
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CG-FEM DG-FEM

Fig. 2. CG-FEM simulations lead to an overestimated electric current at degenerated vertices
of the skull. This effect is due to the vertex-based discretization, which considers only the poten-
tial, but not the electric current. The DG-FEM is based on a current reconstruction through cell
faces. Therefore, these methods do not overestimate the electric current, even in the presence of
segmentation artifacts.

results. Continuity of the normal component of the current directly implies conserva-
tion of charge.

The DG method allows us to construct formulations that preserve such conser-
vation properties also in the discretized space. We first discuss which quantities to
preserve when using the subtraction approach for the continuous problem and then
introduce a DG formulation.

2.4.1. Conservation properties. A fundamental physical property is the con-
servation of charge:

(2.5)

∫
∂K

σ∇u · ~n ds =

∫
K

fydx

for any control volume K ⊆ Ω. Following the subtraction approach, we split the
current σ∇u = (σ∞ + σcorr)∇(u∞ + ucorr). Rearrangement then yields∫

∂K

σ∇ucorr · ~n ds = −
∫
∂K

σcorr∇u∞ · ~n dx−
∫
∂K

σ∞∇u∞ · ~n ds+

∫
K

fydx

︸ ︷︷ ︸
≡0

.

Applying Gauss’s theorem to the right-hand side, we obtain a conservation property
for the correction potential,

(2.6)

∫
∂K

σ∇ucorr︸ ︷︷ ︸
~jcorr

·~n ds =

∫
K

−∇ · σcorr∇u∞︸ ︷︷ ︸
fcorr

dx ,

which basically states that the correction potential ucorr causes a flux ~jcorr; the
charge corresponding to this flux is a conserved property with source term f corr =
∇ · σcorr∇u∞.

For FE methods this property carries over to the discrete solution, if the test
space contains the characteristic function, which is one on K and zero everywhere
else. In general, a conforming discretization does not guarantee this property.

Conservation of charge also holds for u∞ in the case of a homogeneous volume
conductor (with conductivity σ∞ in our case). Thus, the normal components of both
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Fig. 3. Interface γ splits K into two parts.

the electrical flux σ∇u and σ∞∇u∞ are continuous. Rewriting ~j in terms of σcorr,
σ∞, ucorr, and u∞ we can show that the normal component of σ∇ucorr + σcorr∇u∞
is also continuous.

Definition 2.1. We consider an arbitrary interface γ, which separates the con-
trol volume K into two patches Kl and Kr (see Figure 3). Following [3], we introduce
the jump of a scalar function u or a vector-valued function ~v along γ as

JuKγ := u|∂Kl
~nKl

+ u|∂Kr
~nKr

,(2.7a)

J~vKγ := ~v|∂Kl
· ~nKl

+ ~v|∂Kr
· ~nKr

.(2.7b)

Note that this is consistent with the following definition,

JuKγ(x) =

(
lim

x′→x in Kl

u(x′)− lim
x′→x in Kr

u(x′)

)
~nγ ,

and correspondingly for the vector-valued function ~v. Note further that the jump of a
scalar function is vector valued, while the jump of a vector-valued function is scalar.

Lemma 2.2. Given a potential u with a flux σ∇u with with continuous normal
component along any surface, the normal component of σ∇ucorr + σcorr∇u∞ for the
subtraction approach is also continuous.

Proof. We consider an arbitrary interface γ. At each point x along γ the normal
components of the fluxes, σ∇u ·~nγ and σ∞∇u∞ ·~nγ , are continuous. Thus, the jump
vanishes for them and we obtain

(2.8) Jσ∇uKγ = 0 = Jσ∞∇u∞Kγ .

Rewriting Jσ∇uKγ in terms of σcorr, σ∞, ucorr, and u∞, we obtain

Jσ∞∇ucorrKγ + Jσcorr∇ucorrKγ + Jσcorr∇u∞Kγ = 0

⇔ Jσ∇ucorrKγ = −Jσcorr∇u∞Kγ
⇔ Jσ∇ucorr + σcorr∇u∞Kγ = 0.(2.9)

As this property holds for any control volume, the normal component of the combined
flux σ∇ucorr + σcorr∇u∞ is also continuous for any interface γ.
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Note that this also implies the identity

(2.10) Jσ∇ucorrKγ = −Jσcorr∇u∞Kγ

for any interface γ, which is later needed to derive the weak form (2.24a) from (2.20)
and (2.21).

2.4.2. A weak formulation. An alternative to the conforming discretization
sketched in section 2.2 is to use more general trial and test spaces. We suggest employ-
ing a symmetric DG discretization. The standard derivation of the DG formulation
does not apply immediately, as the intrinsic conservation property for ucorr differs from
the conservation property of the classical Poisson problem. In the following section,
we will briefly describe the most important steps in the construction of a symmetric
interior penalty Galerkin (SIPG) DG formulation for the subtraction approach. For
further details on DG methods, we refer to [3] or the book of DiPietro and Ern [22].
We start with the usual definitions.

Definition 2.3 (triangulation Th(Ω)). Let Th(Ω) be a finite collection of disjoint
and open subsets forming a partition of Ω. The subscript h corresponds to the mesh
width h := max {diam(E) | E ∈ Th}. Furthermore, the triangulation induces the in-
ternal skeleton

(2.11) Γint := {γe,f = ∂Ee ∩ ∂Ef | Ee, Ef ∈ Th , Ee 6= Ef , |γe,f | > 0}

and the skeleton Γ := Γint ∪ ∂Ω.

Definition 2.4 (broken polynomial spaces). Broken polynomial spaces are de-
fined as piecewise polynomial spaces on the partition Th(Ω) as

(2.12) V kh :=
{
v ∈ L2(Ω) : v|E ∈ P k(E)

}
,

where P k denotes the space of polynomial functions of degree k. They describe func-
tions that exhibit elementwise polynomial behavior but may be discontinuous across
element interfaces.

Since the elements of V kh may admit discontinuities across element boundaries,
the gradient of a function v ∈ V kh is not defined everywhere on Ω. To account for this,
we introduce the broken gradient operator.

Definition 2.5 (broken gradient operator). The broken gradient ∇h : V kh →
[Lk(Ω)]d is defined such that, for all v ∈ V kh

(2.13) (∇hv) |E = ∇(v|E) for all E ∈ Th(Ω).

Definition 2.6 (jump and average). Using the Definition 2.1 we introduce the
abbreviated notation of the jump

JxKe,f := JxKγe,f

of a piecewise continuous function x on the interface γe,f between two adjacent ele-
ments Ee, Ef ∈ Th. We further define the average operator

{x}e,f := ωe,fx|∂Ee
+ ωf,ex|∂Ef

.(2.14)
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The weights ωe,f and ωf,e can be chosen to be the arithmetic mean, but for the case
of heterogeneous conductivities, [23] has shown that a conductivity-dependent choice
is optimal:

ωe,f :=
σf

σf + σe
and ωf,e :=

σe
σe + σf

.(2.15)

We further introduce the average operator with switched weights

{x}∗e,f := ωf,ex|∂Ee
+ ωe,fx|∂Ef

,(2.16)

and obtain the following multiplicative property:

JxyKe,f = JxKe,f{y}∗e,f + {x}e,f JyKe,f .(2.17)

Using a Galerkin approach, we seek for a solution ucorr
h ∈ V kh , which fulfills (2.3)

in a weak sense. We start the derivation by testing with a test function vh ∈ V kh :

(2.18) −
∫
Ω

∇ · σ∇ucorr
h vh dx =

∫
Ω

∇ · σcorr∇u∞vh dx .

On each E ∈ Th(Ω), we apply integration by parts. Element boundaries are split
into the domain boundary and all internal edges. The electric current σ∇ucorr

h · ~n
through the boundary is given by the inhomogeneous Neumann boundary conditions
(2.3b). For the left-hand side, we obtain

lhs =−
∫
Ω

∇ · σ∇ucorr
h vh dx

=

∫
Ω

σ∇hucorr
h · ∇hvh dx+

∫
∂Ω

σ∇u∞ · ~n vh ds−
∫

Γint

Jσ∇hucorr
h vhK ds,

(2.19)

and, with the multiplicative property (2.17) follows

lhs =

∫
Ω

σ∇hucorr
h · ∇hvh dx+

∫
∂Ω

σ∇u∞ · ~n vh︸ ︷︷ ︸
term †

ds

−
∫

Γint

Jσ∇hucorr
h K︸ ︷︷ ︸

term ‡

{vh}∗ + {σ∇hucorr
h }JvhK ds .

(2.20)

Applying the same relations for the right-hand side, we obtain

rhs = −
∫
Ω

σcorr∇u∞ · ∇hvh dx+

∫
∂Ω

σcorr∇u∞ · ~n vh︸ ︷︷ ︸
term †

ds

+

∫
Γint

Jσcorr∇u∞K︸ ︷︷ ︸
term ‡

{vh}∗ + {σcorr∇u∞}JvhK ds .

(2.21)

Summing up the boundary integrals (2.20)† and (2.21)† yields a remaining term
−σ∞∇u∞ ·~n vh on the right-hand side. As discussed in section 2.4.1, the conservation
properties also imply that the normal component of σ∇ucorr+σcorr∇u∞ is continuous;
see (2.9). For the discrete solution, we require the same conservation property; thus
the jump term (2.20)‡ equals −Jσcorr∇u∞K and cancels out with term (2.21)‡.
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To gain adjoint consistency, we symmetrize the operator and add the additional
term

(2.22) ãsym(ucorr
h , vh) := −

∫
Γint

{σ∇hvh}Jucorr
h K ds .

To guarantee coercivity, the left-hand side is supplemented with the penalty term

J(ucorr
h , vh) = η

∫
Γint

σ̂γ
hγ

Jucorr
h KJvhK ds ,(2.23)

where hγ and σ̂γ denote local definitions of the mesh width and the electric conduc-
tivity on an edge γ, respectively. In our particular case, we choose hγ according to
[27] and σ̂γ as the harmonic average of the conductivities of the adjacent elements
[23]:

hγe,f =
min(|Ee|, |Ef |)

|γe,f |
and σ̂γe,f :=

2σeσf
σe + σf

.

The penalty parameter η has to be chosen large enough to ensure coercivity.
This derivation yields the SIPG formulation [56, 38] or for weighted averages the

symmetric weighted interior penalty Galerkin method [23]:
Find ucorr

h ∈ Vh such that

a(ucorr
h , vh) + J(ucorr

h , vh) = l(vh) for all vh ∈ Vh(2.24a)

with

a(ucorr
h , vh) = ã(ucorr

h , vh) + ãsym(ucorr
h , vh)

=

∫
Ω

σ∇hucorr
h · ∇hvh dx−

∫
Γint

{σ∇hucorr
h }JvhK + {σ∇hvh}Jucorr

h K ds ,(2.24b)

J(ucorr
h , vh) = η

∫
Γint

σ̂γ
hγ

Jucorr
h KJvhK ds ,

(2.24c)

l(vh) =−
∫
Ω

σcorr∇u∞ · ∇hvh dx

+

∫
Γint

{σcorr∇u∞}JvhK ds−
∫
∂Ω

σ∞∂nu
∞vh ds .(2.24d)

Given the correction potential ucorr
h , the full potential uh can be reconstructed as

uh = ucorr
h + u∞.

Remark 2.7 (discrete properties). As a(ucorr
h , vh) and J(ucorr

h , vh) are the same
operators as in [23], the following properties follow immediately: The proposed SIPG
discretization (2.24) is consistent and adjoint consistent with the strong problem (2.3),
and for a sufficiently large constant η > 0 it has a unique solution.

Remark 2.8 (conservation property). Furthermore, for K ⊆ Th(Ω), (2.24) fulfills
a discrete conservation property∫

∂K

{σ∇hucorr
h } − η σ̂γ

ĥγ
Jucorr
h K︸ ︷︷ ︸

~jcorrh

ds =

∫
K

−∇σcorr∇u∞︸ ︷︷ ︸
fcorr

ds
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Table 1
Conductive compartments (from inside to outside).

Compartment Outer radius Conductivity

Brain 78 mm 0.33 S/m

CSF 80 mm 1.79 S/m

Skull 86 mm 0.01 S/m

Skin 92 mm 0.43 S/m

with the discrete flux ~jcorr
h . For h→ 0, the jump Jucorr

h K vanishes and the discrete flux
~jcorr
h converges to the flux ~jcorr as defined in (2.6).

3. Methods.

3.1. Implementation and parameter settings. We implemented the DG-
FEM subtraction approach in the DUNE framework [9, 8] using the DUNE PDELab
toolbox [12]. For reasons of comparison, we also implemented the CG-FEM subtrac-
tion approach in the same framework. We use linear ansatz functions for both the DG
(i.e., k = 1 in (2.12)) and CG approaches throughout this study. On a given triangu-
lation Th, we choose basis functions {φih}, i ∈ [0, Nh), with local support, where Nh
denotes the number of unknowns. The penalty parameter η was chosen to be η = 0.39.
For the CG simulations, a Lagrange basis with the usual hat functions is employed,
whereas for the DG case, elementwise L2-orthonormal functions are chosen. In this
setup (k = 1, hexahedral mesh), we have eight unknowns per mesh cell for the DG
approach, i.e., Nh = 8 × #cells, and one unknown per vertex for the CG approach,
i.e., Nh = #vertices. Evaluating the bilinear forms a(·, ·), J(·, ·), and the right-hand
side l(·) leads to a linear system A · x = b, where x ∈ RNh denotes the coefficient
vector, and the approximated solution of (2.24) is ucorrh =

∑
i xiφ

i
h. Furthermore,

A ∈ RNh×Nh is the matrix representation of the bilinear operator a+ J and b ∈ RNh

the right-hand-side vector:

Aij = a(φjh, φ
i
h) + J(φjh, φ

i
h) i, j ∈ [0, Nh),

bi = l(φih) i ∈ [0, Nh) .

The resulting matrix A has a sparse block structure with small dense blocks, in our
case, of dimension 8 × 8. The outer structure is similar to that of a finite volume
discretization, i.e., rows corresponding to each grid cell and one off-diagonal entry
for each cell neighbor. By now, a range of efficient solvers for DG discretizations is
available, using multigrid [10] or domain decomposition methods [2]. The computa-
tion/solving times for the CG-FEM and DG-FEM for realistic six-layer head models
and a realistic EEG sensor configuration are compared in the results section.

3.2. Volume conductor models. To validate and compare the accuracy of
these numerical schemes, we used four-layer sphere volume conductor models, where
an analytical solution exists and can be used as a reference [21]. For the four spherical
compartments, representing brain, CSF, skull, and skin, we chose radii and conduc-
tivities as shown in Table 1. As discussed in the introduction and in 2.3, we used
hexahedral meshes in our study. To be able to distinguish between numerical and
geometrie errors, i.e., errors due to the discrete approximation of the continuous PDE
and errors due to an inaccurate representation of the geometry, respectively, we con-
structed a variety of head models with different segmentation resolutions (1 mm,
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seg 1 res 1 seg 2 res 2 seg 4 res 4

Fig. 4. Visualization of models seg 1 res 1, seg 2 res 2, and seg 4 res 4 (from left to right), cut
in the x-plane at the origin; coloring is brain—red, CSF—yellow, skull—green, skin—blue.

Table 2
Model properties (from left to right): segmentation resolution (Seg.), mesh resolution (h), num-

ber of nodes, number of elements.

Seg. h #nodes #elements

seg 1 res 1 1 mm 1 mm 3,342,701 3,262,312

seg 2 res 1 2 mm 1 mm 3,343,801 3,263,232

seg 2 res 2 2 mm 2 mm 428,185 407,907

seg 4 res 1 4 mm 1 mm 3,351,081 3,270,656

seg 4 res 2 4 mm 2 mm 429,077 408,832

seg 4 res 4 4 mm 4 mm 56,235 51,104

6CI hex 1mm 1 mm 1 mm 3,965,968 3,871,029

6CI hex 2mm 2 mm 2 mm 508,412 484,532

6CI tet hr - - 2,242,186 14,223,508

Table 3
Model parameters.

Out. skull rad. #leaks

seg 2 res 2 r82 82 mm 10,080

seg 2 res 2 r84 83 mm 1,344

seg 2 res 2 r84 84 mm 0

2 mm, and 4 mm) and for each of these we again used different mesh resolutions
(1 mm, 2 mm, and 4 mm). Figure 4 visualizes a subset of the used models and the
details of these head models are listed in Table 2.

To further evaluate the sensitivity of the different numerical methods to leakage
effects, we intentionally generated spherical models with skull leakages. Therefore,
we chose the model seg 2 res 2 and reduced the radius of the outer skull boundary
to 82 mm, 83 mm, and 84 mm, resulting in skull thicknesses of 2 mm, 3 mm, and 4
mm, respectively. This way, we were able to generate a leakage scenario similar to
the one presented in Figure 1, while preserving the advantage of a spherical solution
that can be used for error evaluations. Table 3 indicates the number of leaks for each
model, i.e., the number of vertices belonging to both an element labeled as skin and
an element labeled as CSF or brain.
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3.3. Sources. Since the numerical accuracy depends on the local mesh structure
and the source eccentricity, we used 10 source eccentricities and, for each eccentricity,
randomly distributed 10 sources. Thereby, the variability of the numerical accuracy
can be captured for each eccentricity. We evaluated the accuracy for both radial and
tangential dipole directions; however, we present the results only for radial directions
here. The results for dipoles with tangential direction are very similar to these with
slightly lower errors than for radial dipoles.

To make the effect of skull leakage more accessible, we additionally generated
visualizations of the current for one dipole fixed at position (1, 47, 47), which corre-
sponds to an element center, and fixed direction (0, 1, 1) for both the CG-FEM and
DG-FEM and for all three models with reduced skull thickness as shown in Table 3.
We visualized a cut through the x-plane at the dipole position and chose to visu-
alize both the direction and strength of the electric flux for each numerical method
and model (Figure 9). Furthermore, the relative change in strength and the flux
difference between the numerical methods, described by the metrics lnMAG~j,loc and

totDIFF~j,loc as defined in the next section, were visualized for each model (Figure 10).

3.4. Error metrics. To achieve a result that purely represents the numerical
and segmentation accuracy and is independent of the chosen sensor configuration,
we evaluated the solutions on the whole outer layer. We use two error measures to
distinguish between topography and magnitude errors, the relative difference measure
(RDM),

RDM(uh, u) =

∥∥∥∥ uh
‖uh‖2

− u

‖u‖2

∥∥∥∥
2

,(3.1)

and the logarithmic magnitude (lnMAG) error,

lnMAG(uh, u) = ln

(
‖uh‖2
‖u‖2

)
.(3.2)

Besides presenting the mean RDM and lnMAG errors over all sources at a certain
eccentricity (see, e.g., left subfigures in Figure 6), we also present results in separate
boxplots (see, e.g., right subfigures in Figure 6). The boxplots show maximum and
minimum error over all source positions at a certain eccentricity, indicated by upper
and lower error bars. This allows us to display the overall variability of the error. Fur-
thermore, the boxplots show the upper and lower quartiles. The interquartile range is
marked by a box; a black dash shows the median. Henceforth, the interquartile range
will also be denoted as spread. Note the different presentation of source eccentricity
on the x-axes in the left and right subfigures.

To evaluate the local changes of the current, we furthermore visualize for each
mesh element E the logarithm of the local change in current magnitude

(3.3) lnMAG~j,loc (E) = ln

(
‖~jh,CG(xE)‖2
‖~jh,DG(xE)‖2

)
,

and the total local current difference

(3.4) totDIFF~j,loc (E) = ~jh,CG(xE)−~jh,DG(xE),

where xE denotes the centroid of mesh element E (see Figure 10).
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Fig. 5. Visualization of realistic six-compartment hexahedral 6CI hex 2mm, h = 2mm, (left)
and high-resolution reference head model 6CI tet hr (right).

We can exploit that, due to the relation ln(1 + x) ≈ x for small ‖x‖, we have
lnMAG ≈ ‖uh‖2/‖u‖2−1 for small deviations. In consequence, 100 ·lnMAG is about
the change of the magnitude in percent. The same approximations are valid for the
lnMAG~j,loc .

3.5. Realistic head model. To complete the numerical evaluations, the differ-
ences between the CG-FEM and DG-FEM were evaluated in a more realistic scenario.
Based on MRI recordings, a segmentation considering six tissue compartments (white
matter, gray matter, cerebrospinal fluid, skull compacta, skull spongiosa, and skin)
that includes realistic skull openings such as the foramen magnum and the optic
nerve canal was generated. Based on this segmentation, three realistic head models
were generated. Two hexahedral head models with mesh resolutions of 1 mm and
2 mm, 6CI hex 1mm and 6CI hex 2mm, were generated, resulting in 3,965,968 ver-
tices and 3,871,029 elements, and 508,412 vertices and 484,532 elements, respectively
(Figure 5). For both models, the segmentation resolution is identical to the mesh
resolution. As the model with a mesh width of 2 mm was not corrected for leakages,
1,164 vertices belonging to both CSF and skin elements were found. These leakages
were mainly located at the temporal bone. To calculate reference solutions, a high-
resolution tetrahedral head model with 2,242,186 vertices and 14,223,508 elements,
6CI tet hr, was generated. For further details of this model and of the used segmenta-
tion, please refer to [51, 50]. The conductivities were chosen according to [51]. 4,724
source positions were placed in the gray matter with a normal constraint, and those
that were not fully contained in the gray matter compartment, i.e., where the source
was placed in an element at a compartment boundary, were excluded. As a result,
4,482 source positions remained for the 1-mm model and 4,430 source positions for the
2-mm model. An 80-channel realistic EEG cap was chosen as the sensor configuration.
For both the CG-FEM and DG-FEM, solutions in the 1-mm and 2-mm hexahedral
head model were computed and the RDM and lnMAG are evaluated in comparison
to the solution of the CG-FEM calculated using the tetrahedral head model.

The computations were performed on a Linux-PC with an Intel Xeon E5-2698
v3 CPU (2.30 GHz). The computation times for the CG-FEM and DG-FEM in
the models 6CI hex 1mm and 6CI hex 2mm were evaluated in the results section.
Though an optimal speedup through parallelization can be achieved for both the
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Fig. 6. Convergence for the DG-FEM with increasing mesh and/or segmentation resolution.
Results of radial dipole computations. Visualized are the mean error (left column) and boxplots
(right column) of the RDM (top row) and lnMAG (bottom row). Dipole positions that are outside
the brain compartment in the discretized models are marked as dots. Note the different scaling of the
x-axes. Note that the error curve for model seg 4 res 1 is partly covered by that of model seg 4 res 2
in the top left figure.

transfer matrix computation and the right-hand-side setup, all computations were
carried out without parallelization on a single core to allow for a reliable comparison.

4. Results. Figure 6 shows the convergence of the RDM and lnMAG errors for
the DG method when increasing the segmentation resolution, i.e., improving the rep-
resentation of the geometry. Comparing the results for meshes seg 1 res 1, seg 2 res 2,
and seg 4 res 4 shows the clear reduction of both the RDM and lnMAG when increas-
ing mesh and segmentation resolution at the same time. The most accurate model
seg 1 res 1 achieves errors below 0.05 with regard to the RDM for eccentricities up to
0.979, i.e., a distance of 1.6 mm to the brain/CSF boundary. For an eccentricity of
0.987, i.e., a distance of about 1 mm to the brain/CSF boundary, this error increases
up to 0.1 maximally. For even higher eccentricities, the errors clearly increase up to
maximal values of 0.5. However, the median error clearly stays below 0.2 here and
minimal errors are still at about 0.05. The behavior with regard to the lnMAG is very
similar, being nearly constant up to an eccentricity of 0.979, slightly increasing for an
eccentricity of 0.987, and strongly increasing with a high error variability for higher
eccentricities. The errors for models seg 2 res 2 and seg 4 res 4 are clearly higher than
for model seg 1 res 1. However, additionally displaying the results for the models with
refined mesh resolution seg 2 res 1, seg 4 res 1, and seg 4 res 2, where the geometry
error, i.e., the error due to the inaccurate representation of the geometry through the
segmentation, is kept constant, allows us to estimate whether the increased errors are
due to insufficient numerical accuracy or the coarse segmentation. We find that both
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Fig. 7. Convergence for both the CG-FEM and DG-FEM with increasing mesh and segmenta-
tion resolution. Results of radial dipole computations. Visualized are the mean error (left column)
and boxplots (right column) of the RDM (top row) and lnMAG (bottom row). Dipole positions that
are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

for a segmentation resolution of 2 mm and 4 mm, the errors are dominated by the
geometry error. Comparing the models with a segmentation resolution of 2 mm, we
find nearly identical errors with regard to the RDM up to an eccentricity of 0.964
(see right subfigure in Figure 6). Here, the median of the errors remains below 0.1.
For higher eccentricities, where sources are already placed in the outermost layer of
elements that still belong to the brain compartment, the errors for the lower resolved
mesh clearly increase faster; the differences are especially large for the two highest
eccentricities. With regard to the lnMAG, the effects of the higher mesh resolution
are clearly weaker. Even for the outermost sources, notable differences can be seen
only due to some outliers, whereas the medians of the errors stay in a similar range
for both mesh resolutions. For the meshes with a segmentation resolution of 4 mm,
only negligible differences can be seen at all eccentricities; the medians of the errors
are very similar. Differences can be found only in the maximal values but do not
show a systematic behavior. However, the errors are clearly increased compared to
the models with a higher segmentation resolution, i.e., a better approximation of the
geometry. Already at an eccentricity of about 0.5 the median of the RDM is at about
0.1, increasing to values above 0.4 for the highest four eccentricities. The same behav-
ior is observed for the lnMAG, again finding significantly increased errors compared
to the models with a higher segmentation resolution.

In Figure 7, the results for the newly proposed DG-FEM are presented side by side
with the CG-FEM for the models seg 1 res 1, seg 2 res 2, and seg 4 res 4. For the model
seg 1 res 1, the only notable difference with regard to the RDM can be observed for
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Fig. 8. Comparison of increase of errors for decreasing skull thickness between the CG-FEM
and DG-FEM. Results of radial dipole computations. Visualized are the mean error (left column)
and boxplots (right column) of the RDM (top row) and lnMAG (bottom row). Dipole positions that
are outside the brain compartment in the discretized models are marked as dots. Note the different
scaling of the x-axes.

the highest eccentricity, where the DG-FEM achieves slightly higher accuracies; the
evaluation of the lnMAG shows even less difference. Also for model seg 2 res 2, the two
approaches achieve a very similar numerical accuracy for the lower eccentricities, with
RDM errors clearly below 0.1; for eccentricities between 0.964 and 0.991, the CG-FEM
performs slightly better, whereas for the highest eccentricity the DG-FEM achieves
a higher accuracy, again. However, as analyzed before, the main error source is the
inaccurate representation of the geometry through the segmentation. The lnMAG
shows no systematic difference in accuracy between the two methods in this model.
In the coarsest model, seg 4 res 4, the DG-FEM performs clearly better than the CG-
FEM even for low eccentricities. Regardless of the high geometry errors, as seen in
Figure 6, larger differences in numerical accuracy between the DG-FEM and CG-FEM
can be observed for both the RDM and lnMAG up to an eccentricity of 0.964. For
higher eccentricities, possible differences can be less clearly distinguished due to the
dominance of the geometry error and the resulting generally increased error level.

The most significant accuracy differences between the DG-FEM and CG-FEM
can be seen in Figure 8, where we study the increase of errors for decreasing skull
thickness and the resulting increase in the number of skull leakages (see Table 3).
We still find a very similar numerical accuracy for the DG-FEM and CG-FEM in the
leakage-free model seg 2 res 2 r84 (4-mm skull thickness), as one would expect given
the previous results, but the DG-FEM performs clearly better in the leaky models
seg 2 res 2 r82 (2-mm skull thickness) and seg 2 res 2 r83 (3-mm skull thickness). Even
for low eccentricities, the sensitivity of the CG-FEM to leakages is distinct. The
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Fig. 9. Visualization of model geometry (left column), current direction and strength for
the CG-FEM (middle column) and DG-FEM (right column) for models seg 2 res 2 r82 (top row),
seg 2 res 2 r83 (middle row), and seg 2 res 2 r84 (bottom row). The left column shows the model
geometry, interior to exterior from bottom left to top right, brain in white, CSF, skull and skin in
increasingly dark gray, and air in white. Dark gray lines mark compartment boundaries. In the
middle and right columns, the large turquoise cone presents the dipole source. The small and nor-
malized gray cones show the directions of the current flow and, for elements belonging to skull and
skin compartments, the coloring indicates the current strength. For each model, the color scale is
kept constant for both approaches.

DG-FEM achieves an only slightly decreased accuracy in the model seg 2 res 2 r83
compared to seg 2 res 2 r84, which is a first sign that this approach is clearly less
sensitive to leakages. In contrast, the errors of the CG-FEM for model seg 2 res 2 r83
are much higher than for model seg 2 res 2 r84 (compare seg 2 res 2 r83 CG-FEM with
seg 2 res 2 r84 CG-FEM ) and already in the range of those of the DG-FEM in the
very leaky model seg 2 res 2 r82 (compare seg 2 res 2 r83 CG-FEM with seg 2 res 2 r82
DG-FEM ). Overall, we find that the DG-FEM already achieves a significantly higher
numerical accuracy than the CG-FEM for low eccentricities in the leaky models, both
with regard to the RDM and lnMAG.

To illustrate the effect of skull leakages, we generated the visualizations shown
in Figures 9 and 10. In Figure 9, the electric current direction and strength for a
radial dipole with fixed position and orientation (turquoise cone in the middle and
right columns) in the models seg 2 res 2 r82 (top row), seg 2 res 2 r83 (middle row),
and seg 2 res 2 r84 (bottom row) and with the two numerical approaches CG-FEM
(middle column) and DG-FEM (right column) are visualized. When using the CG-
FEM in the model with the thinnest (2-mm) skull compartment, seg 2 res 2 r82, we
find extremely strong currents in the innermost layer of skin elements, i.e., at the
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Fig. 10. Visualization of current flow differences between the CG-FEM and DG-FEM in mod-
els seg 2 res 2 r82 (left), seg 2 res 2 r83 (middle), and seg 2 res 2 r84 (right). The turquoise cone
presents the dipole source. The coloring shows the lnMAG~j,loc (increase/decrease of the current

strength simulated with the CG-FEM compared to the DG-FEM solution). For all models the max-
imum of the color scale is chosen as the maximal value in the skin and skull compartment. Gray
cones, having the same linear scaling for all models, show the totDIFF~j,loc (difference in current

flow). In models seg 2 res 2 r83 and seg 2 res 2 r84, the arrows in skin and skull are not visible due
to the relatively small values. Dark gray lines mark compartment boundaries. In the top right corner
of each subfigure, a detail of the skull elements to which the dipole is pointing is shown. The size of
the cones is magnified by a factor of 20 compared to the full image, and only the cones for the skull
compartment are visualized.

interface to the skull. This effect is especially distinct for the elements to which the
dipole is nearly directly pointing. In comparison, the current strengths found in the
skull compartment are negligible, which is a clear sign for a current leakage through
the vertices shared between the CSF and skin compartment, bypassing the thin and
leaky skull compartment. For the DG approach, these extreme peaks are not found,
and the maximal current strength amounts to only about 30% of that of the CG
approach. In the other two models (note the much lower scaling in the middle and
lower rows in Figure 9), we find a clear decrease of the current strength in the skin
compartment compared to the seg 2 res 2 r82 model. In these two models and with
the given source scenario, none of the approaches seems to be obviously affected by
skull leakage. However, in model seg 2 res 2 r83 (middle row), the DG approach shows
about 20% higher peak currents in the innermost layer of skin elements compared to
the CG-FEM. In model seg 2 res 2 r84 (bottom row), the maximal current strength
for the CG-FEM is only about 7% higher than for the DG-FEM. The maximal current
strength is found in the skull compartment in this model, indicating that no leakage
effects occur. If leakage effects would occur, the maximal current strength would be
expected to be found in the skin compartment as in the other models. These devia-
tions seem reasonable considering the relatively coarse resolution of the segmentation,
and especially considering the low skull thickness. The visualizations show that the
interplay between source position and direction and the local mesh geometry strongly
influences the local current flow in these models, leading to current peaks in some
elements while neighboring elements show relatively low currents, as is clearly visible
in model seg 2 res 2 r84. In this model, we find strong currents in the two skull ele-
ments connecting the CSF and skin to which the dipole is pointing (see also outward
pointing arrows in these elements in the detail in Figure 10, right). Locally, these
constitute the “path of least resistance” between the CSF and skin compartment.

In Figure 10, the two measures lnMAG~j,loc and totDIFF~j,loc are visualized to
show the differences between the two methods even more clearly. As Figure 9 suggests,
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we find for model seg 2 res 2 r82 that for the CG-FEM, the current strength is clearly
higher than for the DG-FEM in those elements of the innermost layer of the skin
compartment that share a vertex with the CSF compartment, indicated by the high
lnMAG~j,loc (red coloring). The visualization of the totDIFF~j,loc (gray arrows) clearly
shows that the leakage generates a strong current from the CSF compartment directly
into the skin compartment that does not exist for the DG-FEM. At the same time,
the lnMAG~j,loc indicates that the current strength in the skull compartment is de-

creased in the CG-FEM (blue coloring); the detail of the skull elements for model
seg 2 res 2 r82 in Figure 9, left, actually shows that there is a stronger current through
the skull elements in the DG-FEM than in the CG-FEM simulation (inwards pointing
arrows). We also find high values for the totDIFF~j,loc in the CSF compartment that
are most probably caused by effects similar to the “leakage” effects, i.e., a mixing
of conductivities in boundary elements/vertices. However, in model seg 2 res 2 r82,
the color coding for the lnMAG~j,loc shows that this is not related to significant rela-
tive differences in current strength. Here, the strongest values for the lnMAG~j,loc are
found in the skin and skull compartment. In turn, for the other two models we find the
largest deviations in the CSF compartment, both with regard to the totDIFF~j,loc and
lnMAG~j,loc . For model seg 2 res 2 r83, we furthermore find minor effects with regard
to the lnMAG~j,loc , i.e., relative differences of current strength, in the innermost
layer of skin elements, which are also the elements with the highest absolute current
strength among the skin and skull compartment (see also Figure 9). We also find
slightly increased values for the lnMAG~j,loc in the outermost layer of the skin ele-
ments. These might be artifacts due to the “staircase”-like geometry of the outer sur-
face in the regular hexahedral model. However, the totDIFF~j,loc in the skin and skull
is negligible compared to the CSF compartment, and also clearly lower than in model
seg 2 res 2 r82. The same holds true for model seg 2 res 2 r84, where the lnMAG~j,loc is
slightly increased in the skull and skin compartment, mainly in elements with a small
absolute current strength, as a comparison to Figure 9 shows. Still, relatively high
differences in the lnMAG~j,loc and totDIFF~j,loc are visible in the CSF compartment.
These results indicate that the models seg 2 res 2 r83 and seg 2 res 2 r84 are less af-
fected by skull leakage; the differences are due rather to the different computational
approaches and do not show obvious errors due to the underlying segmentation.

For the realistic head models, 6CI hex 1mm and 6CI hex 2mm, the RDM and
lnMAG in reference to model 6CI tet hr were computed. The cumulative relative
frequencies of the RDM and lnMAG are shown in Figure 11. At each position on
the x-axis, the corresponding y-value indicates the fraction of sources that have an
RDM/lnMAG lower than this value. Accordingly, the rise of the curve should be as
steep as possible for both the RDM and lnMAG and furthermore as close as possible
to the x=0 line for the lnMAG.

Overall, the results for both the RDM and lnMAG show relatively high errors.
This is a consequence of the rather bad approximation of the geometry that is achieved
when using regular hexahedra compared to the accuracy that can be achieved using
a surface-based tetrahedral model. While the differences between DG-FEM and CG-
FEM observed for model 6CI hex 1mm are rather subtle, the differences are clear for
model 6CI hex 2mm. These results mainly underline the observations in the sphere
studies.

In model 6CI hex 1mm, for both approaches about 50% of the sources show RDM
errors below 0.1 and 95% of the errors lie below 0.35. The rise of the curve for the
DG-FEM is slightly steeper than for the CG-FEM, indicating a higher numerical
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Fig. 11. Cumulative relative errors of the RDM (left) and lnMAG (right) in realistic six-layer
hexahedral head models with 1- and 2-mm mesh resolutions in reference to high-resolution tetrahedral
model.

Table 4
Computational effort (from left to right): number of unknowns (DOFs), solving of a single

equation system (tsolve), overall computation time of transfer matrix (ttansfer), setup time of a
single right-hand side (trhs), overall computation time of leadfield matrix (tlf, 4,724 sources) and
the total computation time (ttotal).

DOFs tsolve ttransfer trhs tlf ttotal

6CI hex 1mm, DG 30,968,232 1,468 s 115,994 s 71 s 336,118 s 452,112 s

6CI hex 2mm, DG 3,876,256 136 s 10,750 s 8.8 s 41,939 s 52,689 s

6CI hex 1mm, CG 3,965,968 185 s 14,634 s 68 s 321,705 s 336,339 s

6CI hex 2mm, CG 508,412 20 s 1,588 s 8.7 s 41,222 s 42,810 s

accuracy, but from an RDM of about 0.3 onwards both curves are nearly overlapping.
The RDM errors for the DG-FEM and CG-FEM are clearly increased for the lower
mesh resolution. In this model, the difference between the DG-FEM and CG-FEM
is also more distinct, e.g., for the DG-FEM more than 60% of the sources have an
RDM below 0.2, but this is only the case for about 56% of the sources when using
the CG-FEM.

The results for the lnMAG are in accordance with those obtained for the RDM.
Again, the DG-FEM performs only slightly better than the CG-FEM in model
6CI hex 1mm, whereas the differences in model 6CI hex 2mm are more distinct.

Compared to the results in the sphere models, the differences even in model
6CI hex 2mm seem to be rather small. However, it has to be taken into account that
the leakages in this model are nearly all located in temporal regions, so that only a
fraction of the sources is affected.

The computation times for the DG-FEM and CG-FEM in models 6CI hex 1mm
and 6CI hex 2mm are shown in Table 4. All computation times are single CPU wall-
clock times without exploitation of parallelization or vectoring. The solving time for a
single equation system tsolve grows approximately linearly with the number of degrees
of freedom. This result corresponds to the theoretically predicted optimal scaling [16].
Accordingly, the setup times for the transfer matrices, ttransfer, are clearly higher for
the DG-FEM than for the CG-FEM.

In contrast to the solving times, the setup times for a single right-hand side,
trhs, differ only slightly between the CG-FEM and DG-FEM, being below 10 s for
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model 6CI hex 2mm and around 70 s for model 6CI hex 1mm. For the source model
used here and the given number of sources, the overall computation time is clearly
dominated by the computation of the right-hand sides. This part of the computation
takes twice as long as the setup of the transfer matrix even for the DG-FEM and
model 6CI hex 1mm.

5. Discussion. In this paper we presented the theoretical derivation of the sub-
traction FE approach for EEG forward simulations in the framework of DG methods.
The scheme is consistent and fulfills a discrete conservation property. Existence and
uniqueness follow from the coercivity of the bilinear form.

Numerical experiments in sphere models showed the convergence of the DG solu-
tion toward the analytical solution with increasing mesh resolution and better approx-
imation of the spherical geometry with increasing segmentation resolution. We also
showed that the numerical accuracy of the DG-FEM is dominated by the geometry
error, whereas the actual mesh resolution in a model with a bad geometry approxima-
tion due to coarse segmentation resolution had only a minor influence on the numerical
results (Figure 6). The inaccurate representation of the geometry, especially for coarse
mesh resolutions, is visible by the staircase-like boundaries in Figure 4.

In the comparisons of DG-FEM and the commonly used CG-FEM, we did not
find remarkable differences for models with higher mesh resolutions (1 mm, 2 mm),
as the results in Figure 7 are in the same range for both approaches in the models
seg 1 res 1 and seg 2 res 2. In this set of experiments, three main error sources can be
identified: geometry errors, numerical inaccuracies, and leakage effects.

First, there is the error in the representation of the geometry as a consequence of
approximating the spherical models by voxel segmentations of different resolutions,
which is increasing with coarser segmentation resolutions; see also Figure 6. We thus
strongly recommend the use of segmentation resolutions and, thereby, necessarily MRI
resolutions, as high as practically feasible, possibly even locally refined when zoomed
MRI technology is available. In fact, a newly developed zoom technique for MRI has
become available for practical use, based on a combination of parallel transmission of
excitation pulses and localized excitation [15]. A first usage of this zoom technique
can be found in [5] [4, Chapter 5]. Moreover, in future work, based on [11], we plan to
further develop a cut-cell approach that allows for an accurate representation of the
geometry while introducing only a negligible number of additional degrees of freedom.
Thus, the achieved accuracy can be increased while the computational effort is hardly
affected (see first results in[34]).

Second, we have the numerical inaccuracy due to the discretization of (2.1) in
combination with the strong singularity introduced by the assumption of a point
dipole, which is the main cause for the numerical inaccuracies of the subtraction
approach for highest eccentricities, where the source positions are very close to the
next conductivity jump (cf. Figure 7). A rationale for this effect has been given in
[60, 25]. In future work, we are therefore planning to adapt other source modeling
approaches such as the Venant [47, 43, 18, 59, 52], the partial integration [61, 54,
59, 48, 52], or the Whitney approach [46, 35, 36] to the DG-FEM framework. Until
now, these have been formulated and evaluated only for the CG-FEM. Compared to
the subtraction approach, these approaches have the further advantage of a strongly
decreased computational effort for the setup of the right-hand-side vector [59, 52].

The third source of error, the “leakage effects,” explains the large differences in
numerical accuracy between the CG-FEM and DG-FEM that can be observed in
model seg 4 res 4. Due to the coarse resolution of the segmentation in comparison to
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the thickness of the skull compartment (4-mm segmentation resolution, 6-mm skull
thickness), this model can already be considered as (at least partly) leaky.

This observation motivated the further evaluation of the two methods in sphere
models with a thin skull compartment, where the assumed advantages of the DG-
FEM should have a bigger effect. Therefore, we constructed spherical models with
a thinner skull layer, assuming a skull thickness of 2–4 mm. The model with the
minimal skull thickness of 2 mm, seg 2 res 2 r82, has a skull layer as thin as the edge
length of the hexahedrons (see Figures 8, 9, 10). Even though a mesh resolution of
1 mm is strongly recommended for practical application of the FEM in source analysis
[39, 7, 6], mesh resolutions of 2 mm are still used even in clinical evaluations [14], and
there are areas such as the temporal bone where the skull thickness is actually only 2
mm or even less [30, Table 2], so that this is not an artificial scenario. As expected,
the DG-FEM achieved a clearly higher numerical accuracy in the two models with the
thinnest skull layers, seg 2 res 2 r82 and seg 2 res 2 r83, whereas the results for model
seg 2 res 2 r84 are comparable for the DG-FEM and CG-FEM (see Figure 8). In the
latter model, the ratio of resolution (2 mm) and skull thickness (4 mm) guarantees a
sufficient resolution and by this already prohibits leakages.

To make the difference between the CG-FEM and DG-FEM in the presence of
skull leakage better accessible, we generated Figures 9 and 10. The skull leakage
is clearly visible in both figures for model seg 2 res 2 r82 and the CG-FEM as de-
scribed in the results section. There is also a slight difference visible in the CSF in
all three models, which might be explained by the relatively thin CSF layer. At this
resolution (2-mm CSF thickness, 2-mm segmentation resolution), the elements of the
CSF compartment are no longer completely connected via faces, but often only via
shared vertices (as visible in Figure 9, left column), which means that for such a
coarse model, the current is blocked in some regions although in the real geometry
it is not. In this case, the CG-FEM shows slightly better results, as it allows the
current to also flow through a single vertex, which is physically counterintuitive. In
contrast, the DG-FEM does exactly what one would intuitively expect from a mesh
based on this segmentation: It channels the main current through the CSF, but due
to the wrong representation of the CSF in the segmentation it yields slightly wrong
currents. It thereby reduces the usually very strong current in the highly conductive
CSF compartment, which might explain the slight advantages of the CG-FEM with
regard to numerical accuracy for model seg 2 res 2 r84 (see especially the lnMAG in
Figure 8), which is in agreement with the strong lnMAG effect of modeling the CSF
as shown in [51, Figure 4]. Still, one has to point out that the wrong representation
of the CSF geometry has only a very minor effect, as the current is not completely
blocked but only slightly diverted.

The findings for the sphere models were underlined by the results obtained using
realistic six-compartment head models with mesh resolutions of 1 and 2 mm (Fig-
ure 11). Also in this realistic scenario, the DG-FEM showed higher numerical accura-
cies than the CG-FEM, especially for the lower mesh resolution of 2 mm. The leakages
in model 6CI hex 2mm are nearly exclusively found in temporal areas, whereas the
source positions are regularly distributed over the whole brain. Thus, only a fraction
of the sources are strongly affected by leakage effects, and the observed differences
between the DG-FEM and CG-FEM in the realistic head model are not as large as
one might assume from the results in model seg 2 res 2 r82, where the leakages are
regularly distributed over the whole model.

Overall, these results show the benefits of the newly derived DG-FEM approach
and motivate the introduction of this new numerical approach for solving the EEG
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forward problem. Furthermore, the DG-FEM approach allows for an intuitive inter-
pretation of the results in the presence of segmentation artifacts, which helps in the
interpretation of simulation results, in particular for clinical experts.

As we have shown in this study, errors in the approximation of the geometry as a
result of insufficient image or segmentation resolution and resulting current leakages
might become significant when using hexahedral meshes. However, there are ways
to avoid such errors. In [48], a trilinear immersed FEM to solve the EEG forward
problem was introduced, which allows the use of structured hexahedral meshes, i.e.,
the mesh structure is independent of the physical boundaries. The interfaces are then
represented by level sets and finally considered using special basis functions. However,
this method is still based on the CG-FEM formulation, so that the behavior when the
thickness of single compartments lies in the range of the resolution of the underlying
mesh is unclear, especially when both the compartment boundaries between the CSF
and skull (inner skull surface) and skull and skin (outer skull surface) are contained
in one element; it is probable that it suffers from the same problems as the common
CG-FEM in such cases. Unfortunately, no further in-depth analysis of this approach
was performed until now. Therefore, we claim to have for the first time presented
and evaluated an FEM approach preventing current leakage through single nodes.
In future investigations, we intend to further develop the already discussed cut-cell
DG approach for source analysis [34], which has the same advantageous features with
regard to the representation of the geometry as the approach presented in [48], but,
additionally, the charge preserving property of the DG-FEM as presented here.

The charge preserving property could also be achieved by certain implementa-
tions of finite volume methods. In [20], a vertex-centered finite volume approach was
presented that shares the advantage that anisotropic conductivities can be treated
quite naturally with the here presented DG-FEM approaches. However, due to its
construction, the vertex-centered approach can also be affected by unphysical cur-
rent flow between high-conducting compartments that touch in single nodes as seen
for the CG-FEM. This problem could be avoided using a cell-centered finite volume
approach.

The evaluation of the computational costs of the DG-FEM and CG-FEM showed
a higher computational effort for the DG-FEM for the solving of a single equation
system and, in consequence, for the setup of the transfer matrices (Table 4). The
solving times scaled linearly with the number of degrees of freedom, which corresponds
to the theoretically predicted scaling [16]. The computation times for the setup of the
right-hand side did not differ significantly between the CG-FEM and DG-FEM.

The computation of both the transfer matrix and the right-hand sides can be
easily parallelized by simultaneously solving multiple equation systems and setting up
multiple right-hand sides, respectively. This simple parallelization approach achieves
an optimal scaling with the number of processors, cores, and SIMD lanes. Already a
parallel computation of the transfer matrix on four cores, which can be considered as
standard equipment nowadays, would reduce ttransfer to about 8 h for the DG-FEM
and model 6CI hex 1mm. This reduction of the computation time makes a practical
application feasible, since a computation could be carried out overnight. The use of
more powerful equipment, as is available in many facilities, would allow for a further
speedup. However, in our experiments the overall computation times were dominated
by the setup of the right-hand side, which took twice as long as the transfer matrix
setup even for the more costly DG-FEM and model 6CI hex 1mm. This is a drawback
inherent to the subtraction approach. Its nice theoretical properties, which make it
preferrable for a first application with new discretization methodology, come at the
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cost of a dense and expensive-to-compute right-hand side. For the CG-FEM, it was
shown that the setup time for the right-hand side vector can be drastically reduced
by the adaptation of the direct source modeling approaches, such as Venant, partial
integration, or Whitney, that lead to a sparse instead of a dense right-hand-side vector,
as previously discussed. For these approaches, the setup time for a single right-hand-
side vector is reduced by up to two magnitudes [50]; a similar speedup can be expected
for the DG-FEM. Furthermore, just as for the transfer matrix computation, for the
computation of the right-hand sides an optimal speedup by parallelization can be
easily achieved.

Finally, since the DG approach allows fulfilling the conservation property of elec-
tric charge also in the discrete case, it is not only attractive for source analysis, but also
for the simulation and optimization of brain stimulation methods such as transcranial
direct or alternating current stimulation [24, 40, 57, 34, 53] or deep brain stimulation
[19, 42].

6. Conclusion. We presented theory and numerical evaluation of the subtrac-
tion FEM approach for EEG forward simulations in the DG-FEM framework. We
evaluated the accuracy and convergence of the newly presented approach in spherical
and realistic six-compartment models for different mesh resolutions and compared it
to the frequently used Lagrange or CG-FEM. In common sphere models, we found
similar accuracies of the two approaches for the higher mesh resolutions, whereas the
DG-FEM outperformed the CG-FEM for lower mesh resolutions. We further com-
pared the approaches in the special scenario of a very thin skull layer where leakages
might occur. We found that the DG approach clearly outperforms the CG-FEM in
these scenarios. We underlined these results using visualizations of the electric current
flow. The results for the sphere models were confirmed by those obtained in the re-
alistic six-compartment scenario. The computation times presented in this study can
easily be reduced through parallelization. Furthermore, different approaches for the
setup of the right-hand side are expected to enable a major speedup without loss of
accuracy to make a practical application of DG methods in EEG source analysis fea-
sible. The DG-FEM approach might therefore complement the CG-FEM to improve
source analysis approaches.
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