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Abstract

This thesis covers two main topics: on the one hand, the goal is to study new finite

element method (FEM) techniques to solve the magnetoencephalography (MEG)

and the combined MEG/electroencephalography(EEG) forward problem. On the

other hand, the objective is to apply FEM to analyze MEG and EEG sensitivity to

cortical and subcortical sources. In the first part of the thesis, a continuous (CG-)

and a discontinuous (DG-) Galerkin FEM for solving the MEG and the combined

MEG/EEG forward problems are presented and validated in both spherical and

realistically shaped head models. We show for both FEM approaches that the

partial integration approach outperforms the subtraction approach with regard to

modeling the primary sources. Furthermore, in sphere models, DG-FEM provided

results that are in a comparable range of high accuracy as CG-FEM, whereas

in realistically shaped head models, we reported slightly more accurate results

when DG-FEM is utilized. In contrast to the EEG case, the skull leakage effects

do not play a crucial role for MEG. However, for EEG or combined MEG/EEG

source analysis scenarios, DG-FEM offers an interesting new alternative to CG-

FEM, considering the importance of a high accuracy of the forward problem

solution in MEG/EEG source reconstruction. In the second part of the thesis,

an EEG and MEG sensitivity study is presented, by computing signal-to-noise

ratio (SNR) mappings based on FEM. In this study we recommend to rely on

sensitivity maps that were constructed with at least a four compartment (skin,

skull, cerebrospinal fluid, brain) head model. We focus on the importance of the

contribution of the additional CSF compartment when compared to a standard

three compartment modeling approach, especially in the EEG case. We conclude

that MEG SNR values are higher than EEG SNR values when considering

cortical sources. Moreover, while EEG SNR values are insensitive to source

orientation, MEG SNR values remarkably vary with the orientation. Finally, the
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simulation results show that deep tangential sources can be detected by both

the EEG and MEG modalities. The implementation of the new FEM for solving

the MEG and combined MEG/EEG are collected in the duneuro toolbox and

described in the last part of the thesis. Finally, during the PhD training, which

is part of the ChildBrain project, a Horizon2020 Marie Sk lodowska-Curie Action

Innovative Training Network – European Training Network, special emphasis has

been given to dissemination. Educational courses at international conferences

and schools have been indeed linked to the implemented FEMs for solving partial

differential equations in neuroscience.
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Introduction

The importance of human brain research cannot be overstated. More than 1,000

disorders of the brain and nervous system result in more hospitalizations and lost

productivity than any other disease group, including heart disease and cancer
1. There are many fields involved in human brain research, such as medicine,

psychology, pharmacology, biology, engineering, mathematics, physics, chemistry

etc. and the synergy of different expertise and fields bring brain research forward.

An important element helping brain research is represented by neuroimaging

techniques. Nowadays there are several advanced brain imaging techniques used

in research facilities and hospitals throughout the world. They can be classified

into two main groups: structural imaging techniques, such as magnetic resonance

imaging (MRI), computed tomography (CT), ultrasound, whose aim is to identify

the structure and anatomy of the tissues under examination, and functional

imaging techniques, such as functional MRI (fMRI), electroencephalography

(EEG), magnetoencephalography (MEG), positron emission tomography (PET),

single-photon emission computed tomography (SPECT), which are able to in-

vestigate the activity or metabolism of the scanned tissue. Within this context,

EEG and MEG are devoted to detect the electric potential distribution and the

magnetic field generated by the brain, respectively, with a unique time resolution

(range of ms) [18].

An important topic in many applications of EEG and MEG is the source recon-

struction, i.e., the identification of the sources in the brain responsible for the

signals recorded at the head surface (EEG) or at a small distance from the head

surface (MEG). In order to compute MEG/EEG source reconstructions, i.e., to

solve a related ill-posed inverse problem of MEG/EEG, the forward problem has

to be solved. Since the accuracy of MEG/EEG inverse problem solutions depends

1https://neuronline.sfn.org/Home/SfN/About/About-Neuroscience

1
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0. Introduction

strongly on the forward solution, it is fundamental to increase the accuracy of

the latter [18]. In the EEG case, the forward problem consists in the evaluation

of the electric potential generated by a source located in the brain by solving an

elliptic partial differential equation of second order [96]. In the MEG case, the

magnetic field needs to be computed exploiting Biot-Savart’s law, which depends

on the EEG solution [18].

In simplified scenarios, such as multi-layer sphere models with piecewise homo-

geneous conductivity, analytical solutions are available [18]. In more realistic

scenarios, e.g., realistically shaped head models, numerical methods have to be

adopted. There is a large variety of numerical methods that can be employed.

Among them are boundary element methods [59, 1, 40, 80], finite volume meth-

ods [24], finite difference methods [92, 84, 58] and finite element methods (FEMs)

[17, 54, 79, 30, 72, 65].

Even if generated by the same sources, EEG and MEG carry complementary

information. For example, there are studies showing that some epileptic spikes

could be recorded only in MEG and not in EEG and vice versa [2, 4, 93]. In these

scenarios, it has been shown [9, 8, 34] that combined MEG/EEG employs the

complementary information of both modalities providing source reconstructions

that outperform the ones provided by each single modality. The complementarity

of EEG and MEG can be further studied through sensitivity maps, which show

the EEG and MEG sensitivity to different sources in the brain. Sensitivity maps

widen insights about the modulation of source orientations and locations to

EEG and MEG signals; therefore, they lead to a correct interpretation of source

reconstruction results, especially when EEG and MEG modalities are combined.

Moreover, they can help quantifying the detectability of epileptic spikes in clini-

cal routine, they can guide the design of new sensors, they can help planning

experiments and they can influence the choice of preprocessing procedures to

apply to recorded EEG and MEG signals. It is crucial that such sensitivity maps

are as accurate as possible and, in order to improve this accuracy, one can work

on the representation of the geometry of the model, of the electrical features of

the model and on the mathematical method which can include different features,

e.g., FEMs, which have shown high numerical accuracies with the possibility to

model complex geometries and bioelectromagnetic properties (e.g., anisotropic

conductivity) of the head.

The EEG forward problem has been extensively studied and approached via

2



different FEMs, for example, with a standard lagrangian continuous Galerkin

FEM (CG-FEM) [1], a discontinuous Galerkin FEM (DG-FEM) [31], a mixed-

FEM [88], an unfitted discontinuous Galerkin FEM [65], a cutFEM [63]. In

contrast, not many recent studies have been conducted to solve the MEG forward

problem with FEMs [1] and, to the best of our knowledge, none of them are about

DG-FEM. Accurate MEG forward problem solutions represent an important

ingredient to combined EEG and MEG source reconstruction. Furthermore, in

such a multi-modal MEG/EEG reconstruction it is desirable to use the same

forward model for both EEG and MEG data.

In the first part of this thesis this lack is addressed and a tool which enables a

shared unique framework for solving both EEG and MEG forward problems, via

CG and DG-FEMs, is presented and validated, both in spherical and realistic

individualized head models. In the second part of the thesis, accurate sensitivity

maps are consequently generated via the resolution of the EEG and MEG forward

problem with FEM, and analyzed.

This thesis is structured as follows. In Chapter 1, both the physiological and

mathematical backgrounds are presented and the EEG and MEG forward prob-

lems are derived; Chapter 2 is dedicated to the CG-FEM applied to solve the

MEG forward problem: the basic theory, several approaches to deal with a

singular right-hand side and the validations results are presented. In Chapter

3, the DG-FEM theory to solve the MEG forward problem is shown, together

with validation results. In Chapter 4, CG- and DG-FEM simulation results are

compared both in spherical and realistic head models. Finally, the content of

Chapter 5 is a sensitivity study, where accurate EEG and MEG sensitivity maps

are generated with FEMS, and analyzed.

3





1. General Background

In this chapter we present both a physiological and a mathematical background

for the MEG and EEG forward problems.

1.1. Physiological Background

Already in the XIX century the cells were assumed to be the fundamental unit

of all living organs. The extremely complex organization of the nervous tissue,

together with an inadequate technology, let the biologists of that period think that

the nervous tissue rather had a net structure. The Italian biologist Camillo Golgi

referred to that as reticulum. On the other side, by means of Golgi’s staining

method to visualize biological tissue [39], the Spanish neuroanatomist Santiago

Ramón y Cajal and the British physiologist Charles Sherrington replaced Golgi’s

reticular theory with the so called neuron doctrine. They claimed that nerve cells

are discrete entities which communicate with one another by means of specialized

contacts, i.e., synapses. The neuron doctrine was confirmed only in the 1950s

with the advent of electron microscopy. Nevertheless, both Golgi and Cajal

were awarded with the Nobel prize in 1906 in Physiology and Medicine for their

findings on the organization of the nervous system and in 1932 also Sherrington

was recognized for his contribution. The intense debate between especially Golgi

and Cajal can be seen as the starting point of modern neuroscience.

The histological studies of Cajal, Golgi, and a host of successors led to the

consensus that the cells of the nervous system can be divided into two broad

categories: nerve cells, or neurons, and glial cells. The human brain is estimated

to contain about 86 billion neurons and at least that many glial cells [73]. While
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1. General Background

Figure 1.1.: Golgi’s drawing of the hippocampus, based on tissues he had stained.
From Golgi’s 1886 publication “Sulla fina anatomia degli organi
centrali del sistema nervoso.” (on the left); 1899 drawing of Purkinje
cells (A) and granule cells (B) from pigeon cerebellum by Santiago
Ramón y Cajal. [image © Instituto Cajal, Madrid, Spain] (in the
center); Schematic representation of the anatomy of the neuron (on
the right).

nerve cells are devoted to electrical signaling over long distances, glial cells are

supporting nerve cells and do not generate a signal themselves. Each neuron

consists of a cell body, dendrites, and an axon (see Figure 1.1, on the right).

The cell body contains the nucleus and cytoplasm. The axon extends from the

cell body and often gives rise to many smaller branches before ending at nerve

terminals. Dendrites extend from the neuron cell body and receive messages from

other neurons. Synapses are the contact points where one neuron communicates

with another. The dendrites are covered with synapses formed by the ends of

axons from other neurons.

Neurons never function in isolation; they are organized into ensembles called

neural circuits that process specific kinds of information and make up neural

systems that serve broader purposes. The most general functional distinction

divides such collections into sensory systems, motor systems and associational

systems [73].

A more detailed picture of the events underlying any neural circuit can be

obtained by electrophysiological recording, which measures the electrical activity

of nerve cells [73]. With EEG the electric potential differences are measured by

means of electrodes positioned on the scalp of the patient or healthy subject.

This method was initially adopted in clinical practice to localize epileptic foci and

epileptogenic cortical tissue for presurgical diagnosis. First attempts were made

at the Montreal Neurological Institute by Herbert Jasper and Wilder Panfield.
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1.1. Physiological Background

Due to the non-invasive nature of this technique, EEG was thereafter used for

basic research on healthy subjects. Similarly to EEG, the MEG measures brain

activity by recording magnetic fields produced by electrical currents generated in

the brain. Neuromagnetic signals are typically between 50 and 500 fT, therefore

the MEG method is based on the superconducting quantum interference device

or SQUID, a sensitive detector of magnetic flux, introduced in the late 1960s by

James Zimmerman [99, 41]. The first SQUID measurement of magnetic fields

of the brain was carried out at the Massachusetts Institute of Technology by

David Cohen [23]. He measured the spontaneous α activity of a healthy subject

and the abnormal brain activity of an epileptic patient [41]. MEG is closely

related to EEG. In both methods, the measured signals are generated by the

same synchronized neuronal activity in the brain. The time resolution of MEG

and EEG is in the millisecond range, orders of magnitude better than in almost

any other technique adopted in neuroscience [41]. Both EEG and MEG are

completely non-invasive techniques.

In general, nerve cells generate a variety of electrical signals that transmit and

store information [73]. Two main electrical signals are generated by neurons:

action potentials and post-synaptic potentials. The action potential can be

approximated with a current quadrupole, while a synaptic current flow with

a dipole. The decay of an action potential is therefore faster (1/r3, with r

being the distance) than the one of a synaptic potential (1/r2). Furthermore,

temporal summation of currents flowing in neighboring fibers is more effective

for synaptic currents, which last tens of milliseconds, than for action potentials,

which have a duration of one millisecond only [41]. Thus EEG and MEG signals

are produced in large part by synaptic current flow, which is approximately

dipolar [41, 66, 60].

Finally, neuroscientists and neurologists have conventionally divided the verte-

brate nervous system anatomically into central and peripheral components [73].

The central nervous system (CNS) comprises the brain (cerebral hemispheres,

diencephalon, cerebellum, and brainstem) and the spinal cord. The peripheral

nervous system (PNS) includes the sensory neurons that link sensory receptors on

the body surface or deeper within it with relevant processing circuits in the CNS

[73]. Two gross histological terms distinguish regions rich in neuronal cell bodies

7



1. General Background

versus regions rich in axons. Gray matter refers to any accumulation of cell

bodies in the brain and spinal cord. White matter (named for its relatively light

appearance, the result of the lipid content of myelin) refers to axon tracts and

commissures [73]. Within gray matter, nerve cells are arranged in two different

ways. A local accumulation with neurons that have roughly similar connections

and functions is called a nucleus; such collections are found throughout the

cerebrum, diencephalon, brainstem, and spinal cord. In contrast, cortex describes

sheetlike arrays of nerve cells. Within the white matter of the CNS, axons are

gathered into tracts that are more or less analogous to nerves in the periphery

[73].

1.2. Mathematical Background

In this section the mathematical models adopted to emulate the generation of

electric potentials and magnetic fields, i.e., the EEG and MEG forward problems,

are deduced.

1.2.1. Derivation of the EEG and MEG Forward Problem

Following [41] and [18], the electric potential distribution and the resulting mag-

netic induction generated in the brain can be modeled through the quasi-static

approximation of Maxwell’s equations, when assuming that the permeability of

the tissue in the head is that of the free space, i.e., µ = µ0,

∇× E = 0, (1.1a)

∇ · E =
ρ

ε0
,

related to the electrical part, and

∇×B = µ0 j, (1.2a)

∇ ·B = 0, (1.2b)
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related to the magnetic part, where E is the electric field, B the magnetic field,

ρ is the electric charge density, ε0 is the permittivity of free space and µ0 is

the permeability of free space. In (1.2a) j represents the total current density

produced by neuronal activity, which, in bio-electromagnetism [41, 18], is split

into two contributions,

j(r) = jp(r) + js(r), (1.3)

where jp is the so called primary current, js the secondary or volume current

and r ∈ R3. In neuromagnetism, the primary current is widely represented as a

mathematical point dipole [28, 60],

jp(r) = M · δ(r− r0), (1.4)

where M ∈ R3 stands for the dipolar moment and δ is the Dirac delta distribution

centered in the dipole position r0 ∈ R3.

The volume current is a passive current that is the result of the macroscopic

electric field on charge carriers in the conducting medium [41, 18], and

js = σE (1.5)

holds true (Ohm’s law), where σ indicates the conductivity profile of the con-

ductive medium. While for the mathematical point dipole the primary current

is present only at the source position, the secondary current flows passively

everywhere in the medium.

The Forward Problem of EEG

To derive the EEG forward problem, (1.1a) and (1.2a) have to be considered.

As a consequence of (1.1a), there exists a potential u such that

E = −∇u, (1.6)

so that (1.5) can be written as

js = −σ∇u. (1.7)
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1. General Background

Applying the divergence to (1.2a), we obtain

∇ · j = 0. (1.8)

Combining (1.3), (1.7) and (1.8), we get an inhomogeneous Poisson equation

that, together with the homogeneous Neumann boundary condition, models the

EEG forward problem:

∇ · (σ∇u) = ∇ · jp(= f), in Ω ⊆ R3 (1.9)

σ∇u · n = 0, on ∂Ω (1.10)

where Ω is the volume conductor and n is the unit outer normal vector on ∂Ω.

The EEG forward problem consists in finding the electric potential u on the

domain Ω, assuming to know σ and jp. The strong formulation, as it appears

in (1.9), admits a solution u ∈ C2(Ω) if restrictions are imposed on the source

term f and the conductivity tensor σ. In this framework, the usual assumptions

on this model are that, for example, the conductivity tensor is only piecewise

constant, i.e., σ ∈ L∞(Ω) and that jp is a distribution, see (1.4). The idea is

then to relax the conditions required to the solution u by introducing the weak

formulation of the problem, which reads: find u ∈ V such that∫
Ω

σ∇u · ∇v dx =

∫
Ω

fv dx , ∀v ∈ V.

The weak formulation can be deduced by multiplying the strong formulation for

a so-called test function v ∈ V , integrating the resulting equation in the domain

Ω and using Gauss’ theorem (in a heuristic way) to manipulate the left-hand

side. The weak formulation can also be written in terms of both a linear and a

bilinear operator, i.e., find u ∈ V

a(u, v) = l(v), ∀v ∈ V,

where

a(u, v) =

∫
Ω

σ∇u · ∇v dx ,

l(v) =

∫
Ω

fv dx .
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1.2. Mathematical Background

While in the strong formulation, the solution should be looked for in V = C2(Ω),

for the weak formulation, it suffices that u belongs to the Sobolev function space

H1(Ω), or, more precisely, in the quotient H1
∗ (Ω), following the definitions

H1 (Ω) :=
{
f ∈ L2(Ω) : D1f ∈ L2(Ω)

}
,

and

H1
∗ (Ω) :=

{
f ∈ H1 (Ω) :

∫
Ω

f dx = 0

}
.

When choosing V = H1
∗ (Ω), it is possible to proof consistency with the strong

formulation together with existence and uniqueness of the solution. More details

can be found , e.g., in [86].

The Forward Problem of MEG

Solving the MEG forward problem means computing the magnetic induction, or

magnetic flux, Φ, generated by a dipolar source in the brain. The magnetic flux

is computed from the magnetic field B (B-field):

Φ =

∫
S

B · ds,

where S is the surface of the sensor.

The B-field can also be deduced by Maxwell’s equations. In particular, from

(1.2b) we have that it exists A such that B = ∇×A. A is the magnetic vector

potential and it satisfy the Coulomb gauge, i.e., ∇ ·A = 0. By manipulating

(1.2a), we obtain the following chain of equalities:

µ0j = ∇×B

= ∇× (∇×A) = ∇(∇ ·A)−∇2A

= −∇2A, (1.11)

and the solution of the Poisson equation in (1.11) is

A(r) =
µ0

4π

∫
Ω

j(r′)

|r− r′|
d3r′.
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1. General Background

Therefore, the B-field can be written as follows:

B(r) = ∇×
(
µ0

4π

∫
Ω

j(r′)

|r− r′|

)
d3r′

=
µ0

4π

∫
Ω

∇×
(

j(r′)

|r− r′|

)
d3r′

If we observe that

∇r ×
(

j(r′)

|r− r′|

)
= ∇r

(
1

|r− r′|

)
× j(r′) +

1

|r− r′|
∇r × j(r′)

= − r− r′

|r− r′|3
× j(r′) + 0

= j(r′)× r− r′

|r− r′|3
,

where ∇r indicates that ∇ acts on functions depending on the variable r.

Then we obtain Biot-Savart’s law, giving the B-field at a point r ∈ R3 outside

the domain Ω,

B(r) =
µ0

4π

∫
Ω

j(r′)× r− r′

|r− r′|3
d3r′, (1.12)

Furthermore, when combining (1.3), (1.12) and (1.4), one obtains [41, 18]:

B(r)
(1.3,1.12)

=
µ0

4π

∫
Ω

(jp(r′) + js(r′))× r− r′

|r− r′|3
d3r′

(1.4)
=

µ0

4π
M× r− r0

|r− r0|3
− µ0

4π

∫
Ω

σ∇u(r′)× r− r′

|r− r′|3
d3r′

Namely, the B-field can be split into two contributions as well, the primary

B-field Bp, which is calculated analytically for a mathematical point dipole:

Bp(r) =
µ0

4π
M× r− r0

|r− r0|3
,

and the secondary B-field Bs, which has to be computed numerically when the

electrical potential is computed numerically (since it depends on the electrical

potential u inside the domain Ω),

Bs(r) = −µ0

4π

∫
Ω

σ∇u(r′)× r− r′

|r− r′|3
d3r′. (1.13)
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1.2.2. A Conservation Property

A fundamental physical property of the EEG forward problem is the conservation

of charge: ∫
∂K

js · n ds =

∫
K

f dK, ∀K ⊂ Ω,

where f = −∇ · jp and K is a control volume in Ω. We will refer to this

conservation law by indicating the couple (σ∇u, f), i.e., the boundary term

and the volume term, respectively. For FEMs this property carries over to the

discrete solution only if the test space contains the characteristic function, which

is one in K and zero everywhere else. In general, a conforming discretization

does not guarantee this property, while the discontinuous Galerkin finite element

method fulfills a discrete analogue. More details will follow.

1.2.3. The MEG Analytical Solution

In simplified geometries, similarly to the EEG forward problem [18], there exist

analytical solutions for the MEG forward problem [78, 48].

[78] showed that the magnetic field outside a spherically symmetric conductor due

to internal current sources does not depend on the profile of conductivity along

the radius. He derived the following analytical MEG solution for a multi-layer

homogeneous sphere model:

B(r) =
µ0

4πF 2
(FM× r0 −M× r0 · r∇F ), (1.14)

where a = r − r0, a = |a|, r = |r|, F = a(ra + r2 − r · r0) and ∇F =

(r−1a2 + a−1a · r + 2a+ 2r)r− (a+ 2r + a−1a · r)r0.

[48] could even demonstrate that radial anisotropy added to a spherically sym-

metric conductor does not affect the external magnetic field due to internal

sources. From (1.14), three important features of the analytical MEG solution

for a multi-layer homogeneous sphere model and a point outside the model can

be deduced:

Remark 1. Three main properties of analytical MEG solution for a multi-layer

homogeneous sphere model and a measurement point outside the model [78]:
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1. General Background

1. the solution does not depend on the conductivity profile of the spherical

model

2. if the source is radial, then the B-field outside Ω vanishes

3. the normal projection of the secondary component of the B-field gives a

null contribution to the total B-field, i.e. Bs(r) · n = 0, for r outside Ω.
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2. The Continuous Galerkin Finite

Element Method for Solving the

MEG Forward Problem

There are cases when the strong formulation is not adequate to model the

physical phenomenon under examination. Therefore, strong assumption on the

solution can be relaxed and the weak formulation is deduced.

Galerkin methods are approaches which can be adopted in order to discretize

weak formulations, dealing therefore with discrete problems defined on finite-

dimensional subspaces Vh of the test function space V already mentioned in

Chapter 1.

The finite element method in its simpler form is an example of a Galerkin

method, as we will see in this chapter. The continuous Galerkin finite element

method (CG-FEM) is also known as standard or lagrangian FEM, as the function

space Vh contains lagrangian ansatz functions, i.e., hat functions. This function

space constitutes a subset of H1(Ω), therefore the method is said to be a

conforming FEM. In the discretization step the weak formulation becomes a

linear system, the function space containing the solution and the test functions

is finite-dimensional, and the problem is solved in a discretized domain as it is

described in the following. The theory section mainly follows [21] and [74].

In this chapter we deduce, illustrate and validate the CG-FEM to solve the MEG

forward problem. To do so, we start (in Section 2.1) with the introduction of

the basics of CG-FEM; in Section 2.2, the CG-FEM discretization scheme for

the EEG forward solution is recalled throughout several representations of the

right-hand side, namely, the partial integration approach (in Section 2.4), the
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subtraction approach (in Section 2.3), and Venant’s approach (in Section 2.5).

In Section 2.6, the discretization of the MEG forward problem is deduced and

a speed-up procedure is mentioned. Finally, in Sections 2.7 and 2.8, validation

results in sphere models are presented and discussed, respectively.

2.1. Basics of the CG-FEM

If we consider the abstract variational problem (cfr. Chapter 1): find u ∈ V
such that

a(u, v) = l(v),∀v ∈ V, (2.1)

posed over an open set Ω with a Lipschitz-continuous boundary, then the Galerkin

method for approximating the solution of such problem consists in defining similar

problems in finite-dimensional subspaces of the space V . More specifically, with

a general finite-dimensional subspace Vh of V , we associate to (2.1) the discrete

problem: find uh ∈ Vh such that

a(uh, vh) = l(vh),∀vh ∈ Vh,

where uh is the so-called discrete solution.

In order to apply the Galerkin method we therefore face, by definition, the

problem of constructing finite-dimensional subspaces Vh of V . The finite element

method, in its simplest form, is a specific process of constructing subspaces Vh,

which shall be called finite element spaces. This construction is characterized by

three basic aspects:

1. a triangulation Th is established over the set Ω̄, i.e., the set Ω̄ is subdivided

into a finite number of subsets E, called finite elements, in such a way that

the following properties are satisfied:

• Ω̄ =
⋃
E∈Th E

• for each E ∈ Th, the set E is closed and the interior E̊ is non-empty
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2.1. Basics of the CG-FEM

• for each distinct Ee, Ef ∈ Th, one has Ee
⋂
Ef = ∅

• for each E ∈ Th, the boundary ∂E is Lipschitz-continuous

2. the functions vh ∈ Vh are piecewise polynomials

3. there should exist a basis in the space Vh whose functions have small

supports.

The CG-FEM is characterized by the following choice of Vh:

Vh = Xr
h = {vh ∈ C0(Ω) : vh|E ∈ Pr,∀E ∈ Th}, (2.2)

i.e., the space of functions which are globally continuous and piecewise polyno-

mials. As in this case the space Vh is a subset of V , the CG-FEM is defined as a

conforming FEM. We now introduce two particular polynomial spaces:

Definition 2.1.1. (Polynomial space Pkd) Let k ≥ 0 be an integer, Akd :={
α ∈ Nd : |α|l1 ≤ k

}
and | · |l1 the 1-norm. Then the polynomial space Pkd of

polynomials of d variables, of total degree at most k, is defined as

Pkd :=

p : Rd 3 z 7→ p(x) ∈ R : ∃(γα)α∈Akd ∈ Rcard(Akd) s.t. p(x) =
∑
α∈Akd

γαx
α

 .

The dimension of Pkd is equal to card(Akd) =
(
k+d
k

)
.

Definition 2.1.2. (Polynomial space Qk
d) Let k ≥ 0 be an integer, Bk

d :={
α ∈ Nd : |α|l∞ ≤ k

}
and | · |l∞ the ∞-norm. Then the polynomial space Qk

d of

polynomials of degree at most k in each variable is defined as

Qk
d :=

p : Rd 3 z 7→ p(x) ∈ R : ∃(γα)α∈Bkd ∈ Rcard(Bkd ) s.t. p(x) =
∑
α∈Bkd

γαx
α

 .

The dimension of Qk
d is equal to card(Bk

d) = (k + 1)d.

In the following, the space Pr = Pd1 is chosen when the triangulation is made

of triangles (d = 2) or tetrahedra (d = 3) and Pr = Qd
1 when the triangulation
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is made of quadrilaterals (d = 2) or hexahedra (d = 3). In both cases, every

function vh ∈ Vh is uniquely defined by the values that it assumes at the nodes

Ni, with i = 1, ..., Nh of the triangulation Th. Therefore, a basis of Vh can be

the set of functions ϕj ∈ Vh, j = 1, ..., Nh, such that

ϕj(Ni) = δi,j =

0 i 6= j

1 i = j
i, j = 1, ..., Nh.

In particular, if r = 1, the nodes are the vertices of the elements and the generic

function ϕj is linear on each element, it is equal to 1 on node Nj and to 0 on

every other node.

A generic function vh ∈ Vh can be expressed in terms of a linear combination of

basis functions of Vh as follows

vh(x) =

Nh∑
i=1

viϕi(x), ∀x ∈ Ω, (2.3)

where vi = vh(Ni).

In the following section, the CG-FEM discrete scheme for the EEG forward

problem is recalled starting from the discretization just introduced. In general,

the main focus of this chapter is on the MEG forward problem, so here only a

summary is presented. For further details see, e.g., [86].

2.2. Solving the EEG Forward Problem

The conforming weak formulation of the EEG forward problem (1.9)-(1.10)

introduced in Chapter 1 reads: find uh ∈ Vh ⊂ H1 (Ω) such that∫
Ω

σ∇uh · ∇vhdx =

∫
Ω

fvhdx (2.4)

holds true, ∀vh ∈ Vh. Choosing Vh as the space of piecewise linear, continuous

functions, i.e., Vh = Xr
h, results in the classical CG-FEM. If we express the

discrete solution uh of (2.4) in terms of the basis {ϕj}j by using (2.3), we obtain
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uh(x) =

Nh∑
j=1

ujϕj(x), ∀x ∈ Ω, (2.5)

where uj = uh(Nj). If we assume that (2.5) satisfies (2.4) for each element of

the basis, then we obtain the following linear system with Nh equations in the

Nh unknowns uj which is equivalent to the problem (2.4),

Nh∑
j=1

uj

∫
Ω

σ∇ϕj · ∇ϕidx =

∫
Ω

fϕidx, (2.6)

for i = 1, ..., Nh. (2.6) can also be rewritten in terms of a discretized version of

the bilinear and linear form a and l, i.e., ah and lh, respectively, as follows

ah(ϕi, ϕj) = lh(ϕi).

The so-called stiffness matrix of dimensions Nh ×Nh is defined as

A = (ai,j)i,j=1,...,Nh , (2.7)

where

ai,j = ah(ϕi, ϕj) =

∫
Ω

σ∇ϕj · ∇ϕidx,

li = lh(ϕi) =

∫
Ω

fϕidx.

If we furthermore introduce the vectors:

u = (uj)j, l = (li)i,

the linear system in (2.6) can be written as follows

Au = l. (2.8)

As the support of the generic basis function ϕi is made of only the elements of the

triangulation which share the node Ni, the matrix A is sparse. In our work, the

linear system (2.8) is solved by means of a preconditioned conjugate gradient (CG)

solver, more specifically with the algebraic multi-grid (AMG) preconditioning.
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The AMG-CG solver was already implemented in the Distributed and Unified

Numerics Environment (DUNE) 1 [14, 13, 12].

Remark 2. When defining the vector l, we did not consider the fact that often

a dipolar expression of the source is taken into account. Therefore the integral in

li is in general not well-defined when f = ∇ · jp = ∇ ·Mδr0.

In the following sections three strategies adopted to deal with the singularity in

li are described.

2.3. The Subtraction Approach

As already mentioned, the mathematical point dipole model introduces a sin-

gularity on the right-hand side of the PDE in (1.9) that can be treated, for

example, with the so-called subtraction approach [79, 96, 30, 17, 7, 54].

The subtraction approach assumes that a non-empty neighborhood Ω∞ around

the source in r0 can be found with homogeneous conductivity σ∞. The conduc-

tivity tensor σ is then split into two parts,

σ = σ∞ + σcorr, (2.9)

where σcorr vanishes in Ω∞. The potential u can also be split into two contribu-

tions,

u = u∞ + ucorr. (2.10)

The so-called singularity potential u∞ is the solution of the Poisson equation

in an unbounded and homogeneous conductor with constant conductivity σ∞,

and it can be computed analytically, see e.g. [30]. The correction potential ucorr

becomes the unknown of a new Poisson equation:

−∇ · (σ∇ucorr) = ∇ · (σcorr∇u∞), in Ω ⊆ R3 (2.11)

σ∇ucorr · n = −σ∇u∞ · n, on ∂Ω (2.12)

1http://www.dune-project.org
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after embedding (2.9) and (2.10) in (1.9) and (1.10). The conforming weak

formulation of (2.11)-(2.12) presented in [96] reads: find ucorrh ∈ Vh ⊂ H1 (Ω)

such that∫
Ω

σ∇ucorrh · ∇vhdx = −
∫

Ω

σcorr∇u∞h · ∇vhdx−
∫
∂Ω

σ∞∇u∞ · n vhds (2.13)

holds true, ∀vh ∈ Vh. When choosing Vh as the space of piecewise linear,

continuous functions the classical CG-FEM is obtained.

The subtraction approach is theoretically well understood. A deep numerical

analysis of the subtraction approach including proofs for uniqueness and existence

has been carried out in [96] and [30].

The matrix form of (2.13) is: find ucorrh ∈ Vh such that

Aucorr = lcorr, (2.14)

where A is the stiffness matrix defined in (2.7), ucorr = (ucorrj )j, and lcorr =

(lcorri )i = −
∫

Ω
σcorr∇u∞ · ∇ϕidx−

∫
∂Ω
σ∞∇u∞ · nϕids. Once the linear system

(2.14) is solved, the full potential uh = ucorrh + u∞ can be assembled.

Remark 3. When the subtraction approach is adopted for discretizing the EEG

forward problem, two main points have to be considered:

1. the numerical accuracy of the method for sources that are very close to a

conductivity jump, e.g., the brain-CSF boundary, can decrease remarkably

(see [96] and [30]);

2. the discrete right-hand side of the linear system is a dense vector, therefore

the computation can be time-consuming.

2.4. The Partial Integration Approach

Another way to deal with the singular right-hand side of the EEG forward

problem equation is to use the definition of a differential operator D acting on
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2. The CG-FEM for Solving the MEG Forward Problem

the Dirac delta distribution centered in r0 ∈ R3, i.e.,

〈D(δr0), φ〉 = −D(φ)(r0), (2.15)

where φ is a smooth function with compact support. If we use this definition on

the right-hand side of (2.4) with D = ∇, we obtain

l(vh) =

∫
Ω

fvhdx

=

∫
Ω

∇ · (Mδr0)vhdx

= −M∇vh(r0),

where we considered the fact that M is constant and the behavior of the delta

distribution and the integral operator.

The name of this approach comes from the fact that definition (2.15) mimics

Gauss’ theorem, or partial integration, for multi-dimensional functions. The

discrete right-hand side of the linear system in (2.6) therefore is

l = (li)i = (−M∇ϕi(r0))i.

The vector l has non-zero entries only in the support of the basis function ϕi

which contains the dipole itself. Furthermore we notice that in case of Vh = P1,

li is constant on each element of the triangulation Th(Ω).

2.5. Venant’s Approach

A third strategy to deal with the singular right-hand side of (2.4) makes use of

the principle of Saint-Venant, and we refer to it as Venant’s approach. Barré

de Saint-Venant formulated his famous principle in 1855, but it was more of an

observation than a strict mathematical statement: “If the forces acting on a

small portion of the surface of an elastic body are replaced by another statically

equivalent system of forces acting on the same portion of the surface, this

redistribution of loading produces substantial changes in the stresses locally, but

has a negligible effect on the stresses at distances which are large in comparison
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2.5. Venant’s Approach

with the linear dimensions of the surface on which the forces are changed”[11].

Many scientists gave a more rigorous formulation of the principle, mainly in

applications of elasticity. In structural engineering this principle is extensively

used and the main message is that the exact distribution of a load is not important

far away from the loaded region, as long as the resultants of the load are correct.

This principle can be applied also in electrostatics, where instead of loads we

deal with charges, and the resultants of the loads are the moments of the electric

source distribution. Therefore, a point dipole can be replaced by a distribution

of electrical monopoles, as long as the moments are equivalent. Crucial issues to

address are related to the choice of the position and the intensity of the charges.

[20], together with [96, 86, 55], dealt with these issues and here the main steps

are reported.

The choice of the charge positions relies on the fact that we are considering

lagrangian finite elements and the associated lagrangian ansatz functions, whose

degrees of freedom are the values of the basis functions at the nodes of the

triangulation. Hence, the monopoles are placed on the nodes of the element

which contains the dipolar source. With regard to the choice of charge intensities,

a linear system is built, where the actual moments of the dipolar source are

equalized to the ones of a discrete distribution of electrical monopoles. More

details are in the following.

The moments of a dipolar source are defined as

kT = Q

(
d

2

)k
−Q

(
−d
2

)k
= Q

d

2

k

(1− (−1)k),

where Q is the charge strength, d is the distance between the two monopoles

constituting the dipole, i.e., a source and a sink of equal strength Q. If the

dipole is placed at the i-th node, we can write its target dipole moment as kT ji ,

with j = 1, 2, 3. On the other side, the moments of a source distribution at an

observation point r are defined as

kM(r) =

∫
Ω

(r′ − r)kρ(r′)d3r′,
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2. The CG-FEM for Solving the MEG Forward Problem

where ρ is the continuous distribution of charge. When a point-like monopolar

distribution of charge is considered, i.e., when

ρ(r) =
N∑
l=1

qlδ(r− rl),

where ql are the monopolar source strengths and rl are the locations of the

monopoles, we get the moments

kM(r) =
N∑
i=l

(dl)
kql, (2.16)

where dl = r− rl. If we refer to monopolar load moment for the k-th monopole

close to the i-th monopole, we write kM j
i , and the distances become (dil)

k
j , with

j = 1, 2, 3. The vector equation (2.16) can be written as a linear system, which

we express for every component j = 1, 2, 3 of the vectors in (2.16):
(0Mi)j

(1Mi)j
...

(kMi)j

 =


(di,1)0

j (di,2)0
j · · · (di,N)0

j

(di1)1
j (di2)1

j · · · (diN)1
j

...
...

. . .
...

(di1)kj (di2)kj · · · (diN)kj

 ·

q1

q2

...

qN

 .

In the next step, a quadratic positive functional D > 0 is introduced and

minimized, in the spirit of a least squares expression and inverse regularization

techniques.

D =
1

2

(
kT ji − (djil)

kql
) (

kT ji − (djis)
kqs
)

+ λD
1

2
qlglsqs,

where

gls =

(dildis) l = s

0 l ≤ s.

When differentiating with regard to qt we obtain

(
(djit)

k(djis)
k + λDgts

)
qs = (djit)

kkT ji ,

which can be rewritten as

ats · qs = bt. (2.17)
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The system (2.17) is symmetric and positive definite and the order is given by

the number of monopoles, which are chosen, for example, as the nodes belonging

to the same element as the dipolar source, therefore the system can be solved

fast. For further details about this approach and for the discussion about the

choice of the parameters involved, we refer to [20]. Finally, the right-hand side

of (2.4) looks like

l = (li)i = (qi)i,

which is different from zero only in the neighboring nodes of the source location.

2.6. Solving the MEG Forward Problem

Once the EEG forward problem is solved, the secondary component of the B-field,

Bs, can be numerically computed. In this section, we focus on the expression

of the secondary B-field, as the primary B-field, Bp, is analytically computable

(cfr. Chapter 1).

In the CG-FEM framework, the EEG forward solution uh is projected to the

discrete space Vh already introduced, leading to equation (2.5), i.e., uh(r) =∑Nh
j=1 ujϕj(r), ∀r ∈ Ω. Furthermore, in a CG-FEM approach the following

expression of the electric flux (jCGh ) is considered:

jCGh = σ∇uh (2.18)

= σ
∑
j

uj∇ϕj.

where (ϕj)j is a collection of hat functions, basis of Vh. The discretization Bs
h of

Bs is then given by

Bs
h(r) = −µ0

4π

∑
j

uj

∫
Ω

σ∇ϕj(r′)×
r− r′

|r− r′|3
d3r′.
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Note that (uj)j are given from the EEG forward computation. If we call cn the

center of the nth coil, then the discrete Bs
h evaluated in cn is

Bs
h(cn) =

∑
j

uj

(
−µ0

4π

)∫
Ω

σ∇ϕj(r′)×
cn − r′

|cn − r′|3
d3r′︸ ︷︷ ︸

:=SCGnj

, (2.19)

where SCG =
(
SCGnj

)
n,j

is the secondary magnetic field integration matrix. Finally,

equation (2.19) can be rewritten as a matrix equation,

Bs
h = SCGu. (2.20)

An alternative treatment of Bs involves the already mentioned conservation of

charge property, whose fulfillment is not guaranteed for the flux in (2.18). Such

alternative is presented in the next chapter.

As described in the following, MEG forward computations are carried out for

a large number of dipole sources. In order to speed up the many numerically

expensive computations of the secondary B-field Bs for all of these sources,

following [35, 95], we adapted and implemented the transfer matrix approach

for the presented CG-FEM-based MEG forward modeling scheme. Details can

be found in Appendix A.4.

Subtraction Approach In the particular case of the subtraction approach, the

same procedure is applied to both the infinity and the correction contributions

to the secondary B-field. More specifically, since we are dealing with numerical

integration, both u∞ and ucorr are projected to the discrete space Vh, i.e.,

u∞h (r) =
∑
i

u∞i ϕi(r),

and

ucorrh (r) =
∑
i

ucorri ϕi(r),

where (ϕi)i represent a basis of the discrete space Vh, while u∞h and ucorrh are

the discrete representations of u∞ and ucorr, respectively. Note that u∞ has an

analytical expression. The discretizations Bs
∞,h and Bs

corr,h of Bs
∞ and Bs

corr,
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respectively, are then:

Bs
∞,h(r) = −µ0

4π

∑
i

u∞i

∫
Ω

σ∇ϕi(r′)×
r− r′

|r− r′|3
d3r′,

and

Bs
corr,h(r) = −µ0

4π

∑
i

ucorri

∫
Ω

σ∇ϕi(r′)×
r− r′

|r− r′|3
d3r′,

respectively. Note that (ucorri )i are given from the EEG forward computation.

Then the discrete Bs
∞,h and Bs

corr,h evaluated in the center cn of the nth coil are

Bs
∞,h(cn) =

∑
i

u∞i

(
−µ0

4π

)∫
Ω

σ∇ϕi(r′)×
cn − r′

|cn − r′|3
d3r′, (2.21)

and

Bs
corr,h(cn) =

∑
i

ucorri

(
−µ0

4π

)∫
Ω

σ∇ϕi(r′)×
cn − r′

|cn − r′|3
d3r′, (2.22)

respectively.

Equations (2.21) and (2.22) can be rewritten as matrix equations,

Bs
∞,h = SCGu∞,

and

Bs
corr,h = SCGucorr,

respectively. Note that in equation (2.22), the following expression of the flux

(jcorr,CGh ) is considered:

jcorr,CGh = σ∇ucorrh

= σ
∑
k

ucorrk ∇ϕk.

An alternative treatment of Bs
∞ is by exploiting the fact that ∇u∞ has an

analytical expression and that σ|Ω∞ = σ∞ constant and isotropic [30]. We then
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can write

B =
µ0

4π

(
M× d

|d|3

)
− µ0

4π

∫
Ω

σ∇ucorr × d

|d|3
dx

− µ0

4π

∫
Ω\Ω∞

σ∇u∞ × d

|d|3
dx

− µ0

4π

∫
Ω∞

σ∇u∞ × d

|d|3
dx , (2.23)

where we indicated with d the relative distance to an observation point r outside

the computational domain Ω, i.e., r−r′
|r−r′|3 . Since ∇u∞ is singular in the dipole

position, the numerical treatment of (2.23) is not trivial. One way to deal with

this issue is to reformulate (2.23) as a surface integral, as stated in the following

Proposition:

Proposition 1. It holds that

µ0

4π

∫
Ω∞

σ∇u∞ × d

|d|3
dx =

µ0σ
∞

4π

∫
∂Ω∞

u∞
(
n× d

|d|3

)
ds , (2.24)

where σ|Ω∞ = σ∞ is considered constant and isotropic.

The following Lemma and Remark lead to the proof of Proposition 1.

Lemma 1. The vector field d
|d|3 in (2.23), with r−r′

|r−r′|3 , is conservative.

Proof. If we consider f(r) = |d(r)|, we have that ∇f = d
|d|3 , which proves that

d
|d|3 is conservative.

Remark 4. If ϕ is a scalar function and F is a field vector, then

∇× (ϕF) = ∇ϕ× F + ϕ∇× F

holds true.

The proof of Proposition 1 therefore is:
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2.6. Solving the MEG Forward Problem

Proof. [of Proposition 1] As a first step, we can exploit the fact that σ|Ω∞ = σ∞

is constant and isotropic:

µ0

4π

∫
Ω∞

σ∇u∞ × d

|d|3
dx =

µ0σ
∞

4π

∫
Ω∞

∇u∞ × d

|d|3
dx .

Then the identity in Remark 4 can be integrated over the volume Ω∞ and can

be considered with ϕ = u∞ and F = d
|d|3 , resulting in:

µ0σ
∞

4π

∫
Ω∞

∇u∞ × d

|d|3
dx =

µ0σ
∞

4π

∫
Ω∞

∇×
(
u∞

d

|d|3

)
dx (2.25)

− µ0σ
∞

4π

∫
Ω∞

u∞∇× d

|d|3
dx .

Proposition 1 is proven when applying Gauss’ theorem to (2.25) and having that

a conservative field vector is curl-free, i.e., ∇× d
|d|3 = 0.

Therefore we can write

B =
µ0

4π

(
M× d

|d|3

)
− µ0

4π

∫
Ω

σ∇ucorr × d

|d|3
dx

− µ0

4π

∫
Ω\Ω∞

σ∇u∞ × d

|d|3
dx

− µ0σ
∞

4π

∫
∂Ω∞

u∞
(

n× d

|d|3

)
ds . (2.26)

From the implementation point of view, the analytical expression of ∇u∞ is

evaluated at the quadrature points and the subdomain Ω∞ is represented by a

patch of elements in Th(Ω). A similar concept was used in [36] and applied to

magnetocardiogram forward simulations.
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2. The CG-FEM for Solving the MEG Forward Problem

2.7. Validation in Sphere Models

In this section, we validate, compare and evaluate the convergence of the CG-

FEM developed and implemented for solving the MEG forward problem when

different discretizations of the right-hand side are adopted, namely the sub-

traction approach, the partial integration approach and Venant’s approach, in

the spherical volume conductor models described in Appendix A.1. The vol-

ume conductor models used in the validation studies are 4-layer homogeneous

sphere models represented via hexahedral meshes with three different resolutions,

namely 4 mm, 2 mm and 1 mm. Details on the models and meshes are in Tables

A.1 and A.2, respectively. We considered 10,000 tangentially oriented dipoles,

distributed in 10 logarithmically scaled eccentricities (see Table A.3), and we

evaluated the secondary and the full B-field in 256 point-magnetometers outside

the sphere model at a fixed radius of 110 mm (see Figure A.1). The errors were

assessed via the RDM% and MAG%, defined in (A.1) and (A.2), respectively.

More details about the input data and error measures can be found in Appendix

A.

We implemented the CG-FEM for the MEG forward problem in duneuro [64].

More details are in Appendix A.5.

Statistical results of numerical accuracies are visualized with mean curves, box-

plots and cumulative relative frequencies curves. As a general remark, we consider

only tangentially-oriented sources for the validations and evaluations in the next

sections, because, as seen in Section 2.7, radial sources do not produce any

magnetic field outside spherical volume conductor models.

Following formulas (1.13) and (1.12), we measure errors of the vector fields Bs

and B. These errors thus include parts from the radial and the two tangential

sensor orientations and thus enable an overall view on the MEG forward modeling

accuracy. On the one hand, radially-oriented sensor orientations are dominant

in realistic MEG sensor configurations (see Figure 3.15), while on the other

hand, and as seen in Section 1.2.3, because of the cancellation effect of primary

and secondary B-fields, tangentially-oriented sensor orientations are especially

delicate numerical test-cases.

30



2.7. Validation in Sphere Models

Study 0: Preparatory Work using an Analytical Approach

To recall the most important symmetry properties of the MEG forward problem

in spherical volume conductor models, to prepare the numerical studies below and

to enable an easier interpretation of their results, we first tested and visualized

the properties of the MEG analytical solution for a multi-layer homogeneous

sphere model, as reported in Remark 1. Here, we consider radial and tangential

point-magnetometers, i.e., we have projected the B-field (Bp, Bs, B) onto the

radial n and tangential t directions at sensor locations (Figure A.1).

In Figure 2.1a, we compared, for the tangentially-oriented sources at logarithmi-

cally scaled eccentricities and the 256 radial point-magnetometers, the L2-norm

of primary Bp (in pink) and secondary Bs (in blue) B-fields, i.e.,

||Bp · n||2, ||Bs · n||2. (2.27)

We notice that the only contribution to radial point-magnetometers is given by

the primary component of the B-field, Bs, as proven in [78].

In Figure 2.1b, we plotted the L2-norm of the full B-field for radial point-

magnetometers normalized to the maximum over all tested sources, which is

achieved for the most eccentric source, i.e.,

||B · n||2
max ||B · n||2

. (2.28)

We can see how the magnitude of the full B-field increases for sources with an

increasing eccentricity. In Figure 2.2, we investigated the analytical solutions

in the spherical volume conductor model for tangential point-magnetometers

(Figure A.1, middle). Figure 2.2 shows the L2-norm of the primary (in pink)

and secondary (in blue) tangential B-field components, i.e.,

||Bp · t||2, ||Bs · t||2, (2.29)

for tangentially-oriented sources at different eccentricities. In this Figure we can

see that, for tangential point-magnetometers, the deeper the sources are, the

more the primary and secondary B-fields give identical contributions, but with

opposite signs, to the full B-field, i.e., they more and more cancel each other out.
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Figure 2.1a.: Analytical solutions in spherical volume conductor model for ra-
dial point-magnetometers: L2-norm of the primary (Bp, pink)
and secondary (Bs, blue) B-fields (see equations in (2.27)) for
tangentially-oriented sources at logarithmically scaled eccentricities.
Values are expressed in Tesla (T ).

Towards the sphere center, sources become more and more radial and the full

B-field goes down to zero. However, as Figure 2.2 also shows, with increasing

source eccentricity the relative contribution of the primary tangential B-field

component increases when compared to the secondary B-field component. The

tangential full B-field projection (i.e., B · t) and, together with it, the difference

between primary and secondary tangential B-field components (i.e., Bp · t and

Bs · t) thus increase with increasing source eccentricity.

Study 1: CG-FEM and the Subtraction Approach

In this Section, we validated the MEG forward problem solution when the

CG-FEM was adopted and the right-hand side of the Poisson equation (1.9)

was discretized using the subtraction approach described in Section 2.3. For the

validation we compared results for 4 mm, 2 mm and 1 mm resolution meshes

described in Table A.2.

To observe the convergence of the method, we focus on the results given for the

secondary B-field, which is computed numerically, when the mesh resolution is

increased, namely from the coarsest resolution of 4 mm over 2 mm to the highest

resolution of 1 mm. We studied the behavior of the RDM% and MAG% errors
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Figure 2.1b.: Analytical solutions in spherical volume conductor model for radial
point-magnetometers: L2-norm of the radial full B-field component
relative to the one for the most eccentric source (see equation
(2.28)) for tangentially-oriented sources at logarithmically scaled
eccentricities. Values are expressed in Tesla (T )

for 10,000 tangentially oriented and randomly distributed dipoles at different

eccentricities. Results can be seen in Figure 2.3.

The RDM% and MAG% error mean curves (Figure 2.3, left column) are overall

increasing with increasing source eccentricity, as hypothesized by the theory

of the subtraction approach [96] and well-known already from EEG results

[30]. Most importantly, for increasing mesh resolution, error statistics improve

considerably. For the most relevant eccentricity of 0.9796, the highest resolved

model (seg 1 res 1) reaches mean RDM% and MAG% errors of 0.88% and

-0.01%, respectively. On the right column, we can study the boxplots of the

RDM% and MAG% of the same scenario analyzed before. Both in the RDM%

and MAG% cases, there is an overall increase of the median, total range (TR) and

interquartile range (IQR) when increasing the source eccentricity and decreasing

the mesh resolution.

If we focus on the 1 mm mesh and 0.9796 eccentricity, the RDM% median is

only around 0.76%; the IQR is ≈ 0.75% and the TR reaches ≈ 3%. In particular,

the IQR for dipoles of eccentricity 0.9796 increases drastically from ≈ 0.75% (1

mm) to almost 10% (2 mm) and 20% (4 mm). The TR behaves similarly. The

median MAG% is extremely low, i.e., ≈ 0.015%; the IQR is ≈ 0.8% and the TR

is ≈ 7.5%.

For this eccentricity, we notice a huge difference among the three mesh resolutions:
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Figure 2.2.: Analytical solutions in spherical volume conductor model for tan-
gential point-magnetometers: L2-norm of the primary (Bp, pink)
and secondary (Bs, blue) B-fields (see equations in (2.29)) for
tangentially-oriented sources at logarithmically scaled eccentrici-
ties. Values are expressed in Tesla (T ).

the medians grow from ≈ 0.015% (1 mm), to ≈ 2.12% (2 mm), up to ≈ 22.17%

(4 mm). The same trend is noticeable for the IQR: ≈ 0.8% (1 mm), ≈ 8% (2

mm) and ≈ 50% (4 mm).

In general, we observe an increase of RDM% and MAG% values when the dipoles

reach the last layer of hexahedra within the brain compartment, i.e., when the

eccentricities are higher than the green, red and blue dashed lines for the 4 mm,

2 mm and 1 mm scenarios, respectively.

In Figure 2.4, we can analyze how the secondary B-field errors propagate to

the full B-field solutions. As a general remark, we notice that dipoles with a

very low eccentricity, i.e., 0.01, are in fact radially oriented dipoles, as they are

very close to the center of the sphere. For those dipoles, there is a cancellation

between primary and secondary B-field, resulting in a null full B-field. Therefore,

when computing the MAG% error for those dipoles, the denominator is zero in

(A.2), leading to an explosion in MAG% values, which is clearly visible in Figure

2.4. With regard to the main behavior of the errors, we observe same trends as

in the secondary B-field study in Figure 2.3. In particular, for the most relevant

eccentricity, i.e., 0.9796, and 1 mm resolution, the mean RDM% and MAG%

reach ≈ 1.01% and ≈ -0.01%, respectively, and the median RDM% and MAG%

are ≈ 0.9% and ≈ -0.0025%, respectively.
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Figure 2.3.: Validation and convergence analysis for secondary B-field Bs compu-
tation (1.13) of CG-FEM when the subtraction approach is used in
a 4 mm (blue), 2 mm (yellow) and 1 mm (green) hexahedral sphere
model: visualized are the means (left column) and the boxplots
(right column) of the RDM% (top row) and MAG% (bottom row),
for tangentially oriented sources at logarithmically-scaled eccentric-
ities. Dashed lines represent the eccentricities of 4 mm (green), 2
mm (red) and 1 mm (blue) distances to the brain-CSF boundary.
Note the different scaling of the y-axes.

Study 2: CG-FEM and the Partial Integration Approach

In this section, a similar comparison as in the previous section is conducted. The

secondary and full B-fields are compared to the analytical solution when the

resolution of the mesh of the computational domain is increased, from 1 mm to

2 mm and 4 mm.

In this particular section, results for the partial integration approach introduced in

Section 2.4 are analyzed via the RDM% and MAG% errors, for both the secondary

and the full B-field visualized in Figure 2.5 and 2.6, for 10,000 tangentially

oriented and randomly distributed dipoles at 10 different eccentricities already
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Figure 2.4.: Validation and convergence analysis for solving the MEG forward
problem, i.e., the full B-field B (1.12), of CG-FEM when the sub-
traction approach is used in a 4 mm (blue), 2 mm (yellow) and
1 mm (green) hexahedral sphere model: visualized are the means
(left column) and the boxplots (right column) of the RDM% (top
row) and MAG% (bottom row), for tangentially oriented sources at
logarithmically-scaled eccentricities. Dashed lines represent the ec-
centricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances
to the brain-CSF boundary. Note the different scaling of the y-axes.

described.

Also in this scenario, we notice a general increase of errors when decreasing

the mesh resolution, from 1 mm to 4 mm, and when increasing the source

eccentricities. In particular, for the most relevant eccentricity of 0.9796, the

highest resolved model (seg 1 res 1) reaches mean RDM% and MAG% errors

of ≈ 0.87% and ≈ -0.03%, respectively. On the right column, we can study the

boxplots of the RDM% and MAG% of the same scenario analyzed in Study 2.7.

Both in the RDM% and MAG% cases, there is an overall increase of the median,

TR and IQR when increasing the source eccentricity and decreasing the mesh

resolution. If we focus on the 1 mm mesh and 0.9796 eccentricity, the RDM%

median is only around 0.75%; the IQR is ≈ 0.5% and the TR reaches ≈ 4%. The
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median values increase from ≈ 0.75%, to ≈ 3% and ≈ 9%. We do not notice

a large variation of IQR values, while the TR for dipoles of eccentricity 0.9796

increases drastically from ≈ 5% (1 mm) to almost 15% (2 mm) and 50% (4 mm).

The median MAG% is extremely low, i.e., ≈ 0.004%; the IQR is ≈ 0.4% and

the TR is ≈ 5%. For this eccentricity, we do not notice a huge difference among

the three mesh resolutions.

In this particular case of the partial integration approach, we notice that the

RDM% medians are overall below 11% for 4 mm resolution, below 5% for 2

mm and below 4% for 1 mm. The MAG% medians do not exceed 2% for 4

mm, 0.4% for 2 mm and 0.2% for 1 mm, independently of the eccentricities.

In particular, when analyzing results for the most eccentric dipoles, i.e., with

an eccentricity of 0.993, the RDM% and MAG% means are ≈ 4.3% and ≈
0.5%, respectively. The medians are around 4% and 0.2%, the IQRs around

4% and 1.2% and the TRs reach ≈ 15% and ≈ 20% for RDM% and MAG%,

respectively. With regard to the full B-field, similar general considerations done

for the subtraction approach hold for the partial integration approach. First,

we notice huge RDM% and MAG% values for the least eccentric dipoles, i.e.,

almost radial dipoles; second, some numerical oscillations for the 4 mm results

are visible for the highest eccentricities. Overall, RDM% and MAG% means do

not exceed 9.6% and 4.3% for 4 mm; 3.9% and 0.5% for 2 mm and 3.3% and

0.7% for 1 mm, respectively.

Study 3: CG-FEM and Venant’s Approach

In this section, we present the results of validating the MEG forward problem

solution when the CG-FEM was adopted and the right-hand side of the Poisson

equation (2.4) was discretized using Venant’s approach, described in Section 2.5.

For the validation we compared results for 4 mm, 2 mm and 1 mm resolution

meshes presented above, and 10,000 tangentially-oriented sources.

RDM% and MAG%s are evaluated both for the secondary B-field Bs and the

full B-field B, following equations (1.13) and (1.12), respectively. More details

are in Appendix A.

Similarly to the partial integration approach, we present results for both the most

reasonable eccentricity dipoles, i.e., 0.9796, and the most eccentric dipoles, i.e.,
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Figure 2.5.: Validation and convergence analysis for secondary B-field Bs com-
putation (1.13) of CG-FEM when the partial integration approach
is used in a 4 mm (blue), 2 mm (yellow) and 1 mm (green) hexahe-
dral sphere model: visualized are the means (left column) and the
boxplots (right column) of the RDM% (top row) and MAG% (bot-
tom row), for tangentially oriented sources at logarithmically-scaled
eccentricities. Dashed lines represent the eccentricities of 4 mm
(green), 2 mm (red) and 1 mm (blue) distances to the brain-CSF
boundary. Note the different scaling of the y-axes.

0.993, as in both scenarios the RDM% and MAG% results show the reliability

of the method also for the most extreme scenarios.

We start with the analysis of the RDM% and MAG% results for the secondary

B-field computed in a 1 mm resolution mesh, for the dipoles with eccentricity of

0.9796 and we refer to Figure 2.7. The RDM% and MAG% means are ≈ 0.74%

and ≈ -0.02%, respectively. From the boxplots in the right column of Figure 2.7

we can see RDM% and MAG% medians of ≈ 0.65% and ≈ -0.025%, IQRs of

around 0.5% and 0.15%, TRs of ≈ 3% and ≈ 4%, respectively. RDM% medians

are drastically decreasing when increasing the resolution of the mesh: from ≈
9% in the 4 mm resolution mesh, to ≈ 3% in the 2 mm resolution mesh and ≈
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Figure 2.6.: Validation and convergence analysis for solving the MEG forward
problem, i.e., the full B-field B (1.12), of CG-FEM when the partial
integration approach is used in a 4 mm (blue), 2 mm (yellow) and
1 mm (green) hexahedral sphere model: visualized are the means
(left column) and the boxplots (right column) of the RDM% (top
row) and MAG% (bottom row), for tangentially oriented sources
at logarithmically-scaled eccentricities. Dashed lines represent the
eccentricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances
to the brain-CSF boundary. Note the different scaling of the y-axes.

1% in the 1 mm resolution mesh. The same holds for TR values: from 30%, to

12% and 4% in a 4 mm, 2 mm and 1 mm resolution mesh, respectively. The IQR

values behave similarly. The same general behavior can be noticed for MAG%

boxplots, even if the maximum upper quartile remains below 5%.

When we analyze results for the most eccentric dipoles, we first of all notice

that the performance of Venant’s approach is very high. The mean RDM%

and MAG% are ≈ 0.74% and ≈ -0.02%, respectively. The RDM% and MAG%

medians are around 2.5% and 0.07%, the IQRs are approximately 3.5% and

0.7%, the TRs are ≈ 12% and 20%. The overall RDM% and MAG% means do

not exceed 12% and 4.5% for the 4 mm resolution mesh; 4.4% and 0.5% for the

2 mm resolution mesh and 3.2% and 0.3% for the 1 mm resolution mesh. In
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particular we observe that MAG% errors are extremely low, independently of

the mesh resolution or dipole position. Also for the full B-field the solutions
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Figure 2.7.: Validation and convergence analysis for secondary B-field Bs com-
putation (1.13) of CG-FEM when the Venant’s approach is used in
a 4 mm (blue), 2 mm (yellow) and 1 mm (green) hexahedral sphere
model: visualized are the means (left column) and the boxplots
(right column) of the RDM% (top row) and MAG% (bottom row),
for tangentially oriented sources at logarithmically-scaled eccentric-
ities. Dashed lines represent the eccentricities of 4 mm (green), 2
mm (red) and 1 mm (blue) distances to the brain-CSF boundary.
Note the different scaling of the y-axes.

are extremely accurate, when excluding the analysis of the innermost dipoles,

due to their radial orientation. The overall RDM% and MAG% mean values

do not exceed 9.2% and 2.1% for the 4 mm resolution mesh; 3.3% and 0.3% for

the 2 mm resolution mesh and 2.3% and 0.6% for the 1 mm resolution mesh,

respectively.
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Figure 2.8.: Validation and convergence analysis for solving the MEG forward
problem, i.e., the full B-field B (1.12), of CG-FEM when the Venant’s
approach is used in a 4 mm (blue), 2 mm (yellow) and 1 mm (green)
hexahedral sphere model: visualized are the means (left column) and
the boxplots (right column) of the RDM% (top row) and MAG%
(bottom row), for tangentially oriented sources at logarithmically-
scaled eccentricities. Dashed lines represent the eccentricities of 4
mm (green), 2 mm (red) and 1 mm (blue) distances to the brain-CSF
boundary. Note the different scaling of the y-axes.

Study 4: CG-FEM Comparison between Different Source

Models

In this section we compare the accuracy of all the three approaches we de-

scribed to discretize the right-hand side of the Poisson equation, namely the

subtraction approach (SA), the partial integration approach (PI) and Venant’s

approach (VEN), for each mesh resolution, namely 4, 2 and 1 mm resolution

meshes, see Table A.2. We computed and visualized RDM% and MAG% for

both the secondary and full B-field, for 10,000 tangentially oriented dipoles at

10 logarithmically-scaled eccentricities.
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2. The CG-FEM for Solving the MEG Forward Problem

In Figure 2.9, the secondary B-field results corresponding to the 4 mm resolution

mesh are reported.

As a general remark about RDM% values, we observe that VEN and SA perform

almost in an identical way until the eccentricity of 0.9334, i.e., the eccentricity

which corresponds to the brain-CSF boundary layer in the 4 mm mesh. For

higher eccentricities, SA RDM% values are much higher than those of PI and

VEN, which perform almost identically. The difference in RDM% mean between

SA and PI/VEN reaches 15 percentage points (pp). Note that for eccentricities

higher than 0.9334, all of the three approaches lead to RDM% values above 5%,

therefore the accuracy of the method is lower independently of the approach

used for the discretization of the right-hand side.

With regard to the MAG% values, the general behavior is the following. For

eccentricities smaller than 0.9334, the three approaches deliver MAG% values

whose differences are negligible. On the contrary, for eccentricities higher than

0.9334, the SA performs worse than PI and VEN, reaching differences up to 180

pp, when considering the means. However, these values are out of the displayed

graph range. PI and VEN behave similarly, with a slightly better performance

of VEN, i.e., with a difference up to 1 pp in mean.

As expected, the main increase of RDM% and MAG% occurs when dipoles

approach the boundary layer of hexahedra between brain and CSF compart-

ments, i.e., dipoles with eccentricities higher than 0.9334. From Figure 2.9, it is

remarkable how PI and VEN perform better than SA already at the eccentricity

of 0.9642, where many outliers are visible in the TRs of Figure 2.9, right column.

On the other side, when considering dipoles with eccentricities lower than 0.9334,

we can notice how both RDM% mean and median of the PI method are perform-

ing slightly worse than both SA and VEN, which are behaving identically. In

particular, the RDM% mean is ≈ 1 pp higher for the PI approach (Figure 2.9,

top left).

The behavior of PI for less eccentric dipoles is even more visible for the full

B-field results in Figure 2.10, where RDM% mean and median reach 60%. SA is

not delivering reliable results for very high eccentricities, but also PI and VEN

have high errors in such a low-resoluted mesh. In general, the 4 mm resolution

sphere model is too coarse to have accurate results and this is valid for every

discretization approach considered in this study.

Next comparison involves a 2 mm resoluted spherical mesh, and the three
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Figure 2.9.: Accuracy comparison of the secondary B-field Bs computation (1.13)
of CG-FEM when the subtraction (blue), the partial integration
(yellow) and Venant’s (green) approaches are used in a 4 mm hexa-
hedral sphere model: visualized are the means (left column) and the
boxplots (right column) of the RDM% (top row) and MAG% (bot-
tom row), for tangentially oriented sources at logarithmically-scaled
eccentricities. The green dashed line represents the eccentricity of 4
mm distance to the brain-CSF boundary. Note the different scaling
of the y-axes.

right-hand side discretization procedures already mentioned before, i.e., SA, PI

and VEN.

Main considerations already presented for the 4 mm case are valid also in this

scenario. In particular, first, we see that from the boundary-eccentricity of

0.9796, in this case, errors for all the three approaches are drastically increasing

and the highest increase is visible for SA, both for the secondary and full B-field,

in Figures 2.11 and 2.12, respectively. With regard to the secondary B-field,

the difference between SA and VEN reaches 8 pp for RDM% mean values and

almost 80 pp for MAG% mean values. Second, PI behaves topographically

slightly worse for lower eccentricities and this behavior is enhanced when looking
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Figure 2.10.: Accuracy comparison for solving the MEG forward problem, i.e.,
the full B-field B (1.12), of CG-FEM when the subtraction (blue),
the partial integration (yellow) and Venant’s (green) approaches
are used in a 4 mm hexahedral sphere model: visualized are the
means (left column) and the boxplots (right column) of the RDM%
(top row) and MAG% (bottom row), for tangentially oriented
sources at logarithmically-scaled eccentricities. The green dashed
line represents the eccentricity of 4 mm distance to the brain-CSF
boundary. Note the different scaling of the y-axes.

at full B-field results. The difference between PI and VEN is around 0.5 pp.

Third, for eccentricities higher than 0.9796, VEN slightly outperforms PI both

topographically and in magnitude, with a difference of around 1 pp and lower

than 0.5 pp, when considering the RDM% and MAG% means, respectively.

From the boxplots of Figure 2.11, we observe that, for high eccentricities, TRs

of SA are up to 80 pp higher than TRs of PI, and SA IQR values up to 7 times

higher than PI IQR values. On the other side, for less eccentric dipoles, PI

TR values are up to 5 times SA TR values and PI IQRs are the double of SA

IQRs. The fact that PI performs worse for almost radially oriented dipoles in

the secondary B-field leads to extremely high RDM% and MAG% values for the

full B-field which are visible in Figure 2.12.
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When the 1 mm resolution mesh is used and the discretization approaches are
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Figure 2.11.: Accuracy comparison of the secondary B-field Bs computation
(1.13) of CG-FEM when the subtraction (blue), the partial inte-
gration (yellow) and Venant’s (green) approaches are used in a
2 mm hexahedral sphere model: visualized are the means (left
column) and the boxplots (right column) of the RDM% (top row)
and MAG% (bottom row), for tangentially oriented sources at
logarithmically-scaled eccentricities. The red dashed line represents
the eccentricity of 2 mm distance to the brain-CSF boundary. Note
the different scaling of the y-axes.

compared, we again face the same scenario described for 4 and 2 mm, even if

differences are slightly attenuated in this case.

In more details, when looking at the RDM% boxplot in Figure 2.13, right column,

we see that for eccentricity of 0.9873, i.e., the 1 mm boundary-eccentricity, the

SA median is almost the double as the VEN median; SA IQRs are the double

as VEN IQRs and SA TRs are more than 4 times larger than VEN TRs. With

regard to MAG%, already for the eccentricity of 0.9796 we see that PI and VEN

are better than SA and VEN is better than PI. The corresponding medians are

not differing in a remarkable sense, but SA IQRs are almost 5 times higher than
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Figure 2.12.: Accuracy comparison for solving the MEG forward problem, i.e.,
the full B-field B (1.12), of CG-FEM when the subtraction (blue),
the partial integration (yellow) and Venant’s (green) approaches are
used in a 2 mm hexahedral sphere model: visualized are the means
(left column) and the boxplots (right column) of the RDM% (top
row) and MAG% (bottom row), for tangentially oriented sources at
logarithmically-scaled eccentricities. The red dashed line represents
the eccentricity of 2 mm distance to the brain-CSF boundary. Note
the different scaling of the y-axes.

VEN IQRs and SA TR values are approximately the double of VEN TRs. From

Figure 2.13, left column, we see that, for eccentric dipoles, the difference between

SA and PI RDM% means reaches 20 pp, while the difference between PI and

VEN is around 1 pp; the MAG% difference between SA and VEN is more than

70 pp and there is no relevant difference between MAG% PI and VEN. On the

other hand, for low eccentricities the difference between the three methods in

terms of mean RDM% and MAG% are present but negligible.

When the full B-field is compared for different right-hand side discretizations

in the 1 mm resolution mesh, in general, the errors are remarkably smaller and

the differences between approaches are less underlined. Still, when looking at

the RDM% boxplots in Figure 2.14, we see that VEN performs better than
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Figure 2.13.: Accuracy comparison of the secondary B-field Bs computation
(1.13) of CG-FEM when the subtraction (blue), the partial inte-
gration (yellow) and Venant’s (green) approaches are used in a
1 mm hexahedral sphere model: visualized are the means (left
column) and the boxplots (right column) of the RDM% (top row)
and MAG% (bottom row), for tangentially oriented sources at
logarithmically-scaled eccentricities. The blue dashed line repre-
sents the eccentricity of 1 mm distance to the brain-CSF boundary.
Note the different scaling of the y-axes.

PI and SA for very eccentric dipoles, and PI delivers worse results than VEN

and SA for lower eccentricities. Both PI and VEN are reliable approaches for

extremely eccentric dipoles, as the RDM% remains below ≈ 2.5%. In general,

MAG% values are very low. PI performs worse only for the eccentricity of 0.01,

and the three methods are almost identical. For the eccentricity of 0.9796, SA

performs slightly better. For the most eccentric dipoles, the absolute value of

MAG% PI and VEN is always below 0.5%. With regard to RDM% mean values,

PI values are approximately 0.5 pp worse than SA and VEN values for low

eccentricities, while the difference between SA and VEN values is more than 20

pp for the highest eccentricity. With regard to MAG% mean values, we notice

some numerical oscillations for high eccentricities in combination with VEN. The
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difference between SA and VEN values are again very high, reaching 60 pp.

Finally, in Figure 2.15 and 2.16 there is a comparison among all different source

0.01 0.5025 0.7487 0.8718 0.9334 0.9642 0.9796 0.9873 0.9911 0.993
eccentricity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RD
M

%
 m

ea
n

1 mm
CG1mmSA
CG1mmPI
CG1mmVEN

0.01 0.5025 0.7487 0.8718 0.9334 0.9642 0.9796 0.9873 0.9911 0.993
eccentricity

0

20

40

60

80

100

RD
M
%

1 mm
CG1mmSA
CG1mmPI
CG1mmVEN

0.01 0.5025 0.7487 0.8718 0.9334 0.9642 0.9796 0.9873 0.9911 0.993
eccentricity

0

2

4

6

8

10

M
AG

%
 m

ea
n

1 mm
CG1mmSA
CG1mmPI
CG1mmVEN

0.01 0.5025 0.7487 0.8718 0.9334 0.9642 0.9796 0.9873 0.9911 0.993
eccentricity

−10

0

10

20

30

40

M
AG

%

1 mm
CG1mmSA
CG1mmPI
CG1mmVEN

Figure 2.14.: Accuracy comparison for solving the MEG forward problem, i.e.,
the full B-field B (1.12), of CG-FEM when the subtraction (blue),
the partial integration (yellow) and Venant’s (green) approaches
are used in a 1 mm hexahedral sphere model: visualized are the
means (left column) and the boxplots (right column) of the RDM%
(top row) and MAG% (bottom row), for tangentially oriented
sources at logarithmically-scaled eccentricities. The blue dashed
line represents the eccentricity of 1 mm distance to the brain-CSF
boundary. Note the different scaling of the y-axes.

discretizations, i.e., SA, PI and VEN and all different mesh resolutions, i.e., 4

mm, 2 mm and 1 mm, for the secondary and full B-fields, respectively.

The comparison is visualized by means of the so called cumulative relative

frequencies, i.e., the ordinate of each point of a curve indicates the amount of

sources that has an error below the respective abscissa value. The best method

is therefore the one whose RDM% and MAG% graphs are the closest to the zero

vertical line.

From Figure 2.15 we observe that the overall most accurate method is VEN in a

1 mm resolution mesh. We can indeed observe that more than 95% of the dipoles
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have an RDM% of 4.4 and a MAG% between -0.3% and 0.6%. The curve for PI

1 mm does not differ much from the one for VEN 1 mm, but 95% of the sources

have RDM% of 9% and MAG% between approximately -0.4% and 2%. VEN 2

mm, PI 2 mm and SA 1 mm follow with similar and still high performances. In

general, the curve corresponding to SA is very steep for very low RDM% and

MAG% values and then it grows slowly, reaching the 95% dashed line almost

always for RDM% and MAG% values higher than 10% and 8%, respectively. On

the other side, PI and VEN curves have a less steep behavior for the smallest

RDM% and MAG% values, but they reach higher values faster for higher RDM%

and MAG% values. A similar general behavior is observed for the full B-field

and omitted in this section.
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Figure 2.15.: Cumulative relative frequencies of RDM% (on the left) and MAG%
(on the right) of the secondary B-field Bs (1.13) computed with
CG-FEM for tangentially oriented sources at logarithmically-scaled
eccentricities for three different source models, i.e., subtraction
approach (SA) (in blue), partial integration approach (PI) (in green)
and Venant’s approach (VEN) (in red), and three different mesh
resolutions, i.e., 4 mm, 2 mm and 1 mm. The dashed horizontal
lines depict the frequencies of 5% and 95%.

Study 5: CG-FEM and the Boundary Subtraction Approach

In this section we study the performances of CG-FEM for computing the sec-

ondary component of the B-field when the boundary formulation of Biot-Savart’s
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Figure 2.16.: Cumulative relative frequencies of RDM% (on the left) and MAG%
(on the right) of the MEG forward problem solution, i.e., the full
B-field B (1.12), computed with CG-FEM for tangentially oriented
sources at logarithmically-scaled eccentricities for three different
source models, i.e., subtraction approach (SA) (in blue), partial
integration approach (PI) (in green) and Venant’s approach (VEN)
(in red), and three different mesh resolutions, i.e., 4 mm, 2 mm
and 1 mm. The dashed horizontal lines depict the frequencies of
5% and 95%.

law for the subtraction approach introduced in Section 2.6 is used. First, we

analyzed the influence of the numerical integration of Bs
∞ (intBinf, following

the definition of DUNE) and the one of the size of the patch representing Ω∞

(extens) (see 2.26) on the accuracy of the solution. Second, we compared the

accuracy of the boundary formulation 2.26 and the standard volumetric formu-

lation 2.21-2.22 of Biot-Savart’s law for computing the secondary B-field. We

therefore performed two simulation tests in a 2 mm sphere model (see details in

the Appendix A) where we computed Bs for 1,000 tangentially oriented dipoles

(a subset of dipoles presented in Appendix A) in 256 point-magnetometers with

three Cartesian orientations each. We compared then numerical results with the

analytical solutions by computing RDM% and MAG% medians.

In the first simulation we fixed intBinf to 2 and we let the size of the patch

vary. Starting from the single element where the dipole is located, we extended

the patch by including the elements which are sharing a vertex with the already

considered element of the patch. In this simulation we considered 0, 1, 2 and 3

extensions. From Figure 2.17, we see that RDM% and MAG% medians when

only the single element where the dipole is located are very high, whereas when

50



2.7. Validation in Sphere Models

1,2 or 3 extensions have been considered RDM% and MAG% medians are almost

identical. We therefore deduce that it is fundamental to have a patch that has

at least one extension, meaning that the patch should at least contains 33 = 27

elements.

In the second simulation we fixed extens to 1 and considered intBinf equal to
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Figure 2.17.: RDM% (on the left) and MAG% (on the right) medians of the
secondary B-field Bs (1.13) computed with CG-FEM for 1,000
tangentially oriented sources for three different patch sizes: 1,
33,53,73, corresponding to 0,1,2 and 3 extensions of the patch
composed by the single element of the dipole.

2,3 and 4. From the results visualized in Figure 2.18, we deduce that intBinf

should be at least 2, and as the computational cost is quite high (see Figure

2.19) we recommend not to exceed 2.

Finally, we compared the secondary B-field computed via the standard Biot-
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Figure 2.18.: RDM% (on the left) and MAG% (on the right) medians of the
secondary B-field Bs (1.13) computed with CG-FEM for 1,000
tangentially oriented sources for three different integration order
for computing Bs

∞ (from 2 to 4).
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Figure 2.19.: Computational time (in minutes) for computing the secondary
B-field Bs (1.13) with CG-FEM for different integration order for
Bs
∞ (from 1 to 4).

Savart’s law formulation and the one computed via the boundary formulation

of Biot-Savart’s law. We conducted this comparison in a 2 mm sphere model,

10,000 tangentially oriented dipoles and 256 point-magnetometers described in

A.1 and A.2, respectively. Results are reported in Figure 2.20, where RDM%

and MAG% boxplots and medians are shown.

The boundary subtraction approach leads to overall more accurate results for

eccentricities greater or equal to 0.9642 in terms of both RDM% and MAG%

errors.

In contrast, RDM% and MAG% errors are almost identical for lower eccentrici-

ties.

In particular, for most eccentric dipoles, RDM% and MAG% means are up to

10 pp and more than 60 pp lower, respectively (Figure 2.20, on the left). When

studying Figure 2.20, on the right, we see that RDM% medians are up to 6 pp

lower when the boundary formulation is used. Both IQR and TR are remarkably

reduced. In MAG% boxplots the most visible gain in accuracy when adopting

the boundary formulation is shown. MAG% medians are almost 20 pp lower

reaching a maximum value of ≈ 3.3%. IQRs are up to almost 50 pp smaller and

TRs behave similarly.

Since we wanted to compare the numerical performance of the boundary sub-

traction approach, we limited our analysis to the secondary component of the

B-field.
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Figure 2.20.: Accuracy comparison of the secondary B-field Bs computation
(1.13) of CG-FEM when the standard subtraction (blue) and the
boundary subtraction approaches (yellow) are used in a 2 mm hex-
ahedral sphere model: visualized are the means (left column) and
the boxplots (right column) of the RDM% (top row) and MAG%
(bottom row), for tangentially oriented sources at logarithmically-
scaled eccentricities. The red dashed line represents the eccentricity
of 2 mm distance to the brain-CSF boundary. Note the different
scaling of the y-axes.

2.8. Conclusions

This chapter is about how we developed, implemented and evaluated the CG-FEM

for solving the MEG forward problem. First, we introduced and summarized the

main mathematical theory of the CG-FEM. Second, we introduced the CG-FEM

discretization of the weak EEG forward problem formulation in its general case.

Third, we described three possible ways to deal with the dipolar representation

of the source, namely the subtraction approach, the partial integration approach,

and Venant’s approach, and for each approach we presented the discrete CG right-

hand side formulation. Fourth, we deduced the MEG CG discrete representation
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2. The CG-FEM for Solving the MEG Forward Problem

of the general case, together with each source discretization approaches and

we discussed some implementation aspects as the transfer matrix approach.

Fifth, the CG-FEM for solving the MEG forward problem was evaluated and

results gathered and visualized in boxplots, mean curves and cumulative relative

frequency curves.

In a first analysis, we tested and visualized the symmetry properties of the MEG

analytical solution for a multi-layer homogeneous sphere model, as described

in Remark 1 and as proven by [78]. First of all, radial sources have a zero

magnetic field outside a multi-layer sphere volume conductor model. Then, for

tangential sources, only the primary B-field contributes to the full B-field for

radial point-magnetometers (Figure 2.1a). For tangential sources and tangential

point-magnetometers, we additionally showed that the more eccentric the source

is, the more its primary B-field contributes to the full B-field relative to the

contribution of the secondary B-field. The deeper the tangential source is, the

more the secondary B-field weakens the primary B-field until for sources in the

center of the sphere model, where the primary and secondary B-fields totally

compensate for each other (Figure 2.2 together with Figure 2.1b). In contrast,

the more eccentric the sources are, the less symmetric the return currents are and

the less their secondary B-field compensates the magnetic field of the primary

current (Figure 2.2). This is in line with the fact that the strength of the full

B-field for both radial and tangential magnetometers is decreasing for decreasing

eccentricities (Figure 2.1b), as expected by the theory where it is proven that

MEG sensors are blind for radial sources [78]. In a second analysis, we studied

the convergence of the CG-FEM for each discretization of the dipolar source,

namely the subtraction approach (SA), the partial integration approach (PI)

and Venant’s approach (VEN). Subsequently, the performances of CG-FEM for

all the three discretization schemes were compared. We visualized RDM% and

MAG% values both for the secondary and full B-field. As a final study, we tested

and compared a boundary formulation of Biot-Savart’s law when computing

Bs
∞ (boundary SA) with the standard volumetric formulation (SA). The general

behavior of results can be summarized throughout the following points:

• CG-FEM for solving the MEG forward problem converges: when increasing

the mesh resolution, the results get better;
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• errors increase for increasing eccentricity. The convergence of the CG-FEM

when the SA is used depends on the vicinity of the dipole to the brain-CSF

boundary, as studied in details in [96]. We could assume that similar

considerations apply for PI and VEN;

• with regard to the secondary B-field, there is a strong increase of RDM%

and MAG% values when the considered dipoles belong to the boundary

layer of elements between brain and CSF;

• the full B-field has high errors for dipoles with a low eccentricity. The more

the dipoles approach the center of the sphere, the more their orientations

become radial. It is well known (see Remark 1) that the full B-field is

silent for radial dipoles, therefore there are divisions by zero in the error

measures, which lead to high RDM% and MAG% values;

• for the most relevant sources, i.e., dipoles with eccentricity of 0.9796, and

the mesh with highest resolution (1 mm), the minimum mean RDM% value

of 0.87% is reached when the PI is adopted, while the minimum mean

MAG% value of -0.01% is reached when the SA is adopted;

• a spherical model with 4 mm resolution is too coarse and the results

delivered are not accurate, i.e., median and mean RDM% and MAG% are

way above 5%;

• a spherical model with 2 and 1 mm resolution is such that the delivered

results are accurate, i.e., median and mean RDM% and MAG% are always

below approximately 5%;

• SA and VEN perform better than PI for eccentricities lower than the

boundary-eccentricities, i.e., the eccentricities of the distances to the brain-

CSF boundary, for each mesh resolution;

• PI and VEN perform better than SA for eccentricities higher than the

boundary-eccentricity;
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• VEN performs better than PI for eccentricities higher than the boundary-

eccentricity;

• for the boundary SA a patch with a least 27 elements and a quadrature

rule with integration order of 2 for Bs
∞ should be adopted;

• the boundary SA outperforms the standard formulation of SA for eccen-

tricities higher or equal to the boundary-eccentricity.

A similar comparison has been delivered in [86], where SA, PI and VEN CG-

FEM computations of the magnetic secondary and full flux are compared in one

tetrahedral and in one hexahedral mesh. A precise comparison between this

study and the content of this chapter is not easy to conduct as they computed

the magnetic flux by integrating the magnetic vector potential along the contour

of the coils, with only a tangential orientation, while in our study we compare

all the three Cartesian components of the B-field. Nevertheless, we clearly see

similarities in the general behavior. For example, PI and VEN perform better

than SA for high eccentricities, while SA and VEN perform better than PI for

lower eccentricities. Furthermore, for high eccentricities, the errors of the full

flux get very high.

To the best of our knowledge, not many recent studies on finite element methods

applied to solve the MEG forward problem have been presented.

[82] applied a CG-FEM approach in a 10 cm single-layer homogeneous sphere

model and RDM% errors were measured. The minimum RDM% found by these

authors for far less eccentric sources of 0.95 was 3%. Still, the comparison is not

straightforward because of the different approaches, the different element meshes

(tetrahedra versus hexahedra), and the different source models which have been

used. In general, tetrahedral meshes can better approximate surfaces but, for

realistic head models, the generation of such models is difficult in practice and

might cause unrealistic model features, e.g., holes in tissue compartments such

as the foramen magnum and the optic canals in the skull are often artificially

closed to allow constrained Delaunay tetrahedralization (CDT). Furthermore,

CDT modeling necessitates the generation of nested, non-intersecting, and non-
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touching surfaces. However, in reality, surfaces might touch, for example, the

inner skull and the outer brain surfaces. Hexahedral models, as investigated here,

have larger geometry approximation errors, but do not suffer from the above lim-

itations and can be easily generated from voxel-based MRI data. However, with

new methods like in [65], such geometry approximation errors can be avoided

without the need of generating geometry conforming tetrahedral meshes.

[83] used both a sphere model and a realistically shaped model. In both cases

only three compartments were modeled, namely the brain, the skull and the

scalp (brain and scalp with the same conductivity values, and skull with a 1:80

conductivity ratio). The authors used a lower amount of sources and lower mesh

resolutions, but locally-refined tetrahedra meshes. In both scenarios, magne-

tometer sensors were covering only the top half of the models.

A CG-FEM MEG forward modeling study in a human (and rabbit) head vol-

ume conductor model was performed by [44]. The authors distinguished 12 or

more homogeneous and isotropic realistically shaped head tissue compartments

and used 2 mm FEM models. Since the focus was on sensitivity analysis and

suppression ratio (i.e., the magnetic field of radial dipole divided by the one of

the corresponding tangential dipole, was found to be in average 0.19 ± 0.07 in

the realistic human head model) and not on validation in sphere models like in

our study, we can not further compare these results to our results.

Another example of a CG-FEM and Biot-Savart’s law scheme used to compute

the electric potential and the B-field was presented by [79]. Similar to our

approach, the authors used a 1 mm hexahedral mesh of a 4-layer piecewise

homogeneous and isotropic sphere model. Also the arrangement of sources and

sensors was similar to our work. The main focus of their work was, however, on

source modeling: it was found that from the different tested source modeling

approaches, the subtraction approach, also used in our study at hand, was the

most accurate one.

In [86], Chapter 2.10.4, for solving the MEG forward problem, three different

CG-FEM source modeling approaches (i.e., subtraction, Venant’s and partial

integration) were compared in a 1 mm hexahedral (and in tetrahedral) meshes.

Both the secondary and the full B-fields were compared to the analytical solution

in a multi-layer homogeneous sphere model for tangentially oriented magne-

tometers. Also in this comparison it was found that the subtraction approach

outperforms the other source modeling methods with regard to numerical accu-
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racy for all sources apart from the most eccentric one. The subtraction method

is therefore most sensitive to very close conductivity jumps and thus needs high

resolution meshes especially in the source area, a result which is in line with

ours. Deeper comparisons are again not easy because of different set-ups, but

we are planning a direct comparison of the SimBio2 code used by [86] and our

duneuro implementation in future studies.

In [87], a guideline for EEG and MEG forward modeling using CG-FEM Venant’s

modeling was presented in realistic head models with a varying number of layers

and conductivity profiles. The main result was that it is highly recommended

to include the CSF and distinguish between gray and white matter and that,

especially for the MEG, the modeling of skull spongiosa and compacta might

be neglected. Furthermore, the numerical errors of a lower resolved (about 1

million nodes) 6 compartment anisotropic (6CA) model in reference to a higher

resolved (about 2 millions nodes) version of 6CA were studied and expressed in

terms of topography and magnitude errors: 95% of the sources had an RDM%

of less than 2.5% and a MAG% of less than 10%.

In this chapter, we did not evaluate the computational costs of the CG-FEM

schemes for the computation of the MEG forward solution.

2https://www.mrt.uni-jena.de/simbio/index.php/Main Page
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3. The Discontinuous Galerkin

Finite Element Method for

Solving the MEG Forward

Problem

The discontinuous Galerkin finite element method (DG-FEM) originates from

the idea of including boundary conditions in the weak formulation of a partial

differential equation (PDE) via Nitsche’s method [62], instead of restricting

the test function space. The main idea of DG-FEM is an extension of this

concept, namely, translating conservation properties into penalty terms in the

weak formulation of a PDE. A DG-FEM forward modeling approach has recently

been proposed for solving the EEG forward problem by [31].

The aim of this chapter is to derive and validate DG-FEM for solving the MEG

forward problem. In order to prepare the DG-FEM derivation, we now recall

some main properties of DG-FEM for the EEG.

First, we recall the volume triangulation Th(Ω) introduced in 2.1, which is a

finite collection of disjoint and open subsets forming a partition of the domain

Ω, where h ∈ R corresponds to the mesh-width. Furthermore, the triangulation

induces the internal skeleton

Γint := {γe,f = ∂Ee ∩ Ef |Ee, Ef ∈ Th(Ω), Ee 6= Ef , |γe,f | > 0} (3.1)

and the skeleton Γ := Γint∪∂Ω. Let Y r
h be the so-called broken polynomial space,

that is defined as piecewise polynomial space on the partition Th(Ω):

Y r
h := {v ∈ L2(Ω) : v|E ∈ Pr(E),∀E ∈ Th(Ω)}, (3.2)
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where Pr denotes the space of polynomial functions of degree r ∈ N. They

describe functions that exhibit element-wise polynomial behavior but may be

discontinuous across element interfaces.

In the following we assume that the conductivity tensor σ is constant on each

element Ei and denote its value by σi.

Note the difference between the CG-FEM function space Xr
h defined in (2.2)

and Y r
h in (3.2). While in (2.2) functions are globally continuous and locally,

i.e., on each element, polynomial, the space defined in (3.2) contains globally L2

functions which are not globally continuous.

Furthermore, we recall the definition of the jump of a function u ∈ Y r
h on the

intersection between two elements Ee and Ef of the triangulation Th(Ω) with

outer normal ne ∈ R3 and nf ∈ R3, respectively:

JuK := u|Eene + u|Efnf ∈ R3.

Note that the normals ne and nf are opposing vectors, i.e. ne = −nf . In

addition, the weighted average of u on the interface is defined as

{u} :=
σf

σe + σf
u|Ee +

σe
σe + σf

u|Ef .

Finally, we recall the following property:

JuvK = JuK{v}+ {u}JvK. (3.3)

For more details we refer, e.g., to [31].

3.1. Solving the EEG Forward Problem

In the DG-FEM context, the strategy to derive the weak form of the EEG

forward problem is to first divide the whole domain Ω into elements of the

triangulation Th, and then apply Gauss’ theorem locally, on each element of the

triangulation, where the discrete test and ansatz functions are polynomials (see

(3.2)).
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In [31], the symmetric interior penalty Galerkin (SIPG) DG discretization for

(1.9)-(1.10) is obtained, and it reads: find uh ∈ Y r
h such that

ah(uh, vh) + Jh(uh, vh) = lh(vh), ∀vh ∈ Y r
h , (3.4)

with

ah(uh, vh) =

∫
Ω

σ∇huh · ∇hvh dx−
∫

Γint

{σ∇huh} · JvhK ds

−
∫

Γint

{σ∇hvh} · JuhK ds ,

Jh(uh, vh) = η

∫
Γint

σ̂γ
hγ

JuhK · JvhK ds ,

and

lh(vh) =

∫
Ω

fvh ds ,

where η indicates the penalty parameter (which has to be chosen large enough to

ensure coercivity), σ̂γ and hγ denote local definitions of the electric conductivity

and the mesh width on an edge γ, respectively. In this particular case, σ̂γ is

chosen according to [29] and hγ as the harmonic average of the conductivities of

the adjacent elements [37]:

σ̂γe,f :=
min (|Ee|, |Ef |)

|γe,f |
,

and

hγe,f :=
2σeσf
σe + σf

.

The proposed discretization (3.4) is consistent and adjoint-consistent with the

strong problem (1.9)-(1.10), and for a sufficiently large constant η > 0 it has a

unique solution. Further details and proofs are in [31].

Remark 5. In the DG discretization we make use of the so-called piecewise

gradient, ∇h, which is defined in the interior of each element K in the volume
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triangulation Th(Ω). It holds that

∇hvh = ∇(vh|K), ∀vh ∈ Y r
h . (3.5)

In the following, when no ambiguity arises, we will use ∇, a(·, ·), J(·, ·), l(·), Γint,

instead of ∇h, ah(·, ·), Jh(·, ·), lh(·), Γhint, respectively.

3.2. The Discrete Conservative Flux

As already seen, e.g., in (1.12), the MEG forward solution depends on the

electric current density which is a quantity that is conservative in nature. In the

continuum, the strong formulation of Poisson’s equation, which we recall here:

∇ · (σ∇u) = ∇ · jp, in Ω ⊆ R3

σ∇u · n = 0, on ∂Ω

leads to a conservation of charge property:∫
∂K

(σ∇u) · n ds =

∫
K

f dx , ∀K ⊂ Ω, (3.6)

where f = −∇ · jp and K is a control volume in Ω. We will refer to this

conservation law by indicating the couple (σ∇u, f), i.e., the boundary term and

the volume term, respectively. We can point out that in the current setting, the

current j is solenoidal, or diverge-free, hence it holds that∫
∂K

∇ · (js + jp) dx = 0, ∀K ⊂ Ω. (3.7)

We have already mentioned in Section 1.2.2 that for FEMs the conservation

of charge property carries over to the discrete solution only if the test space

contains the characteristic function, which is one in K and zero everywhere

else. In general, a conforming discretization, like CG-FEM, does not guarantee

this property, while the DG-FEM fulfills a discrete analogue, as we see in the

following.
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In order to deduce the DG discrete conservation property, the strategy is to test

the strong formulation with an indicator function χK which is defined as

χk(x) :=

1 if x ∈ K

0 otherwise

where K is a control volume in Ω, i.e., K ∈ Th(Ω). Note that χK ∈ Y r
h .

When we plug-in χk in (3.4), we have:

ah(uh, χk) + Jh(uh, χk) = lh(χk),

which is equivalent to∫
∂K

(
{σ∇uh} − η

σ̂γ
hγ

JuhK
)
· nK ds =

∫
K

f dx ,

exploiting the following facts:

1. ∇χk denoted here ∇hχk = ∇(χk|K) = 0;

2. JχkK = χk|KnK = nK .

In the adopted notation, we can write that(
{σ∇uh} − η

σ̂γ
hγ

JuhK, f
)

is the general discrete DG conservation law for uh.

3.3. The Subtraction Approach

When dealing with the subtraction approach already introduced in Section 2.3,

two Poisson’s equations have to be taken into account:

∇ · (σ∞∇u∞) = f, in R3, (3.8)
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where u∞ is the solution in an unbounded domain and has an analytical expres-

sion, and

−∇ · (σ∇ucorr) = ∇ · (σcorr∇u∞), in Ω ⊆ R3

σ∇ucorr · n = −σ∇u∞ · n, on ∂Ω

where ucorr is the new unknown. Within the subtraction approach, the con-

servation of charge for ucorr is (σ∇ucorr,∇ · (σcorr∇u∞)), and the one for u∞ is

(σ∞∇u∞, f).

Remark 6. We can observe that the sum of the conservation of charge for ucorr

and the one for u∞ gives the general conservation property in (3.6) for u.

There are equivalent ways to obtain the DG discretization of Poisson’s equation

when the subtraction approach is adopted. Here we start from the SIPG

formulation in (3.4) and we plug-in the discrete splitting of uh, i.e., uh =

ucorrh + u∞:

a(ucorrh + u∞, vh) + J(ucorrh + u∞, vh) = l(vh)

⇔ a(ucorrh , vh) + J(ucorrh , vh) = −a(u∞, vh)− J(u∞, vh) + l(vh). (3.9)

If we analyze each element separately we have:

a(ucorrh , vh) =

∫
Ω

σ∇ucorrh · ∇vh dx−
∫

Γint

{σ∇ucorrh } · JvhK ds

−
∫

Γint

{σ∇vh} · Jucorrh K ds ,

J(ucorrh , vh) = η

∫
Γint

σ̂γ
hγ

Jucorrh K · JvhK ds ,

a(u∞, vh) =

∫
Ω

σ∇u∞ · ∇vh dx−
∫

Γint

{σ∇u∞} · JvhK ds

−
∫

Γint

{σ∇vh} · Ju∞K ds ,
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J(u∞, vh) = η

∫
Γint

σ̂γ
hγ

Ju∞K · JvhK ds .

First of all, we notice that Ju∞K = 0, as u∞ is continuous on the internal

skeleton, assuming that the dipole r0 /∈ Γint. Therefore the right-hand side of

(3.9) becomes:

l̃(u∞, vh) := −
∫

Ω

σ∇u∞ · ∇vh dx︸ ︷︷ ︸
(I)

+

∫
Γint

{σ∇u∞} · JvhK ds+

∫
Ω

fvh dx︸ ︷︷ ︸
(II)

.

In order to manipulate (I), we split the conductivity σ between the infinity part

σ∞ and the the correction part σcorr,

(I) =

∫
Ω

σ∞∇u∞ · ∇vh dx+

∫
Ω

σcorr∇u∞ · ∇vh dx .

We present the following Lemma

Lemma 2. (Element-wise integration by part formula)

For f, g ∈ Y r
h it holds that∫

Ω

∇f ·∇g dx = −
∫

Ω

∇·∇fg dx+

∫
∂Ω

∇f ·nf ds+

∫
Γint

J∇fK{g}+{∇f}JgK ds .

Proof. For f, g ∈ Y r
h we can write that

∇ · (∇fg) = (∇ · ∇fg) +∇f · ∇g. (3.10)

If we consider the integral of (3.10) over the domain Ω we have:∫
Ω

∇ · (∇fg) dx =

∫
Ω

(∇ · ∇fg) dx+

∫
Ω

∇f · ∇g dx . (3.11)

It is not possible to apply Gauss’ theorem to the first term of the right-hand side

of (3.11) over the whole domain Ω, but it is when considering the integrand over

an element E of the triangulation Th(Ω), were both f and g are polynomials,
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and it gives: ∫
Ω

(∇ · ∇fg) dx =
∑

E∈Th(Ω)

∫
E

(∇ · ∇fg) dx

=

∫
∂Ω

∇f · ng ds+

∫
Γint

J∇fgK ds . (3.12)

After plugging-in the right-hand side of (3.12) in (3.11), using the multiplicative

property in (3.3) and reordering the terms, the Lemma is proven.

If we apply Lemma 2 with f := σ∞u∞ and g := vh we have that

(I) =

∫
Ω

∇ · (σ∞∇u∞)v dx+

∫
∂Ω

(σ∞∇u∞n) vh ds

+

∫
Γint

{σ∞∇u∞}JvK ds+

∫
Ω

σcorr∇u∞ · ∇vh dx .

Note that we used the fact that σ∞∇u∞ is continuous on the internal skeleton

and thus Jσ∞∇u∞K = 0. Furthermore, it holds that

(II) =

∫
Ω

∇ · (σ∞∇u∞)vh dx , (3.13)

as f is the source term also for equation (3.8). Finally, we use again the splitting

of the conductivity, i.e., σ − σ∞ = σcorr, and we have

l̃(u∞, vh) =−
∫

Ω

σcorr∇u∞∇v dx−
∫
∂Ω

σ∞∇u∞nv ds

+

∫
Γint

{σcorr∇u∞}JvK ds .

The DG discretization of the subtraction approach then reads: find ucorrh ∈ Y r
h

such that

a(ucorrh , vh) + J(ucorrh , vh) = l̃(u∞, vh), ∀vh ∈ Y r
h . (3.14)

In order to obtain the discrete conservation law for the subtraction approach,

we plug-in vh = χK in (3.14) and we get:

a(ucorrh , χK) + J(ucorrh , χK) = l̃(u∞, χK), (3.15)
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where

a(ucorrh , χK) + J(ucorrh , χK) =

=

∫
∂K

(
{σ∇ucorrh } − η σ̂γ

hγ
Jucorrh K

)
nK ds ,

and

l̃(u∞, χK) =−
∫

Ω

σcorr∇u∞ · ∇χK dx−
∫
∂Ω

σ∞∇u∞ · nχK ds

−
∫

Γint

{σcorr∇u∞} · JχKK ds .
(3.16)

We rewrite the second term of (3.16) as

−
∫
∂K

Jσ∞∇u∞K ds = 0,

because the flux of u∞ is continuous.

Finally, we can use the fact that ∇χK = δ∂K · nk and Gauss’ theorem and

write

l̃(u∞, χK) = −
∫

Γint
⋂
∂K

{σcorr∇u∞}nK ds

= −
∫

Γint
⋂
∂K

σcorr∇u∞nK ds

= −
∫
K

∇ · (σcorr∇u∞) dx .

The discrete DG conservation property for ucorrh when the subtraction approach

is used can then be indicated as(
{σ∇ucorrh } − η σ̂γ

hγ
Jucorrh K,−∇ · (σcorr∇u∞)

)
.

At this point, we can also observe that it holds

(σ∇u∞, f +∇ · (σcorr∇u∞)) .
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3.4. The Partial Integration Approach

The general strong formulation and the conservation law do not change when

the partial integration approach is adopted. In particular, it holds that (σ∇u, f)

is the couple describing the continuous conservation law.

As to the discrete formulation, the starting point is again equation (3.4). The

partial integration approach is a so called direct approach, meaning that the

unknown of the weak formulation is not modified and the right-hand side

is treated directly exploiting, in this case, the definition of the Dirac delta

distribution. Therefore the left-hand side of (3.4) does not change, but the

right-hand side becomes:

l(vh) =

∫
Ω

fvh dx

=

∫
Ω

∇ · (Mδy)vh dx

= −
∫

Ω

M · ∇δyvh dx

= −M · ∇vh(y). (3.17)

Remark 7. The test function vh ∈ Y r
h is globally defined on Ω but the right-side

of (3.17) is different from zero only on the element of Th(Ω) where the dipolar

source lies, i.e., for that vh such that y ∈ supp(vh).

In this context, the following Proposition holds:

Proposition 2. When the partial integration approach is adopted, the discrete

DG conservative flux, i.e., {σ∇uh} − η σ̂γhγ JuhK, is solenoidal.

Proof. In order to deduce the discrete DG conservation law, we consider the

SIPG with the right-hand side in (3.17), and we plug-in vh = χK . Again, the

left-hand side does not change with respect to (3.4), and (3.17) becomes:

lh(vh) = −M · ∇χK(y)

= 0,
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meaning that the DG numerical flux is solenoidal when the partial integration

approach is adopted.

We can write that (
{σ∇uh} − η

σ̂γ
hγ

JuhK, 0
)

is the discrete DG conservation law for uh when the partial integration approach

is adopted, which reflects the solenoidal property of the full flux (see (3.7)). The

effect of Proposition 2 on the numerical computation of the B-field are examined

in the following.

3.5. Solving the MEG Forward Problem

In this section we describe the DG discrete representation of the MEG forward

problem in an analogous way as for the CG-FEM, in Section 2.6. Following

(2.18), we can consider the analogous formula for the electric flux in the DG-FEM

scheme, i.e.,

σ∇uh = σ
∑
i

ui∇ϕi, (3.18)

where (ϕi)i is a basis of Y r
h . As already mentioned, in general this discrete

formulation of the flux does not verify the conservation of charge property.

Conversely and despite the CG-FEM case, in the DG-FEM approach we can

consider another expression of the discrete electric flux, i.e.,

jDGh = {σ∇uh} − η
σ̂γ
hγ

JuhK (3.19)

that verifies the conservation of charge law, as described in Section 3.2. The

main idea is to embed this conservative current (or conservative flux, i.e., flux

fulfilling the property of conservation of charge) in the computation of Bs.

We have to notice that jDGh is defined only on the internal skeleton Γint (3.1)

and not in the entire volume Ω. In order to integrate jDGh when computing Bs

(1.13), we thus need to extend the current into the volume. One way to do so

is to interpolate jDGh in the space of the lowest-order Raviart Thomas function
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(RT0). RT0 is H(div)- conforming and its degrees of freedom (DOFs) are the

evaluations of the basis functions along the projections normal to the faces of

each element, exactly where jDGh is defined. The space H(div; Ω) is defined as:

H(div; Ω) := {v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)}, (3.20)

and RT0 as [33, 61]:

RT0(Th(Ω)) := {v ∈ H(div; Ω) : (∇ · v )|E ∈ P0(E), ∀E ∈ Th(Ω)}. (3.21)

As we considered hexahedral elements (see Appendix A.1), we have P0 = Q0 in

(3.21). For a regular, hexahedral mesh with edge length h, as in our case, a RT0

basis function ψψψk has as support the two hexahedral elements Ee, Ef ∈ Th(Ω)

sharing the face fk = Ee ∩ Ef with normal vector nk and centroid x̄k. It can be

defined by

ψψψk(x) =


(

1 + (x−x̄k)·nk
h

)
nk if x ∈ Ēe ∩ Ēf

0 otherwise.

For more insights see [33] and [61], and Figure 3.1, where the basis function ψψψk

has been visualized. For the discretization of Bs we start from observing that

Figure 3.1.: Visualization of a zeroth-order Raviart-Thomas basis function (on
the right) and its support (on the left). The support is made of two
hexahedral elements Ee and Ef , which are sharing the face fk with
unit outer normal nk. The vector valued function is equal to 1 · nk
on the face fk and it decays when reaching the other parallel faces.

the conservative flux ΨΨΨ(uh) is a function of (C0)
3

on Γint which depends on the

potential uh:

ΨΨΨ(uh) = jDGh = {σ∇uh} − η
σ̂γ
hγ

JuhK.
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If (ϕi)i is a basis of Y 1
h , then the correction potential can be written as

uh =
∑
i

uiϕi,

and, due to linearity, we have

ΨΨΨ(uh) =
∑
i

uiΨΨΨ(ϕi).

If we now apply the extension operator ERT0 into RT0 to ΨΨΨ(uh) and we exploit

again linearity, we obtain:

ERT0(ΨΨΨ(uh)) =
∑
i

uiERT0 (ΨΨΨ(ϕi)) ∈ L2(Ω).

Finally, Bs can be then approximated as follows:

Bs(r) ' −µ0

4π

∑
i

ui

∫
Ω

ERT0(ΨΨΨ(ϕi))(r
′)× r− r′

|r− r′|3
d3r′.

If we call cn the center of the nth coil, then the discretization of Bs evaluated in

cn reads,

Bs(cn) '
∑
i

ui

(
−µ0

4π

)∫
Ω

ERT0(ΨΨΨ(ϕi))(r
′)× cn − r′

|cn − r′|3
d3r′︸ ︷︷ ︸

:=SDGni

. (3.22)

SDG =
(
SDGni

)
n,i

is the secondary magnetic field integration matrix related to

the DG-FEM scheme. Equation (3.22) can be rewritten into a matrix equation,

Bs
h = SDGu, (3.23)

where Bs
h represents the discretization of Bs.

Remark 8. The extension to the volumetric element of the ith basis function of

the space Y 1
h can be described as:

ERT0(ΨΨΨ(ϕi)) =
∑
k

αkiψψψk, (3.24)
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where (ψψψk)k form a basis of RT0 and αki are the DOFs, which can be derived as

αki = ΨΨΨ(ϕi(x̄k)) · nk, (3.25)

with x̄k and nk the centroid and the external normal of the face fk, respectively

(see Figure 3.1).

In the particular case of the subtraction approach, the procedure described above

only applies for Bs
corr,h, with the flux

jDGh = jcorr,DGh = {σ∇ucorrh } − η σ̂γ
hγ

Jucorrh K. (3.26)

The infinity contribution has to be added in a subsequent moment. In the

classical subtraction approach Bs
∞,h = Bs

∞,h(u
∞
h ) , where u∞h is interpolated in

Y r
h , is summed to Bs

corr,h. Alternatively, the analytical formula of ∇u∞ can be

directly used.

In the case of the partial integration approach, the procedure described above

applies for the full B field Bh, as a direct consequence of Proposition 2, i.e., since

the DG conservative flux is solenoidal when the partial integration approach is

adopted.

Finally, as described in the following, MEG forward computations are carried out

for a large number of dipole sources. In order to speed up the many numerically

expensive computations of the secondary B-field Bs for all of these sources,

following [95], we adapted and implemented transfer matrix approaches for the

two presented DG-FEM-based MEG forward modeling schemes (conservative

and non-conservative). Details can be found in Appendix A.4.

3.6. Validation in Sphere Models

In this section we describe the methods and the input data we used to validate the

new DG-FEMs described in the previous sections of this chapter. First of all, we

implemented the two new DG-FEM approaches, namely, DG-FEMs with a non-

conservative and a conservative representation of the electric flux in duneuro, see
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Appendix A.5 [64]. The input data we used for our simulations are the same as the

ones used in the CG-FEM validation, in Chapter 2. More specifically, the volume

conductor models with which we tested our new DG-FEM implementations are

4-layer homogeneous sphere models represented via hexahedral meshes with

three different resolutions, namely 4 mm, 2 mm and 1 mm. Details on the

models and meshes are in Tables A.1 and A.2, respectively. We considered

10,000 tangentially oriented dipoles, distributed in 10 logarithmically scaled

eccentricities (see Table A.3), and we evaluated the secondary and the full B-field

in 256 point-magnetometers outside the sphere model at a fixed radius of 110

mm (see Figure A.1). The errors were assessed via the RDM% and MAG%,

defined in (A.1) and (A.2), respectively. More details about the input data and

error measures can be found in Appendix A. Statistical results of numerical

accuracies are visualized with mean curves, boxplots and cumulative relative

frequency curves.

Study 1: DG-FEM and Conservative versus

Non-Conservative Flux

In this analysis the focus is on DG-FEM and the necessity of embedding the

conservative flux (3.19) in the evaluation of the secondary B-field Bs. We

thus validated and compared the DG-FEM MEG forward methods with non-

conservative (3.18) and conservative (3.19) flux. As a general remark, we recall

that we consider only tangentially-oriented sources for the validations and

evaluations in the next sections, because, as seen in Section 2.7, radial sources

do not produce any magnetic field outside spherical volume conductor models.

Following formulas (1.13) and (1.12), we measured errors of the vector fields Bs

and B. These errors thus include parts from the radial and the two tangential

sensor orientations and thus enable an overall view on the MEG forward modeling

accuracy. On the one hand, radially-oriented sensor orientations are dominant

in realistic MEG sensor configurations (see Figure 3.15), while on the other

hand, and as seen in Section 2.7, because of the cancellation effect of primary

and secondary B-fields, tangentially-oriented sensor orientations are especially

delicate numerical test-cases.
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The RDM% and MAG% statistical errors can be seen in Figure 3.2. Note that

only a 4 mm mesh (seg 4 res 4) has been used, because the lower the resolution,

the higher we expect the difference to be. With increasing source eccentricity, an

overall increase of the RDM% (top row) and MAG% (bottom row) errors can be

observed as shown by the mean error (left column) and by the boxplot statistics

(right column). The boxplots indicate mainly increasing error statistics with

regard to median, total range (TR), interquartile range (IQR) and also maxima

for both conservative and non-conservative flux implementations.

As a general result, the employment of the conservative flux (in green) delivers

better results than the one of the non-conservative flux (in dark red). The

difference between the two implementations is more evident with increasing

eccentricity of the sources.

Let us now discuss in more detail the eccentricity of 0.9796, i.e., 1.59 mm from

the brain-CSF boundary. For the eccentricity of 0.9796, the maximum difference

of 20 pp in mean RDM% is achieved between the conservative and the non-

conservative DG flux approaches. For the least eccentric sources, this difference

goes down to about 2 pp (see the 0.01 eccentricity in top left subfigure of Figure

3.2). With regard to the boxplot of the RDM%, the median values of the

conservative flux case are overall smaller than the ones of the non-conservative

flux. For sources with eccentricity value of 0.9796 the RDM% median difference

is greater than 20 pp; the IQR difference is approximately 15 pp and the TR is

constant and similar for both approaches. In the MAG% boxplot (right column),

the much better performance of the conservative flux approach is especially

clearly visible. The MAG% median difference reaches 40 pp for realistic sources

of eccentricity 0.9796. For the same sources, the TRs, IQRs and means are in

general large, with a ratio 1:4 between conservative and non-conservative flux

values. For lower eccentricities, we observe overall smaller errors.

Study 2: DG-FEM and the Subtraction Approach

Since we have seen in the last study that the conservative flux DG-FEM approach

(3.19) performs remarkably better than the non-conservative approach (3.18),

for the remainder of this work, we proceed with DG-FEM as in (3.22). The

second study proposed is about the convergence of the DG-FEM for computing
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Figure 3.2.: Accuracy comparison for secondary B-field Bs computation (1.13)
between DG-FEM with non-conservative flux ((3.18), red) and DG-
FEM with the conservative flux ((3.19), in green) in a 4 mm hexa-
hedral sphere model: visualized are the means (left column) and the
boxplots (right column) of the RDM% (top row) and MAG% (bot-
tom row), for tangentially oriented sources at logarithmically-scaled
eccentricities. The dashed green line represents the eccentricity of 4
mm distance to the brain-CSF boundary. Note the different scaling
of the y-axes (top row).

the secondary B-field Bs when the mesh resolution is increased, namely from

the coarsest resolution of 4 mm over 2 mm to the highest resolution of 1 mm.

We studied the behavior of the RDM% and MAG% errors for 10,000 tangentially

oriented and randomly distributed dipoles at 10 different eccentricities. More

details can be found in Appendix A. Results can be seen in Figure 3.3. The

RDM% and MAG% mean error curves (Figure 3.3, left column) are overall

increasing with increasing source eccentricity, as hypothesized by the theory

of the subtraction approach [96] and well-known already from EEG results

[30]. Most importantly, for increasing mesh resolution, error statistics improve

considerably. For the most relevant eccentricity of 0.9796, the highest resolved
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model (seg 1 res 1) reaches mean RDM% and MAG% errors of 1.5% and 0.1%,

respectively. On the right column, we can study the boxplots of the RDM% and

MAG% of the same scenario analyzed before. Both in the RDM% and MAG%

cases, there is an overall increase of the median, TR and IQR when increasing

the source eccentricity and decreasing the mesh resolution. If we focus on the

1 mm mesh and 0.9796 eccentricity, the RDM% median is only around 1.2%;

the IQR is 0.8% and the TR reaches 20%. In particular, the IQR for dipoles

of eccentricity 0.9796 increases drastically from 0.8% (1 mm) to almost 10%

(2 mm) and 30% (4 mm). The TR behaves similarly. The median MAG% is

extremely low, i.e., ≈ 0.017%; the IQR is ≈ 0.8% and the TR is ≈ 25%. For

this eccentricity, we notice a large difference among the three mesh resolutions:

the medians grow from 0.017% (1 mm), to 2.8% (2 mm), up to 28.6% (4 mm).

The same trend is noticeable for the IQR: 0.8% (1 mm), 7% (2 mm) and 60%

(4 mm). However, these values are out of the displayed graph range. The TR

again behaves similarly.

In Figure 3.4, we can analyze how the secondary B-field errors propagate to

the full B-field solutions. As a general remark, we notice that dipoles with a

very low eccentricity, i.e., 0.01, are in fact radially oriented dipoles, as they are

very close to the center of the sphere. For those dipoles, there is a cancellation

between primary and secondary B-field, resulting in a null full B-field. Therefore,

when computing the MAG% error for those dipoles, the denominator is zero

in (A.2), leading to a strong increase of MAG% values, which is clearly visible

in Figure 3.4. With regard to the main behavior of the errors, we observe the

same trends as the secondary B-field study in Figure 3.3. In particular, for the

most relevant eccentricity, i.e., 0.9796, and 1 mm resolution, the mean RDM%

and MAG% reach 1.75% and 0.12%, respectively, and the median RDM% and

MAG% are 1.6% and 0.3%, respectively.

Study 3: DG-FEM and the Partial Integration Approach

In this section we analyze convergence results of the DG-FEM simulations in

the three spherical meshes of Table A.2 when the partial integration approach is

adopted. RDM% and MAG% error measures are visualized in Figure 3.5 and

3.6 for the secondary and full B-field, respectively.
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Figure 3.3.: Validation and convergence analysis for secondary B-field Bs compu-
tation (1.13) of DG-FEM when the subtraction approach is used in
a 4 mm (blue), 2 mm (yellow) and 1 mm (green) hexahedral sphere
model: visualized are the means (left column) and the boxplots
(right column) of the RDM% (top row) and MAG% (bottom row),
for tangentially oriented sources at logarithmically-scaled eccentric-
ities. Dashed lines represent the eccentricities of 4 mm (green), 2
mm (red) and 1 mm (blue) distances to the brain-CSF boundary.
Note the different scaling of the y-axes.

First of all, we notice the convergence of the method for the partial integration:

when the resolution of the mesh is increasing the errors decrease. Second,

the overall error values increase for higher eccentricities. Third, all the values

are increasing when the dipoles belong to the layer of elements of the brain-

CSF boundary, namely, after the boundary-eccentricity of 0.9334 for the 4 mm

resolution mesh, 0.9642 for the 2 mm resolution mesh and 0.9796 for the 1

mm resolution mesh. The RDM% mean (Figure 3.5, left column) for the most

relevant eccentricity of 0.9796, and the most accurate mesh (1 mm) is ≈ 1.3%

and there is a big difference when comparing the topographical performances

of the different mesh resolution for the same eccentricity: from ≈ 11% (4 mm),

over 4% (2 mm) to 1.3% (1 mm).
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Figure 3.4.: Validation and convergence analysis for solving the MEG forward
problem, i.e., the full B-field B (1.12), of DG-FEM when the sub-
traction approach is used in a 4 mm (blue), 2 mm (yellow) and
1 mm (green) hexahedral sphere model: visualized are the means
(left column) and the boxplots (right column) of the RDM% (top
row) and MAG% (bottom row), for tangentially oriented sources at
logarithmically-scaled eccentricities. Dashed lines represent the ec-
centricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances
to the brain-CSF boundary. Note the different scaling of the y-axes.

With regard to MAG% means, we can observe that in general the values are

very low and they do not exceed ≈ 5.7% independently of the eccentricity and

the mesh resolution. For the most relevant eccentricity of 0.9796, and the most

accurate mesh (1 mm) the mean MAG% is 0.04%. When analyzing the RDM%

boxplot in Figure 3.5, right column, for the most relevant eccentricity of 0.979,

we observe an increase in medians, IQRs and TRs when the resolution of the

mesh decreases. In particular, RDM% medians go from 10%, over 3.7% to 1.15%

for 4 mm, 2 mm and 1 mm resolution meshes respectively. IQRs decrease from

6% over 2.5% until 0.5% for 4 mm, 2 mm and 1 mm resolution meshes. The

TRs behave similarly. With regard to the MAG% boxplots for the most relevant

eccentricity, the medians are always very low: 0.6%, -0.3% and -0.0004% for 4
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mm, 2 mm and 1 mm resolution meshes, respectively. IQRs behave similarly

and some outliers are present, the TR is indeed quite large for 4 mm resolution,

i.e., ≈ 40%, and it decreases to 10% for 2 mm and to 5% for 1 mm resolution

meshes.

If we consider the most eccentric dipoles, RDM% and MAG% values do not

explode. More specifically, RDM% and MAG% means are 16% and 5.7% (4

mm), 8% and 1.5% (2 mm), 3% and 0.04 (1 mm).

The performances of the partial integration approach are in general very high.

In Figure 3.6, we can analyze how the secondary B-field errors propagate to the
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Figure 3.5.: Validation and convergence analysis for secondary B-field Bs com-
putation (1.13) of DG-FEM when the partial integration approach
is used in a 4 mm (blue), 2 mm (yellow) and 1 mm (green) hexahe-
dral sphere model: visualized are the means (left column) and the
boxplots (right column) of the RDM% (top row) and MAG% (bot-
tom row), for tangentially oriented sources at logarithmically-scaled
eccentricities. Dashed lines represent the eccentricities of 4 mm
(green), 2 mm (red) and 1 mm (blue) distances to the brain-CSF
boundary. Note the different scaling of the y-axes.

full B-field solutions. Even in this case, there are high errors for low eccentricities,
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clearly visible in Figure 3.6. With regard to the main behavior of the errors,

we observe the same trends as in the secondary B-field study in Figure 3.5. In

particular, for the most relevant eccentricity, i.e., 0.9796, and 1 mm resolution,

the mean RDM% and MAG% reach 1.2% and 0.23%, respectively. For lower

mesh resolutions the RDM% mean values are 3% and 7% and MAG% mean

values are -9% and -28%, for 2 and 4 mm resolution meshes, respectively. RDM%

and MAG% medians are very close to RDM% and MAG% means.
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Figure 3.6.: Validation and convergence analysis for solving the MEG forward
problem, i.e., the full B-field B (1.12), of DG-FEM when the partial
integration approach is used in a 4 mm (blue), 2 mm (yellow) and
1 mm (green) hexahedral sphere model: visualized are the means
(left column) and the boxplots (right column) of the RDM% (top
row) and MAG% (bottom row), for tangentially oriented sources
at logarithmically-scaled eccentricities. Dashed lines represent the
eccentricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances
to the brain-CSF boundary. Note the different scaling of the y-axes.

80



3.6. Validation in Sphere Models

Study 4: DG-FEM Comparison between Different Source

Models

Similarly to what has been presented for the CG-FEM in Chapter 2, in the

following we compare the accuracy of the two approaches we described to

discretize the right-hand side of the Poisson equation, namely the subtraction

approach (SA) and the partial integration approach (PI), for each mesh resolu-

tion, namely 4 mm, 2 mm and 1 mm, see Table A.2.

We computed and visualized RDM% and MAG% for both the secondary and

full B-field for 10,000 tangentially oriented dipoles at 10 logarithmically-scaled

eccentricities. See Appendix A for more details.

In Figure 3.7, secondary B-field error measure results corresponding to the 4

mm resolution mesh are reported. As a general remark about RDM% values,

SA performs slightly better than PI until the eccentricity of 0.9334, i.e., the

eccentricity which corresponds to brain-CSF boundary layer of 4 mm hexahedral

elements. This difference is ≈ 1 pp in the mean RDM%. For higher eccentricities,

SA RDM% values are higher than the one of PI, reaching up to 20 pp in terms

of mean RDM%.

Note that for eccentricities higher than 0.9334, both approaches lead to RDM%

mean values above 5%, therefore the accuracy of the method is low independently

of the approach used for the discretization of the right-hand side.

With regard to the MAG% values, the general behavior is the following. For

eccentricities smaller than 0.9334, both SA and PI deliver MAG% values whose

differences are negligible, while for eccentricities higher than 0.9334 PI performs

better than SA, reaching differences up to 300 pp in terms of mean MAG%. The

main increase of RDM% and MAG% occurs when dipoles approach the boundary

layer of hexahedron between brain and CSF compartments, i.e., dipoles with

eccentricities higher than 0.9334.

For eccentricities lower than the boundary eccentricity, the mean RDM% and

MAG% differences are negligible. Therefore we can state that for such a coarse

mesh, when the most significant eccentricity is the one of 0.9334, the methods

are delivering almost identical results. The behavior of PI for low eccentric

dipoles is even more visible for the full B-field results in Figure 3.8, where mean

MAG% and median exceed 300%. Again SA is not delivering accurate results for
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3. The DG-FEM for Solving the MEG Forward Problem

very high eccentricities, but also PI has high errors for such a coarsely resolved

mesh. In general, a 4 mm resolution sphere model is too coarse to have accurate

results. This is valid for every discretization approach considered in this study.

In the next comparison we fixed the mesh resolution at 2 mm and we compare
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Figure 3.7.: Accuracy comparison of the secondary B-field Bs computation (1.13)
of DG-FEM when the subtraction (blue) and the partial integration
(yellow) approaches are used in a 4 mm hexahedral sphere model: vi-
sualized are the means (left column) and the boxplots (right column)
of the RDM% (top row) and MAG% (bottom row), for tangentially
oriented sources at logarithmically-scaled eccentricities. The green
dashed line represents the eccentricity of 4 mm distance to the
brain-CSF boundary. Note the different scaling of the y-axes.

RDM% and MAG% for both SA and PI. Results for both the secondary and the

full B-field are visualized in Figure 3.9 and 3.10, respectively.

The same general considerations described for the 4 mm case hold also for this

scenario. In particular, the SA RDM% values are slightly better for eccentricities

lower than the boundary eccentricity, i.e., 0.9796 in this case. At the same

eccentricity, the mean RDM% difference is around 6 pp, where PI outperforms

SA, and for higher eccentricities this difference reaches up to 23 pp.
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Figure 3.8.: Accuracy comparison for solving the MEG forward problem, i.e., the
full B-field B (1.12) of DG-FEM when the subtraction (blue) and
the partial integration (yellow) approaches are used in a 4 mm hexa-
hedral sphere model: visualized are the means (left column) and the
boxplots (right column) of the RDM% (top row) and MAG% (bot-
tom row), for tangentially oriented sources at logarithmically-scaled
eccentricities. The green dashed line represents the eccentricity of 4
mm distance to the brain-CSF boundary. Note the different scaling
of the y-axes.

The same trend can be seen for MAG% mean values: at the most relevant

eccentricity the difference is around 6 pp and goes up to 115 pp.

Furthermore, from the boxplots in Figure 3.9 (right column), when considering

the most relevant eccentricity, we observe a RDM% median and IQR difference

of ≈ 5 pp and a TRs difference of up to 60 pp, revealing the high performance

of PI over SA. With regard to MAG% values, the median difference between PI

and SA is around 3 pp, the IQR difference exceeds 7 pp and the TR difference

reaches more than 500 pp.

With regard to the comparison of the full B-field visualized in Figure 3.10,

we again observe the numerical instability for RDM% and MAG% measures

when almost radial dipoles are considered. Furthermore, the same trend as the
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Figure 3.9.: Accuracy comparison of the secondary B-field Bs computation (1.13)
of DG-FEM when the subtraction (blue) and the partial integration
(yellow) approaches are used in a 2 mm hexahedral sphere model: vi-
sualized are the means (left column) and the boxplots (right column)
of the RDM% (top row) and MAG% (bottom row), for tangentially
oriented sources at logarithmically-scaled eccentricities. The red
dashed line represents the eccentricity of 2 mm distance to the
brain-CSF boundary. Note the different scaling of the y-axes.

secondary B-field is notable; in particular, PI outperforms SA for eccentricities

greater or equal to the most relevant eccentricity, i.e., 0.9796, where the mean

RDM% difference is around 10 pp and the absolute mean MAG% difference is

around 1 pp.

In the next comparison, we focused on the most highly resolved mesh (1 mm)

and analyzed the performances of both SA and PI. As already seen for the other

mesh resolutions, the main increase can be seen after the boundary eccentricity,

that is 0.9873, in this case.

If we analyze results for the most relevant eccentricity, i.e., 0.9796, the two

methods are both delivering extremely accurate results and in general, the

differences might be considered negligible. In the specific, when comparing mean
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Figure 3.10.: Accuracy comparison for solving the MEG forward problem, i.e.,
the full B-field B (1.12) of DG-FEM when the subtraction (blue)
and the partial integration (yellow) approaches are used in a 2
mm hexahedral sphere model: visualized are the means (left col-
umn) and the boxplots (right column) of the RDM% (top row)
and MAG% (bottom row), for tangentially oriented sources at
logarithmically-scaled eccentricities. The red dashed line represents
the eccentricity of 2 mm distance to the brain-CSF boundary. Note
the different scaling of the y-axes.

RDM% values, the PI slightly outperforms SA with a difference of 0.2 and it

goes up to 17 pp for the most eccentric dipoles. The mean MAG% difference for

the most relevant eccentricity is 0.06 pp where PI slightly outperforms SA. The

maximum mean MAG% difference is achieved for the most eccentric dipoles,

and it is around 56 pp, where again PI is more accurate than SA. If we look at

the boxplots in Figure 3.11 (right column), we can see difference RDM% median,

IQR and TR of 0.01 pp, 0.15 pp and 15 pp, respectively, showing the slightly

better performing PI. The difference MAG% median, IQR and TR are 0.02 pp,

0.3 pp and 20 pp, respectively, where again PI is slightly outperforming SA.

When studying the comparison between SA and PI for the full B-field computed

in a 1 mm resolution mesh, we notice that the difference between the methods
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Figure 3.11.: Accuracy comparison of the secondary B-field Bs computation
(1.13) of DG-FEM when the subtraction (blue) and the partial
integration (yellow) approaches are used in a 1 mm hexahedral
sphere model: visualized are the means (left column) and the box-
plots (right column) of the RDM% (top row) and MAG% (bottom
row), for tangentially oriented sources at logarithmically-scaled
eccentricities. The blue dashed line represents the eccentricity of 1
mm distance to the brain-CSF boundary. Note the different scaling
of the y-axes.

for the most relevant eccentricity is negligible: at such high resolution the two

methods achieve extremely accurate results, as already stated in Study 2 and 3.

Finally, in Figures 3.13 and 3.14, the cumulative relative frequencies for RDM%

and MAG%, for both SA and PI and for all of the mesh resolutions are presented

for the secondary and the full B-field, respectively. From Figures 3.13, we notice

that PI 1 mm (in coral) delivers the best results in terms of both RDM% and

MAG%. More specifically, 95% of the sources has an RDM% below 3.7% and a

MAG% below ≈ 0.75%. With regard to the RDM%, SA 1 mm (light blue) 65%

of dipoles has an RDM% below 1% and both for SA 1 mm and DG 2 mm (in

blue) 80% of the dipoles has an RDM% below 5%. We observe that the curve

corresponding to SA is very steep for very low RDM% values and then it grows
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Figure 3.12.: Accuracy comparison for solving the MEG forward problem, i.e.,
the full B-field B (1.12) of DG-FEM when the subtraction (blue)
and the partial integration (yellow) approaches are used in a 1
mm hexahedral sphere model: visualized are the means (left col-
umn) and the boxplots (right column) of the RDM% (top row)
and MAG% (bottom row), for tangentially oriented sources at
logarithmically-scaled eccentricities. The blue dashed line repre-
sents the eccentricity of 1 mm distance to the brain-CSF boundary.
Note the different scaling of the y-axes.

slowly. On the other side, PI curves have a less steep behavior for the smallest

RDM% values, but they reach higher values faster for higher RDM% values.

This behavior is less visible in the MAG% curves, where the PI 1 mm (in coral)

delivers the best results, followed by PI 2 mm (in red) and SA 1 mm (in light

blue). The same general behavior is observed for the full B-field and omitted in

this section.
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Figure 3.13.: Cumulative relative frequencies of RDM% (on the left) and MAG%
(on the right) of the secondary B-field Bs (1.13) computed with
DG-FEM for tangentially oriented sources at logarithmically-scaled
eccentricities for two different source models, i.e., subtraction ap-
proach (SA) (in blue) and the partial integration approach (PI) (in
green), and three different mesh resolutions, i.e., 4 mm, 2 mm and
1 mm. The dashed horizontal lines depict the frequencies of 5% a
and 95%.

3.7. Proof of Concept in a Realistic Head Model

As a proof of concept, we computed one MEG forward solution using the DG-

FEM approach in a more realistic scenario. Based on MRI recordings of a

human head, a segmentation considering six tissue compartments (white matter,

gray matter, cerebrospinal fluid, skull compacta, skull spongiosa, and skin) that

includes realistic skull openings such as the foramen magnum and the optic nerve

canal was generated. Based on this segmentation, a six-compartment realistically

shaped head model was built, a hexahedral mesh of 2 mm resolution resulting

in 508,412 vertices and 484,532 elements (Figure 3.15). More details about the

model and its generation process can be found in [31]. Locations and orientations

of the sensors were chosen accordingly to the CTF machine (OMEGA2005, CTF,

VSM MedTech Ltd., Canada), see Figure 3.15. We simulated an auditory N1

MEG signal using the new DG-FEM method with conservative flux (3.19) in the

6 compartment realistically-shaped head volume conductor model. Following

experimental evidence [67], the N1 current dipole was positioned in the secondary

auditory cortex and oriented inwards-pointing and normally to the grey matter
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Figure 3.14.: Cumulative relative frequencies of RDM% (on the left) and MAG%
(on the right) of the MEG forward problem solution, i.e., the
full B-field B (1.12), computed with DG-FEM for tangentially
oriented sources at logarithmically-scaled eccentricities for two
different source models, i.e., subtraction approach (SA) (in blue)
and the partial integration approach (PI) (in green), and three
different mesh resolutions, i.e., 4 mm, 2 mm and 1 mm. The dashed
horizontal lines depict the frequencies of 5% a and 95%.

surface. The result is shown in Figure 3.15. The subfigure on the left represents

a sagittal slice through the head model, color-coding the 6 tissue compartments

with different conductivities. In the middle and right subfigures, the results

for EEG and MEG forward problem are presented. More precisely, the dipolar

electrical potential map with frontal negativity and right occipital positivity

is visualized on a cropped volume of the hexahedral mesh together with the

underlying source (black arrow). The normally-oriented B-field MEG results

at the 275 magnetometers was interpolated and visualized, showing a dipolar

pattern that is 90 degrees rotated to the EEG one and, following the right-hand

rule, the negativity (blue) is over central and the positivity (red) over temporal

areas, in line with the experimental results [67, 41].

3.8. Conclusions

This chapter is about how we developed, implemented and evaluated the two

new DG-FEM for solving the MEG forward problem, a conservative and a
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Figure 3.15.: Exemplary EEG and MEG forward computation for an auditory
source computed using DG-FEM in a realistically shaped head
model. Hexahedral mesh with 2 mm resolution, 6 compartments,
sagittal slice (left); electric potential distribution visualized on the
clipped volume conductor model in the sagittal plane where the
auditory dipole (black cone) lies (middle); MEG solution interpo-
lated on the radial magnetometers including a volume rendering of
the head model (right).

non-conservative one.

First, we introduced and summarized the main mathematical theory of the

DG-FEM. Second, we introduced the DG-FEM discretization of the weak EEG

forward problem formulation in its general case together with a general formula-

tion of the discrete conservation of charge property. Third, we described two

possible ways to deal with the dipolar representation of the source, namely the

subtraction approach and the partial integration approach. For each approach

we made explicit the discrete conservative flux which has to be integrated into

Biot-Savart’s law, for the computation of the secondary B-field. Fourth, we

deduced the MEG DG discrete representation of the general case together with

each source discretization approach and we discussed some implementation as-

pects, such as the transfer matrix approach. Fifth, the DG-FEM for solving the

MEG forward problem was evaluated in sphere models and results gathered and

visualized in mean curves, boxplots and cumulative relative frequency curves.

Sixth, we simulated an auditory N1 MEG signal using the new DG-FEM method

with conservative flux (3.19) in the 6 compartment realistically-shaped head

volume conductor model.

In a first analysis, we studied how large is the influence of a conservative repre-

sentation of the electrical flux in the computation of the secondary B-field by
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adopting the DG-FEM. By comparing the DG-FEM with a conservative (3.19)

and non-conservative (3.18) flux in a 4 mm multi-layer homogeneous sphere

model, the high importance of DG-FEM with conservative flux could be worked

out, outperforming the non-conservative DG-FEM scheme in all cases. In light

of these results, the conservative flux DG-FEM was then used in all consecutive

studies.

Results of the following two studies show the convergence of the DG-FEM when

either the subtraction approach or the partial integration approach is adopted

and the mesh resolution is increased, namely from 4 mm over 2 mm until 1 mm.

In the same scenarios, the propagation of those errors to the computation of the

full B-field are conducted and presented. In the fourth analysis we compared SA

and PI for each mesh resolution. From this analysis, some considerations can be

extracted and the general behavior of results can be summarized throughout the

following points:

• DG-FEM for solving the MEG forward problem converges: when increasing

the mesh resolution, the results get better;

• errors increase for increasing eccentricity. The convergence of the DG-FEM

when the SA is used depends on the vicinity of the dipole to the brain-CSF

boundary, as studied in details in [96]. We could assume that similar

considerations apply for PI;

• with regard to the secondary B-field, there is a strong increase of RDM%

and MAG% values when the considered dipoles belong to the boundary

layer of elements between brain and CSF;

• the full B-field has high errors for dipoles with a low eccentricity. The more

the dipoles approach the center of the sphere, the more their orientations

become radial. It is well known (see Remark 1) that the full B-field is

silent for radial dipoles, therefore there are divisions by zero in the error

measures, which lead to high RDM% and MAG% values;

• for the most relevant sources, i.e., dipoles with eccentricity of 0.9796, and

the mesh with highest resolution (1 mm), the minimum mean RDM%
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value of 1.2 is reached when the PI is adopted, while the minimum mean

MAG% value of 0.12 is reached when the SA is adopted;

• a spherical model with 4 mm resolution is too coarse and the results

delivered are not accurate, i.e., median and mean RDM% and MAG% are

way above 5%;

• a spherical model with 2 and 1 mm resolution is such that the delivered

results are accurate, i.e., median and mean RDM% and MAG% are always

below approximately 5%;

• SA performs topographically better than PI for eccentricities lower than

the boundary-eccentricity, i.e., the eccentricities of the distances to the

brain-CSF boundary, for each mesh resolution;

• PI performs better than SA for eccentricities higher than the boundary-

eccentricity.

To conclude, DG-FEM with conservative flux implementation, i.e., a main

feature of a DG-FEM discretization, turned out to be superior to the non-

conservative flux variant. The new DG-FEM method showed proper convergence

behavior with increasing mesh resolution, both when SA or PI is adopted. The

comparison between SA and PI revealed that SA performs topographically better

for eccentricities lower than the boundary-eccentricity, vice versa, PI performs

better for eccentricities higher than the boundary-eccentricity. Finally, the

DG-FEM MEG forward simulation in a realistic head model for an auditory

source resulted in EEG and MEG topographies that are in line with practical

findings in the field of auditory evoked responses. Therefore, for EEG or

combined MEG/EEG source analysis scenarios, DG-FEM offers an interesting

new alternative to CG-FEM, considering the importance of a high accuracy of

the forward problem solution in MEG/EEG source reconstruction. We believe

that this is the first time that a DG-FEM was adopted to solve the MEG forward

problem. Some studies have been conducted when a CG-FEM approach was used

instead and the discussion about the CG-FEM results and about the comparison

between CG- and DG-FEM can be found in Chapter 2 and 4, respectively.
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In this chapter, we did not evaluate the computational costs of the DG-FEM

schemes for the computation of the MEG forward solution. Because of the higher

number of degrees of freedom, DG-FEM is computationally more expensive

than CG-FEM. However, the FEM transfer matrix approach (Appendix A.4)

considerably reduces the computational costs of both approaches, so that this

aspect gets less relevant for practical applications.
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DG-FEM

In this chapter we compare CG- and DG-FEM performances both in sphere

models and in realistically shaped head models. Furthermore, we investigate the

influence of the so-called skull leakages in the MEG forward computations.

4.1. Spherical Head Model Studies

In this section, the comparison between CG- and DG-FEM in sphere models is

carried out. In the following, details about the CG- and DG-FEM simulations

are described, and the results are visualized via mean curves, boxplots and

cumulative relative frequency curves.

4.1.1. Materials and Methods

In this section, we describe the methods and the input data we used to compare

our CG- and the new DG-FEM approaches described in the Chapters 2 and 3,

respectively.

First of all, the new methods were implemented in duneuro. In particular,

the MEG forward solutions were computed via duneuro-python. The input

data we used for our simulations are the same as the ones used in the CG-

and DG-FEM validations, in Chapters 2 and 3, respectively. More specifically,
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the volume conductor models with which we compared CG- and the two new

DG-FEM implementations are 4-layer homogeneous sphere models represented

via hexahedral meshes with three different resolutions, namely 4 mm, 2 mm

and 1 mm. Details on the models and meshes are in Tables A.1 and A.2,

respectively. We considered 10,000 tangentially oriented dipoles, distributed in

10 logarithmically scaled eccentricities (see Table A.3), and we evaluated the

secondary and the full B-field in 256 point-magnetometers outside the sphere

model at a fixed radius of 110 mm (see Figure A.1). The errors were assessed

via the RDM% and MAG%, defined in A.1 and A.2, respectively. More details

about the input data and error measures can be found in Appendix A. Statistical

results of numerical accuracies are visualized with mean curves, boxplots and

cumulative relative frequency curves.

In addition to the previous Chapters 2 and 3, in this chapter we analyzed the

effect of the so-called skull leakages. We have indeed already seen in Chapter

3 that in more realistic simulations, an aspect that should be more carefully

studied is the fulfilling of the conservation of charge law and its implications on

the application at hand. For the EEG, this has been studied in [31], where it

was shown that the phenomenon of skull leakages, which occur as a consequence

of not accurately fulfilling the conservation of charge law, can be overcome by

using a DG-FEM instead of a classical CG-FEM. Leakage effects occur when a

low conductive compartment of the head, i.e., the skull, is modeled too coarsely.

This leads to scalp and cerebrospinal fluid elements being erroneously connected

via single skull vertices or edges, a frequent case when segmenting, for example,

children heads with thin skull compartments. Note that such skull leakage

effects can also compromise the accuracy of transcranial electrical stimulation

simulations [94, 57, 26, 90], in a reciprocal sense [89]. The study of [31] showed

for EEG forward scenarios that DG-FEM can considerably outperform CG-FEM

in skull leakage models, where the sphere model is discretized with a hexahedral

mesh of 2 mm resolution and where at the same time the thickness of the skull

compartment is deliberately reduced down to 2 mm (seg 2 res 2 r82), so that it

contains many leaky points, i.e., vertices belonging to both an element labeled as

skin and an element labeled as CSF or brain. See Table 4.1 and Figure 4.1 for

details. Note that real skull holes are not investigated in this study.

The sources are the same as previously described. Even when not expecting

similarly substantial error reductions on the MEG side, we used here the same
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leakage models as in [31] to investigate the influence of skull leakages on the

presented CG- and DG-FEM MEG approaches.

Segm. Res. Mesh width h Outer Skull #leaky
(mm) (mm) Radius(mm) points

seg 2 res 2 2 2 86 0
seg 2 res 2 r82 2 2 82 10,080

Table 4.1.: Parameters (from left to right) of the regular hexahedral meshes
of the 4-layer sphere models used to investigate the influence of
skull leakages on the presented CG- and DG-FEM MEG approaches:
segmentation resolution (Segm. Res.), mesh width (h), outer radius
of the skull (mm) and number of leaky points.

Figure 4.1.: Detail of the mesh with 2 mm resolution used in the computation
(seg 2 res 2) on the left; detail of the mesh with 2 mm resolution
and a thin skull layer used in the computation (seg 2 res 2 r82) on
the right.

4.1.2. Results

In this section, we present results regarding CG-/DG-FEM comparisons when

the subtraction or partial integration approach are adopted in three sphere
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models with increasing resolution (Study 1) and in a leakage model (Study 2).

In the following discussion about results, we focus on the comparison between

the two methods, rather than the performance of each method alone, which has

been done for CG- and DG-FEM in Chapters 2 and 3, respectively.

Study 1: CG-/DG-FEM Comparison in Three Sphere Models

As a first CG-/DG-FEM comparison, we considered the spherical models de-

scribed in Tables A.1 and A.2 and the results for both the subtraction and the

partial integration approaches.

RDM% and MAG%s were evaluated both for the secondary B-field Bs (Figures

4.2, 4.4, 4.6) and the full B-field B (Figure 4.3, 4.5, 4.7), following equations

(1.13) and (1.12), respectively.

With regard to the secondary B-field Bs results, we first analyzed the mean

RDM% curve (Figure 4.2, top left) when the subtraction approach was adopted.

In this plot we can distinguish the three different couples of curves: CG- and

DG-FEM for 1 mm (seg 1 res 1), 2 mm (seg 2 res 2) and 4 mm (seg 4 res 4).

If we focus on the 1 mm analysis, we notice a high accuracy (up to around

1.5%) for eccentricities smaller or equal to 0.9796 (i.e., 1.59 mm from the CSF

compartment).

Even if in our current implementation, CG-FEM achieves slightly better results,

the differences to DG-FEM are below 0.6 pp, so that in summary, DG-FEM

constitutes an interesting alternative to the CG-FEM approach. Also for lower

mesh resolutions of 2 and 4 mm, the performance of CG- and DG-FEM are very

comparable for the realistic eccentricities up to 0.9796.

A similar observation can be made for the mean MAG% curve, as the general

trend for the three couples of curves (i.e., CG-DG 1 mm, CG-DG 2 mm, CG-DG

4 mm) is the same as for the RDM% case. When focusing on sources with

eccentricity value of 0.9796, the mean MAG% difference between CG- and DG-

FEM remains below 0.09 pp. As for the boxplots for 1 mm mesh resolution

(seg 1 res 1) and source eccentricity of 0.9796, the median RDM% difference

is ≈ 0.4 pp (≈ 0.8% and ≈ 1.2% for CG- and DG-FEM, respectively); the

IQR difference is around 0.2 pp (≈ 0.6% and ≈ 0.8% for CG- and DG-FEM,

respectively) and the TR difference reaches almost 20 pp (Figure 4.2, top right).
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In the same scenario, the MAG% medians are identically extremely low, i.e., ≈
0.015%. The IQRs also do not differ, while, again the TR difference is around

20 pp (Figure 4.2, bottom right).

The results when focusing on the full B-field B in Figure 4.3 are similar to the

ones in Figure 4.2. Even for the full B-field, both the CG- and DG-FEM show an

overall very high accuracy and a negligible difference, especially when focusing

on the 1 mm study and source eccentricity of 0.9796. The mean RDM% (Figure

4.3, top left) is ≈ 1% for CG-FEM and ≈ 1.7% for DG-FEM; the mean MAG%

is ≈ -0.01% for CG-FEM and ≈ 0.1% for DG-FEM (Figure 4.3, bottom right).

With regard to the RDM% boxplot (Figure 4.3, top right), the medians are ≈
0.8% and ≈ 1.15% for CG- and DG-FEM, respectively; the IQRs are ≈ 1% and

≈ 1.2% for CG- and DG-FEM, respectively, and the TRs are ≈ 3% and ≈ 20%

for CG- and DG-FEM. In the MAG% boxplot (Figure 4.3, bottom right), we

observe identical and extremely low values for the median (≈ 0.01%) and for

the IQRs (≈ 0.8%). The difference of TRs is again bigger (≈ 20 pp) because of

a few outliers. Note that in Figure 4.3, we have extremely high errors for the

lowest eccentricity of 0.01 because radial sources do not produce any magnetic

field, as already discussed in Chapters 2 and 3.

In the following, we compared results for CG- and DG-FEM when the mesh

resolution is increasing and the source was discretized with the partial integra-

tion approach. In Figures 4.4 and 4.5, results for secondary and full B-field are

visualized, respectively.

At first we analyze results for the secondary B-field, in Figure 4.4.

If we consider the most relevant dipole eccentricity, i.e., 0.9796, and the mesh

with highest resolution, i.e., seg 1 res 1, the mean RDM% and MAG% difference

is less than 0.5 pp and ≈ 0.001 pp, respectively, where CG is slightly outper-

forming DG. If we look at the highest eccentricity DG is performing slightly

better than CG, with a mean RDM% and MAG% difference of ≈ 1 pp and 0.2

pp, respectively. With regard to the boxplots, Figure 4.4, right column, RDM%

TRs and IQRs are approximately the same between CG and DG, and there is a

slight difference (of 0.4 pp) in the medians, where CG is delivering moderately

more accurate results.

In general, the performances are very high for both CG and DG, and the differ-

ences are negligible. With regard to MAG% boxplots, TRs are almost identical,

IQRs and medians are lower for DG, but again the difference is very small, i.e.,
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Figure 4.2.: Accuracy comparison for secondary B-field Bs computation (1.13)
between CG-FEM (in warm colors) and DG-FEM with the conser-
vative flux (in cold colors), for different mesh resolutions and when
the subtraction approach (SA) is adopted. Visualized are the means
(left column) and the boxplots (right column) of the RDM% (top
row) and MAG% (bottom row), for tangentially oriented sources at
logarithmically-scaled eccentricities. Dashed lines represent the ec-
centricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances
to the brain-CSF boundary. Note the different scaling of the y-axes.

0.1 pp and 0.04 pp, respectively.

When considering the full B-field, the general behavior of the comparison is

almost the same as the secondary B-field case. Results can be visualized in

Figure 4.5. The difference RDM% and MAG% mean values are 0.4 pp and 0.15

pp, respectively, in favor of CG, for the eccentricity of 0.9796. For the highest

eccentricity, the difference RDM% mean is 1.2 pp where DG outperforms CG

and the difference MAG% mean is 0.2 pp, where CG delivers more accurate

results. In the boxplots of Figure 4.5, for the most relevant eccentricity, the

differences between CG and DG in terms of medians, IQR and TR are below 1

pp and therefore negligible. Furthermore, we observe some oscillations for higher

eccentricities.
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Figure 4.3.: Accuracy comparison for full B-field B computation (1.12) between
CG-FEM (in warm colors) and DG-FEM with the conservative
flux (in cold colors), for different mesh resolutions and when the
subtraction approach (SA) is adopted. Visualized are the means
(left column) and the boxplots (right column) of the RDM% (top
row) and MAG% (bottom row), for tangentially oriented sources
at logarithmically-scaled eccentricities. Dashed lines represent the
eccentricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances
to the brain-CSF boundary. Note the different scaling of the y-axes.

In the last part of this section we gathered CG and DG errors, for varying

mesh resolution, i.e., 4 mm, 2 mm and 1 mm, and for varying source model, i.e.,

the subtraction approach (SA) and the partial integration (PI) approach. To

improve readability, we will refer to CG-/DG-FEM and mesh resolution of 4

mm, 2 mm and 1 mm as CG4, DG4, CG2, DG2, CG1 and DG1, respectively.

In Figure 4.6 there is a comprehensive description of errors for the secondary

B-field.

The best RDM% values are delivered when DG-FEM is applied in a 1 mm

resolution head model and PI is adopted as discretization of the right-hand side,

i.e., by DG1 PI. In fact, 95% of the dipoles have an RDM% around 4%.

Second to DG1 PI there is CG1 PI, for which the 95% of the dipoles have an
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Figure 4.4.: Accuracy comparison for secondary B-field Bs computation (1.13)
between CG-FEM (in warm colors) and DG-FEM with the con-
servative flux (in cold colors), for different mesh resolutions and
when the partial integration approach (PI) is adopted. Visualized
are the means (left column) and the boxplots (right column) of
the RDM% (top row) and MAG% (bottom row), for tangentially
oriented sources at logarithmically-scaled eccentricities. Dashed
lines represent the eccentricities of 4 mm (green), 2 mm (red) and 1
mm (blue) distances to the brain-CSF boundary. Note the different
scaling of the y-axes.

RDM% of approx 6%. Furthermore, we observe that for low RDM% values CG2

SA and DG2 SA are delivering better RDM% values than CG2 PI and DG2 PI,

while for higher RDM% values the opposite occurs. Notice that CG2 SA and

CG4 PI outperforms DG2 SA and DG4 PI, while DG4 delivers more accurate

results than CG4.

The analysis of the MAG% cumulative relative frequency, expressed in percent-

age, (CRF%) curves is easier since the trends are clearer. DG1 PI outperforms

all other modalities, followed by CG1 PI, DG2 PI and CG2 PI. With regard to

DG2 PI, the CRF% curve is steeper than the one of CG2 PI for low MAG%

values, while it becomes less and less steep for higher MAG% values. In both
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Figure 4.5.: Accuracy comparison for full B-field B computation (1.12) between
CG-FEM (in warm colors) and DG-FEM with the conservative flux
(in cold colors), for different mesh resolutions and when the partial
integration approach (PI) is adopted. Visualized are the means
(left column) and the boxplots (right column) of the RDM% (top
row) and MAG% (bottom row), for tangentially oriented sources
at logarithmically-scaled eccentricities. Dashed lines represent the
eccentricities of 4 mm (green), 2 mm (red) and 1 mm (blue) distances
to the brain-CSF boundary. Note the different scaling of the y-axes.

cases, i.e., PI CG2 and DG2, 85% of the dipoles have a MAG% of ≈ 2%. For

CG2 and DG2 PI the 95% of sources have a MAG% of around 4% and 6%,

respectively.

With regard to the other methods, results for DG1 SA are approximately the

same as the ones of CG1 SA. DG4 PI and CG4 PI clearly perform worse but

their relative behavior is similar to the one between DG2 PI and CG2 PI. In

both cases, 80% of the sources have an RDM% of 5%.

This result is in line with the previously discussed results in Chapters 2 and 3.

The behavior of the full B-field, visualized in Figure 4.7, is very similar to the

one of the secondary B-field in Figure 4.6 and the description is omitted here.
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Figure 4.6.: Cumulative relative frequencies of RDM% (on the left) and MAG%
(on the right) of the secondary B-field Bs (1.13) computed with CG-
and DG-FEM in three sphere models with different mesh resolutions,
i.e., 4 mm, 2 mm and 1 mm, for CG SA (in light blue), CG PI (in
dark blue), DG SA (in light orange), and DG PI (in dark orange).
The dashed horizontal lines depict the frequencies of 5% and 95%.

Study 2: CDG-FEM Comparison in a Leaky Sphere Model

Motivated by the EEG results of [31], where DG-FEM could clearly outperform

CG-FEM in skull leakage scenarios, this section is concerned with the comparison

of CG- and DG-FEM for the same skull leakage scenario, but for the MEG case.

Therefore, a leaky sphere model (seg 2 res 2 r82) was constructed using an outer

skull radius of 82 mm (instead of 86 mm as in the previous sections), resulting

in an only 2 mm thick spherical skull compartment. Then, a 2 mm resolution

hexahedral model was constructed, resulting in 10,080 skull leakages, see Figure

4.1. Also in this study, only tangentially-oriented dipoles were examined (see

Appendix A). Similarly to [31], we limited our comparison only to the scenario

when the SA was adopted.

In Figure 4.8, we computed RDM% and MAG% mean curves (left column) and

boxplots (right column) for the leaky skull spherical model scenario (seg 2 res 2 r82)

compared to the non-leaky skull spherical model scenario (seg 2 res 2).

We observe that, in contrast to the improvement that DG-FEM could achieve

in the EEG case [31], the skull leakages do not visibly influence the numerical

simulation of the secondary B-field Bs and, since the primary B-field Bp is also
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Figure 4.7.: Cumulative relative frequencies of RDM% (on the left) and MAG%
(on the right) of the full B-field B (1.12) computed with CG- and
DG-FEM in three sphere models with different mesh resolutions,
i.e., 4 mm, 2 mm and 1 mm, for CG SA (in light blue), CG PI (in
dark blue), DG SA (in light orange), and DG PI (in dark orange).
The dashed horizontal lines depict the frequencies of 5% and 95%.

not influenced, thereby also the full B-field and thus the MEG forward problem.

If we observe the plots in the left columns, we indeed notice that the curves

of the leaky scenarios are completely overlaying the curves of the non-leaky

scenarios, both for CG- and DG-FEM and both for RDM% and MAG% mean

curves. Also in the boxplots we cannot distinguish the behavior of the RDM%

and MAG% in the leaky or non-leaky scenarios.

4.2. Realistically Shaped Head Model Studies

To have a wider overview of the CDG-FEM performances, in this section we

compute and compare the CG- and DG-FEM MEG forward solutions in a more

realistic scenario. In the following, details about the realistically shaped head

models, the sensor configurations and the source space are described and results

are reported and visualized via CRF% curves.
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Figure 4.8.: Accuracy comparison for secondary B-field Bs computation (1.13)
between CG-FEM (in warm colors) and DG-FEM with the con-
servative flux (in cold colors), in two different 2 mm hexahedral
sphere models: seg 2 res 2 and seg 2 res 2 r82, described in Table
4.1. Visualized are the means (left column) and the boxplots (right
column) of the RDM% (top row) and MAG% (bottom row), for
tangentially oriented sources at logarithmically-scaled eccentricities.
The dashed red line represents the eccentricity of 2 mm distance to
the brain-CSF boundary. Note the different scaling of the y-axes
(top row).

4.2.1. Materials and Methods

In order to evaluate the performances of CG-FEM and DG-FEM in a realistic

scenario, we considered three realistically shaped head models.

Based on MRI recordings, a segmentation considering six tissue compartments

(white matter, gray matter, cerebrospinal fluid, skull compacta, skull spongiosa,

and skin) that includes realistic skull openings such as the foramen magnum

and the optic nerve canal was generated. Based on this segmentation, three

realistic head models were generated. Two hexahedral head models with mesh
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4.2. Realistically Shaped Head Model Studies

resolutions of 1 mm and 2 mm were generated, resulting in 3,965,968 vertices

and 3,871,029 elements, and 508,412 vertices and 484,532 elements, respectively,

see Figure 4.9. As the model with a mesh width of 2 mm was not corrected for

Figure 4.9.: Sagittal slices of three realistically shaped head models with different
resolutions, and 6 compartments: skin (in light blue), skull spongiosa
(in dark orange), skull compacta (in yellow), CSF (in dark blue), grey
matter (in green) and white matter (in light orange). Hexahedral
mesh with 2 mm and 1 mm resolution (left and center), reference
high-resolution tetrahedral mesh (right).

leakages, 1,164 vertices belonging to both CSF and skin elements were found.

These leakages were mainly located at the temporal bone.

To calculate reference solutions, a high-resolution tetrahedral head model with

2,242,186 vertices and 14,223,508 elements was generated. For further details of

this model and of the used segmentation, we refer to [31].

The conductivities were chosen according to [31].

18,893 source positions were placed in the gray matter with a normal constraint.

Locations and orientations of the sensors were chosen accordingly to the CTF

machine (OMEGA2005, CTF, VSM MedTech Ltd., Canada), see Figure 3.15.

For both the CG- and DG-FEM, solutions in the 1 mm and 2 mm hexahedral head

model were computed and the RDM% and MAG% are evaluated in comparison

to the solution of the CG-FEM calculated using the tetrahedral head model.
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4.2.2. Results

For the realistic head models, the RDM% and MAG% in reference to the high-

resolution tetrahedral model were computed.

The cumulative relative frequency curves of the RDM% and MAG% are shown

in Figure 4.10 and 4.11, for the secondary and full B -field, respectively.

For both the secondary and the full B-field, RDM% and MAG% values are

overall higher than the ones in sphere model simulations. This is due to the

geometrical error between a tetrahedral mesh and hexahedral meshes.

In both scenarios, DG-FEM results are overall more accurate than CG-FEM

results, nevertheless, the difference between RDM% and MAG% values for DG

and CG are moderate.

In particular, with regard to the secondary B-field, in Figure 4.10, 95% of the

dipoles have RDM% and MAG% values less than 30% and 40% for both DG1

and DG2, and CG1 and CG2, respectively. The percentage of dipoles which

have an RDM% of 5% is in general very low: only 30% for DG1, 20% for DG2

and CG1 and 10% for CG2. On the other hand, approx 80% of the dipoles have

a MAG% of 5%, with small differences between methods, i.e., ≈ 2 pp.

With regard to RDM% values, in Figure 4.10 on the left, we can see that the

DG1 curve is the steepest, but it is overlapping with the DG2 curve from RDM%

values of 20% on. Furthermore, DG2 and CG1 curves are overlapping for RDM%

values comprises between 0 and ≈ 7%. The CG2 curve is clearly less steep than

all the others.

When observing the MAG% curves, in Figure 4.10 on the right, we see that the

curves relative to DG1 and DG2 are the steepest and almost overlapping for all

MAG% values, while the difference between CG1 and CG2 is more visible. In

general, the curves of DG1 and DG2 are steeper than the ones of CG1 and CG2,

indicating a higher numerical accuracy.

With regard to the full B-field results, visualized in Figure 4.11, we can notice

that the steepest curves are the ones relative to DG1 for both RDM% and MAG%,

nevertheless, the difference in steepness with the CG1 curve is negligible.

95% of dipoles have an RDM% value of ≈ 20% when adopting DG1, DG2

and CG1, while 95% of dipoles have an RDM% value of more than 25% when

adopting CG2.

With regard to the MAG% error values, there is a clear but moderate distinction
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between DG1-2 and CG1-2, namely, 95% of dipoles have a MAG% of 30% when

DG-FE; is adopted and a MAG% of 50% in a CG-FEM scheme.
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Figure 4.10.: Cumulative relative frequencies of RDM% (on the left) and MAG%
(on the right) of the secondary B-field Bs (1.13) computed with CG-
(in cold colors) and DG-FEM (in warm colors) in two realistically
shaped head models with two different mesh resolutions, i.e.,2 mm
and 1 mm, in reference to the high-resolution tetrahedral mesh.
The dashed horizontal lines depict the frequencies of 5% and 95%.
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Figure 4.11.: Cumulative relative frequencies of RDM% (on the left) and MAG%
(on the right) of the full B-field B (1.12) computed with CG- (in
cold colors) and DG-FEM (in warm colors) in two realistically
shaped head models with two different mesh resolutions, i.e.,2 mm
and 1 mm, in reference to the high-resolution tetrahedral mesh.
The dashed horizontal lines depict the frequencies of 5% and 95%.
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4.3. Conclusions

This chapter is dedicated to the comparison between CG- and DG-FEM perfor-

mances.

In the first section, the CDG-FEM comparison is conducted in sphere models.

A first study is about the analysis of the behavior of CG- and DG-FEM in three

spherical head models with increasing mesh resolution, i.e., 4 mm, 2 mm and 1

mm, when both the subtraction approach and the partial integration approach

are adopted. A second study is about the investigation of the effects of skull

leakages in the accuracy of the MEG forward solution: CG- and DG-FEM is

used to compute MEG forward solutions in a hexahedral 2 mm resolution mesh

where the skull compartment has been thinned on purpose and compared with

MEG forward solutions in a hexahedral 2 mm with a thicker skull compartment.

In the last section of this chapter, the CG-/DG- comparison is conducted in

three realistically shaped head models.

From Figure 4.6 and 4.7, where a comprehensive comparison between the meth-

ods is reported for both the secondary and the full B-field, respectively, we

conclude that PI outperforms SA both in terms of topographical error and error

in magnitude, and independently of the FE method used.

In particular, it can be noticed from Figure 4.6 and 4.7 that even the results

related to CG2 and DG2 PI are notably more accurate than the ones related

to CG1 and DG1 SA. Furthermore, for both the secondary and the full B-field,

results related to DG1 PI are higher than results obtained in all the other setups.

In particular, 95% of the dipoles have an RDM% of 4% and 18%, and MAG%

of 1% and 10% , for the secondary and full B-field, respectively. The difference

between DG1 PI and CG1 PI is nevertheless negligible.

The second study was about the influence of leaky points on the computation of

the secondary B-field when DG-FEM is adopted (Figure 4.8). In this analysis

we considered two different multi-layer homogeneous sphere models, namely

seg 2 res 2 and seg 2 res 2 r82. The difference between the two models is that in

seg 2 res 2 r82 the thickness of the skull compartment is deliberately reduced so

that 10,080 leaky points are present. When comparing CG- and DG-FEM in the

leaky model (i.e., seg 2 res 2 r82 ) and in the non-leaky model (i.e., seg 2 res 2 ),

we observed that the results of the computation of the secondary B-fields are
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almost identical. This means that the skull leakages neither cause additional

MEG forward modeling errors for DG-FEM, nor for CG-FEM. The situation is

thus different from the EEG case, where remarkable errors for CG-FEM forward

modeling were shown, while DG-FEM could strongly alleviate these additional

leakage errors [31]. For MEG, in case of tangential sources, the return currents

mainly flow parallel to the inner skull surface in the close environment of the

source, so that the leakages do not affect the overall MEG forward solution.

Furthermore, in the EEG case the largest effects of skull leakages were found for

radially oriented dipoles, which are silent for the MEG.

We have to underline the fact that the results obtained in leaky scenarios are

not to be confused with those where real holes of a certain diameter, e.g., from

trepanation, are present in the skull compartment. The skull leakages investi-

gated in [31] and, consequently, in this work are due to erroneous or, in general,

poor representation of the skull compartment and not to real holes in the skull

compartment.

[51] found that MEG signals are influenced by skull defects such as post-surgical

skull openings. They examined the influence of skull holes in MEG signals via in

vivo rabbit brain experiments, finding that the MEG signal amplitude reduced by

as much as 20%, especially if the source is central under the skull defect. Their

conclusion is that MEG source modeling requires realistic volume conductor

head models that incorporate skull defects.

Furthermore, [52] showed that also MEG source analysis results are affected

by skull defects. In particular, ignoring skull defects in the head model during

reconstruction displaced and reoriented sources under a skull defect, and when

skull defects were incorporated in the head model with their physical conductiv-

ity, the location and orientation errors were mostly eliminated.

The results obtained for realistically shaped head models show an overall higher

accuracy gained by DG-FEM. Nonetheless, the difference between DG and CG

errors in topography and in magnitude is moderate. These results reflect the

behavior observed in sphere head model simulations.

A further important aspect to discuss is that, if a combined EEG and MEG

source reconstruction is strived for [9, 34], the same forward model should be

used for both EEG and MEG, because of considerable advantages in terms

of implementation, accuracy and computational cost efficiency, as the MEG

forward model is also based on the electric potential and thus the numerical
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solution of the EEG forward problem. We therefore employed the same method

(CG- or DG-FEM, with conservative or non-conservative flux representation)

for both EEG and MEG in our work at hand. Accordingly, in case of EEG or

combined MEG/EEG source reconstruction in possibly leaky head models (e.g.,

in temporal bone areas or, more generally, in children investigations), the usage

of DG-FEM is recommended, if only hexahedral models can be built. In fact,

DG-FEM clearly improves EEG forward solutions in leaky models [31] and, at

the same time, delivers reliable and accurate MEG solutions, as shown in the

study at hand.

In conclusion, when compared to the CG-FEM, DG-FEM provided results that

are in a comparable range of high accuracy. Furthermore, both methods are

able to model realistic head volume conductor models with their tissue inhomo-

geneities and anisotropies.

In contrast to EEG studies, the so-called skull leakage effects did not play a

crucial role for MEG. However, for EEG or combined MEG/EEG source analysis

scenarios, DG-FEM offers an interesting new alternative to CG-FEM, considering

the importance of a high accuracy of the forward problem solution in MEG/EEG

source reconstruction.
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based on the Finite Element

Method

Even if generated by the same sources, MEG and EEG signals differ and carry

complementary information. In a spherical representation of the head volume

conductor model, the existing analytical solution for the forward problem is

silent for radial sources and therefore it gets weaker for deeper sources. The

situation is more complex when a realistically shaped volume conductor head

model is adopted, as already stated by [3]. Moreover, there are studies where

the sensitivity of both EEG and MEG to more realistic volume conductor head

models is shown [47, 43, 38, 6, 49, 45].

Signal-to-noise ratio (SNR) maps offer a good estimate of EEG and MEG

sensitivity to the activity of primary current sources in the human brain. SNR

maps widen insights about the modulation of source orientations and locations

to EEG and MEG signals and therefore lead to a correct interpretation of

source reconstruction results, especially when EEG and MEG modalities are

combined. Moreover, SNR is an essential measure of the detectability of epileptic

spikes in clinical routine, it can guide the design of new sensors, it can help

planning experiments. SNR maps are informative tools which allow for a correct

interpretation of source reconstruction results and might guide the choice of

preprocessing procedures to apply to recorded EEG and MEG signals.

Necessary ingredients to compute SNR maps are forward problem solutions,

i.e., simulations of electric potentials and magnetic fields for given sources. As

already deeply discussed in the previous chapters of this thesis, there are different

ways to solve the forward problem, e.g., analytical formulas, boundary element
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methods (BEMs), finite element methods (FEMs).

In [38] EEG and MEG SNR mappings for cortical sources extracted from MRI

anatomical information have been computed and visualized, applying BEM in a

three compartment isotropic head model.

In our study, we expand and extend the work of [38] by applying CG-FEM (cfr.

Chapter 2) in three different head models, with increasing resolution, with the

dual goal of investigating the reliability of such sensitivity maps and then to

confidently analyze the results given by such mappings.

In order to assess the level of detail needed to achieve more reliable SNR maps,

we computed and compared EEG and MEG SNR maps when three different head

models were adopted, starting from an isotropic three compartment head model,

where scalp, skull and brain are homogenized, to an isotropic four compartment

head model, where the CSF compartment is added to the three previous ones,

until a six compartment head model, where the skull is further refined into

compact and spongy bone and the brain compartment into CSF, gray and

anisotropic white matter.

Furthermore, we investigated the modulation of source orientation and depth

on EEG and MEG sensitivity maps both for cortical and subcortical sources.

The difference between EEG and MEG SNR values are visualized on the cortical

surface, and SNR values for both cortical and subcortical sources are represented

and compared via boxplots.

5.1. Materials and Methods

In this section, we describe the SNR formula used in this study and the variable

it depends on.

5.1.1. Signal-to-Noise Ratio (SNR) mappings

We computed SNR mappings to cortical and subcortical dipolar sources for EEG

and MEG and their sensitivity to three different head volume conductor models,
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described in the following subchapters.

We adopted the SNR definition used in [38]:

SNRi = 10log10

(
(ai)2

N

N∑
k=1

(bik)
2

s2
k

)
(5.1)

for each dipole i, where ai is the source amplitude (i.e., 10 nAm, as suggested

in [41, 38]), N is the number of sensors (i.e., 271 coils and 71 electrodes), bik is

the EEG or MEG forward solution at sensor k, and s2
k is the noise variance at

sensor k, deduced from signal-free combined EEG/MEG recordings, as in [38].

In the following subchapters, the main variables of formula (5.1) are examined.

Furthermore, we computed the so called differential SNR maps related to cortical

sources, following the formula

Di = SNRi
MEG − SNRi

EEG, (5.2)

for each dipole i.

5.1.2. Noise estimation

For the computation of s2
k in (5.1), we considered EEG and MEG data from an

experiment aiming at measuring somatosensory evoked potentials (SEPs) and

fields (SEFs) of a healthy 49 year old male volunteer.

The data was acquired with a sampling rate of 1200 Hz and an online lowpass

filter of 300 Hz was applied to avoid aliasing. After the acquisition, the baseline

of the data was corrected using the interval between -100 ms and -20 ms. In

addition, the data was filtered with a notch filter for line voltage frequency (50

Hz and its harmonics) and a 20 to 250 Hz zero phase band pass filter in order to

increase the signal to noise ratio as suggested in [19]. The continuous run was

divided into trials that span 100 ms before and 200 ms after stimuli. Z-value

and Kurtosis measures were used to identify and remove channels and trials

with artifacts, both in EEG and MEG data. In total, 3 EEG channels and 3

trials in EEG and MEG data were excluded, ending up with 1195 trials in both

measurements. In addition, the EEG data were re-referenced to common average
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reference. The whole pre-processing procedure was performed via routines

implemented in the Fieldtrip Toolbox [68].

Many techniques can be used to estimate the noise, we analyzed three methods.

In the first method (m1), the signal was averaged over trials, and then the

variance of the averaged trials was computed in the interval between -100 and -20

ms. Figure 5.1 presents the EEG and MEG signals averaged over trials, together

with the considered prestimulus signals highlighted in yellow. The prestimulus is

followed by the electric wrist stimulation artifact and the somatosensory signal

components, which are not considered any further in this study.

Figure 5.1.: EEG (upper subfigure) and MEG (lower subfigure) pre-processed
signals averaged over 1195 trials. The prestimulus time interval
considered for the computation of the variance for method (m1) is
highlighted by the yellow box.

We additionally modify the number of trials involved in the averaging, namely 5,

50, 100 and all 1195 trials, in order to observe the behavior of the corresponding

noise estimations. The results are gathered in Figure 5.2, upper row, where

we can notice that the noise estimation decreases when increasing the number

of trials considered in the average. We therefore clearly notice an intrinsic

dependency on the number of trials when the noise is estimated with (m1).

In order to have a measure of the noise independent from the number of trials,
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in the second method (m2), we estimated the noise as the median over trials of

the variances in the prestimulus interval of each trial. When varying the number

of trials included in the median, the estimation of the noise remains more stable,

therefore the measure can be considered as number-of-trials independent. See

Figure 5.2, lower row.

As a third method (m3), we computed the variance of the whole signal in each

prestimulus interval and assigned it as the noise estimation.

We compared the effects of using the three ways of computing the noise estimate

in Figure 5.2, while in Figure 5.3 we depicted the relative difference between the

noise estimations computed via (m1), (m2), (m3) and the variance of the whole

signal as a mean of comparison.

From Figure 5.2, we observe that there is a clear difference (around three orders

of magnitude in both the EEG and MEG cases) between the noise estimated with

(m1) and the noise estimations given by (m2) and (m3). In contrast, the last

two estimations ((m2) and (m3)) have negligible differences even when compared

with the noise over the whole signal, in Figure 5.3.

Figure 5.2.: EEG (left) and MEG (right) noise estimation following three different
methods: (m1) variance over the prestimulus of the data averaged
over trials, considering 5, 50, 100, 550 and 1195 trials (upper row);
(m2) median over 5, 50, 100, 500 and 1195 trials of the variances
over the prestimulus of each trial compared with (m3) the variance
of the signal over each prestimulus intervals and the variance of the
signal over the whole time interval (lower row). EEG and MEG
variances are expressed in V 2 and T 2, respectively.
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Figure 5.3.: EEG (left) and MEG (right) relative difference between the variance
of the signal over the whole time interval and the estimated noise
following the methods (m1), (m2) and (m3) considering all the trials.

In general, averaging over trials (cfr. (m1)) is often used to reduce the noise

and therefore to increase the SNR of a signal. Nevertheless, the components

of interest contained in a signal (P20-N20 component in our case) can also be

clearly seen in the single trials [42]. We therefore further investigated the EEG

and MEG signals utilized in this chapter to highlight this fact.

In Figure 5.4a and 5.4b we see, on the left, the signal corresponding to five trials

for EEG and MEG corresponding to the CP3 and MLP33 sensors, respectively.

On the top right the activity from all trials of the recording session time-locked

to stimulus presentation at time zero is shown. Among others, the P20-N20

component time-locked to the stimulus is clearly visible. The plots at the bottom

right of Figure 5.4 show the the averaged activity over trials, with clear relative

evoked responses.
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(a)

(b)

Figure 5.4.: On the left, EEG (a) and MEG (b) signals of five trials, corresponding
to sensors CP3 (EEG) and MLP33 (MEG). On the top right, EEG
(a) and MEG (b) activity of all trials along time, the color-coding
indicates microvolts (a) and femtotesla (b). On the bottom right,
EEG (a) and MEG (b) signal averaged over trials. The stimulus
presented at time zero is marked with a vertical red line.
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This investigation strengthen further our decision of adopting (m2) and all the

trials for computing the noise level.

5.1.3. Finite element approach

The EEG and MEG forward problems were solved using the code implemented

in the duneuro software [64] and validated in [65, 31, 71]. A lagrangian finite

element method was applied for both the EEG and the MEG forward problem

using the partial integration source modeling approach [53, 91, 97], described in

Section 2.4. The transfer matrix approach was used to reduce computational

costs [35, 95]. Results of these simulations represent bik in formula (5.1).

5.1.4. Head models

As we have already seen, e.g., in Chapter 2 and 2, FEMs rely on a volumetric

representation of the conductor head model. Three head models were constructed

and utilized in this study: a simple 3 compartment isotropic head model (3CI),

where skin, skull and brain are included, a 4 compartment isotropic head model

(4CI) where the cerebro-spinal fluid (CSF) is added into the model, and a more

detailed volume conductor head model with 6 compartments (6CA), i.e., skin,

skull compacta, skull spongiosa, CSF, gray matter and anisotropic white matter.

Specific features of the three models are gathered in Table 5.1.

A 3T scanner (MAGNETOM Prisma 3.0 T, Release D13 [Siemens Medical

Solutions, Erlangen, Germany]) was used for the acquisition of MRI datasets.

We measured a 3D-T1-weighted (T1w) fast gradient-echo pulse sequence (TFE)

using water selective excitation to avoid fat shift (TR/TE/FW = 2300/3.51

ms/8o, inversion prepulse with TI= 1.1 s, cubic voxels of 1 mm edge length);

3D-T2-weighted (T2w) turbo spin echo pulse sequence (TR/TE/FA = 3200/408

ms/90o, cubic voxels, 1 mm edge length) and DTI using an echo planar imaging

sequence (TR/TE/FA = 9500/79 ms/90o, cubic voxels, 1.89 mm edge length),

with one volume with diffusion sensitivity b = 0 s/mm2 (i.e., flat diffusion

gradient) and 20 volumes with b = 1000 s/mm2 in different directions, equally
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Tissue 6CA (S/m) 4CI (S/m) 3CI (S/m)

white matter 0.14 - - [75]
gray matter 0.33 - - [75]

brain : 0.33 0.33 [75]
CSF 1.79 1.79 - [16]

skull compacta 0.008 - - [25]
skull spongiosa 0.025 - - [25]

skull : 0.01 0.01 [25]
skin 0.43 0.43 0.43 [25],[75]

Table 5.1.: Conductivity values (in S/m ) of the three models created and used
for the sensitivity study: 6CA, 6 compartment head model with
anisotropic white matter; 4CI, 4 compartment isotropic head model
and 3CI, 3 compartment isotropic head model. The column indicates
when the compartment has been split, e.g., skull compartment divided
between skull compacta and skull spongiosa; while the dash indicates
that the relative compartment has been neglected in the head model.

distributed on a sphere. Another volume with flat diffusion gradient, but with

reversed spatial encoding gradients was acquired and used for susceptibility

artifact correction [77]. During T1w-MRI measurement, gadolinium markers

were placed at the same three positions nasion, left/right preauricular points

as in EEG/MEG for landmark-based registration of MEG/EEG to MRI. All

EEG/MEG and MRI measurements were done in supine position to reduce

head movements, to stabilize the baseline of the brain activity stable [81] and

to prevent erroneous cerebrospinal fluid (CSF) effects due to a brain shift when

combining EEG/MEG and MRI [76]. The three images were co-registered and

translated in the space defined by the CTF coordinate system, native space of

EEG and MEG sensor positions. Afterwards, the images were resampled so

that the voxels of the anatomical data are homogeneous, i.e., the voxel size is

constant and the same along the three dimensions. This step facilitates the

segmentation procedure. Furthermore, the images were cut above the lower lip of

the participant, following the suggestions in [50]. Subsequently, the segmentation

of the T1w and T2w was performed in order to separate 6 volumetric masks

representing the 6 compartments we decided to include in the most realistic

model, i.e., (6CA), following, e.g., [87]. The anisotropic conductivity tensor

was deduced by the DTI, following the procedure described, e.g., in [10] and
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[87]. The brain compartment was segmented via the FreeSurfer software1 and

the remaining pre-processing and creation of the volumetric masks was entirely

performed via routines available in FieldTrip [68], in particular, the scalp and skull

segmentation was done via the spm12 software [70], embedded in FieldTrip. The

Seg3d software was utilized for an easier visualization of both sliced volumetric

masks and automatically generated surfaces, for quickly checking the output of

the segmentation.

Once the masks were assembled, a volumetric tetrahedral mesh was created using

the CGAL software 2 embedded in iso2mesh [32], resulting in 885,214 nodes and

5,335,615 tetrahedrons. In the case of the (3CI) and (4CI) head models, only

the labels were modified accordingly, while the mesh remains the same as the

one for the (6CA) head model, since the geometrical error was not studied in

this work. In Figure 5.5 and 5.6, the three models and EEG/MEG sensors are

visualized, respectively.

(a) (b) (c)

Figure 5.5.: Three head models used in the computation of the forward model
solutions. In the (3CI) head model, in (a), the skin is depicted in
blue, the skull in green and the brain in yellow; in the (4CI) head
model, in (b), the additional CSF compartment is colored in red;
in the (6CA) head model, in (c), the skull spongiosa is depicted in
orange and the white matter in light blue.

1http://surfer.nmr.mgh.harvard.edu
2https://doc.cgal.org/Manual/3.5/doc_html/cgal_manual/Mesh_3/Chapter_main.

html
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Figure 5.6.: EEG and MEG sensor configurations: 83 electrodes (in yellow) and
275 gradiometers (in red) with reference coils for noise cancellation.

5.1.5. Source spaces

In this study, two different source spaces were considered: a cortical surface and

a subcortical volume. With regard to the former, the surface representation of

the white matter given by Freesurfer was considered. Nodes lying on the white

mantel were projected into the centroids of the correspondent closest elements

belonging to the gray matter (Euclidean norm was used to compute the closest

elements), and considered as dipole positions. The dipole orientations were

chosen as the normals of the white matter nodes to the white matter surface

(the normals were computed with the MeshLab toolbox3). In Figure 5.7, dipole

positions and orientations are visualized on the white matter surface.

Figure 5.7.: Cortical dipole positions and orientations used in the simulations
on the white matter surface.

The volumetric subcortical dipolar space was created extracting a subcortical

volumetric mask (erosion of 1 voxel) from the Freesurfer parcellation, which iden-

tified 9 subcortical regions: cerebellum, thalamus, caudate, putamen, pallidum,

hippocampus, amygdala, accumbens area and ventral diencephalon. Subse-

quently, a tetrahedral volumetric mesh was constructed with iso2mesh for each

3http://www.meshlab.net/

123

http://www.meshlab.net/


5. EEG and MEG Sensitivity Maps based on FEM

of the 9 subcortical regions identified by Freesurfer. The nodes of each mesh

were considered as dipole positions.

Modeling the orientation of subcortical dipolar sources is not as trivial as model-

ing cortical dipole orientations. The neural generators of deep structures can

be classified in open and closed field cells, according to the resulting electro-

magnetic field produced by their dendritic arborization [6]. In the first group

there is a preferred orientation of the neural architecture, in the second group

there is not. According to this fact, and following [6] and [49], in this study we

considered the three Cartesian components for each mesh node as subcortical

source orientations.

More details on the subcortical areas and number of dipoles considered for each

area can be found in Table 5.2.

In Figure 5.8 the volumetric subcortical masks are visualized.

name #dipoles

cerebellum 73,509
thalamus 10,815
caudate 3,846
putamen 5,592
pallidum 3,042

hippocampus 5,805
amygdala 2,451

accumbens area 1,065
ventral diencephalon 5,778

Table 5.2.: Subcortical areas included in the study with relative number of dipoles
employed as subcortical source space.
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(a) (b) (c)

(d)

Figure 5.8.: (a) Visualization of cortical (in blue) and subcortical (in yellow)
volumetric masks. (b) Visualization of nine subcortical structure
masks segmented via Freesurfer and visualized in Seg3d [22] in
sagittal view, (c) in transverse view from above and (d) from below.

A total of 278,621 cortical dipoles with normal orientations and 111,903 subcor-

tical dipoles with Cartesian orientations were utilized for this study.

Depth and orientation estimation of cortical sources

In order to quantify the dipole depth and orientation modulation on the cortical

SNR measures, we introduced two metrics, similarly to previous studies, e.g.,

[47, 87, 43]. More precisely, the depth of each cortical source was determined

by the Euclidean norm to the closest node lying on the surface mesh of the

inner skull, i.e., the surface mesh separating the CSF and the skull compart-

ment. Furthermore, the angle between the cortical dipole orientation and the

normal of the closest node on the inner skull surface was computed. In Figure

5.9 the source depths and source angles are visualized on the cortical source space.
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(a) (b)

Figure 5.9.: (a) Source depths and (b) source angles with respect to the closest
nodes on the inner skull surface mesh visualized on the cortical
source space. In (b), radial dipoles are depicted in orange and
tangential dipoles in green.

In addition, we clustered source depths and angles into five bins to also enable

a quantitative overview of the cortical SNR results, in addition to the SNR

maps. The histogram of source depths and angles can be seen in Figure 5.10a.

(a) (b)

Figure 5.10.: (a) Histogram of cortical source depth (left) and angle (right)
represented in 5 bins. (b) Schematic representation of the cortical
and inner skull surfaces (black curves) with examples of one dipole
for each bin in the angle histogram (the color-coding guides the
association).

We can interpret sources in the first and last bin in the source angle histogram

as radial sources, the sources belonging to the central bin as tangential sources,

and the remaining sources as sources with mixed orientations. In Figure 5.10b

a schematic representation of the cortical and inner skull surfaces, in black,

is depicted, together with an example of one dipole for each bin of the angle

histogram (Fig.5.10a, on the right).
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Singular Value Decomposition of MEG subcortical results

As discussed above, in most of the subcortical regions there is not a preferred

orientation of the sources. Furthermore, it is well-known that radial sources

do not contribute to the magnetic field measured outside of a spherical volume

conductor model [78].

When dealing with realistically shaped head models, this is still mainly correct,

however, in a weakened form such as the singular value for radial direction

sources are a good factor weaker than for the two tangential directions.

For this reason, e.g., in [46], a singular value decomposition (SVD) of MEG

forward solutions was performed to identify radial and tangential components

of MEG and EEG solutions. More precisely, for each subcortical source space

node i,, the corresponding MEG leadfield L has the dimension n× 3 with n the

number of MEG channels and the 3 Cartesian source directions. When applying

a singular value decomposition, i.e., L = USV t, the third column of V are the

eigenvector corresponding to the smallest singular value (third diagonal entry in

S). The latter represents well the weak contribution of a radially oriented source

at source space node i to the MEG field, while the first two singular values in S

indicate the much larger contribution of two dipoles in the tangential plane to

the MEG. The MEG and, consequently, the EEG leadfield are then projected

accordingly and the radial and two tangential components of the solutions are

assigned.

Note that for sources belonging to a subcortical volume, the definition of ori-

entation and depth used for cortical sources is more ambiguous, in particular,

the projection of deep sources onto a reference surface mesh is difficult to justify.

We therefore opted for the SVD analysis. To make an example, in a simplified

spherical head volume conductor model, no source positioned at the midpoint

contributes to the MEG, i.e., all directions are radial at the midpoint.
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5.1.6. Visualization of the results

Inflated surfaces were produced in MeshLab starting from the white mantle and

used to visualize (via ParaView4) the differential SNR maps (5.2) related to

cortical sources when the (3CI), (4CI) or (6CA) head model was used. We used

boxplots and heat maps to visualize the remainder of the results.

5.2. Results

The presentation of results is split between cortical and subcortical sources. For

cortical sources, we computed the differential SNR presented in formula (5.2) for

each of the three models, i.e., (3c), (4CI) and (6CA), on both the original cortical

source space and the inflated cortical source space. Results can be observed in

Figure 5.11.

The areas depicted in red are the areas where the SNR of the MEG is larger

than the SNR of the EEG and the areas depicted in blue are the areas where

the SNR of the EEG is larger than the SNR of the MEG. The same scaling

from -10 dB to +10 dB is used for all head models to enable an easier comparison.

4https://www.paraview.org/
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Figure 5.11.: Differential SNR when using head model 3CI (first row), 4CI
(second row) and 6CA (third row) visualized on the cortical source
space (left column) and on the inflated cortical source space (right
column). The values are expressed in decibels. Areas where the
SNR of MEG is larger than the one of EEG are depicted in red and
areas where the SNR of the EEG modality is larger than the one
of the MEG are depicted in blue. The same scaling from -10 dB to
+10 dB is used for all head models to enable an easier comparison.

In all three models, we can observe that the SNR of EEG is larger at the gyri

crowns and sulcal valleys, where the orientations of the sources are rather radial.

In a complementary way, the SNR of MEG is larger at the sulcal walls, where

the orientation of the sources is mainly tangential.

When comparing the maps throughout the models, we can observe that the

areas where the SNR of EEG is larger is decreasing when increasing the number
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of compartments included in the model, especially when including the CSF

compartment. Furthermore, the areas where the SNR of MEG are larger are not

only growing in size (more red in middle and lower rows), but also the difference

between the SNR’s of both modalities is increasing (darker red in middle and

lower rows). The CSF is thus weakening the sensitivity profile of EEG when

compared to the one of MEG.

The distribution of the differential SNR between both modalities with respect

to the distinction between gyri and sulci is highlighted by the inflation of the

cortical source space ( Figure 5.11, on the right column). MEG SNR values are

particularly high in frontal areas, and this can be due to the better coverage of

frontal areas by the MEG.

As a further study, we investigated the modulation of source depth and source

orientation to SNR cortical values. In Figure 5.12, boxplots of SNR values sorted

by increasing source depth (left subfigure, x-axis) and angle (right subfigure,

x-axis) are reported.

(a) (b)

Figure 5.12.: SNR values for cortical dipoles for EEG (in green shades) and MEG
(in red shades) sorted by (a) source depth and (b) source angle
for the 3 compartment isotropic (3CI), four compartment (+CSF)
isotropic (4CI) and 6 compartment anisotropic (6CA) head models.

From Figure 5.12 we notice that EEG SNR values are only weakly modulated

by the varying source depth and angle. This is not the case in the MEG case.

In Figure 5.12a it is indeed noticeable that the more superficial sources are, the

more MEG SNR values are higher than EEG SNR values. This trend gradually

reverses when increasing the depth of the sources, until the case of the last bin,

i.e., depth of 40-50 mm, where the scenario is the opposite: EEG SNR values

are higher than MEG SNR values. From Figure 5.12b, we observe that MEG
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SNR values are higher for more tangential sources, i.e., sources corresponding to

the central bin, and lower for more radial sources, i.e., sources in the first and

last bin.

In order to further investigate the modulation of source depth and orientation

to SNR values, we created heat maps, i.e., bi-dimensional histograms, for EEG

and MEG SNR values with respect to source depth and angle. See Figure 5.13.

Figure 5.13.: heat maps of EEG (upper row) and MEG (lower row) SNR values
in dependency of source depth (left) and source angle (right) from
the inner skull surface. Cortical sources analyzed only.

In Figure 5.13 a weak modulation of source depth and orientation for EEG SNR

values is confirmed. We notice a slow SNR decrease for increasing depth.

For MEG SNR values the behavior is quite different. In Figure 5.13 (lower left)

we observe how SNR values are extremely low for very superficial sources, but

there is a fast increase till reaching the maximum within few millimeters. After

the peak, SNR values slowly decrease together with the distance between source

positions and the surface of the brain compartment. For the visualization of

SNR values for subcortical dipoles, we used boxplots, as, in this case, we are

dealing with sources lying in a volume and not in a surface.
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In Figure 5.14, the SNR values for EEG and MEG, and for all of the three head

models, are shown when considering the radial and a tangential components of

the EEG and MEG. The behavior of the SNR values of the second tangential

orientation, i.e., the one related to the highest singular value in the SVD decom-

position, was very similar and therefore omitted here.

(a) (b)

Figure 5.14.: SNR values for radial, in (a), and the strongest (tangential), in
(b), components of EEG and MEG for subcortical dipoles. On the
x-axis the 9 subcortical areas considered are listed, on the y-axis,
the correspondent SNR values for (3CI), (4CI) and (6CA). Cold
colors are used for SNR values of EEG, warm colors for SNR values
of MEG.

From Figure 5.14a, we can notice, first of all, that SNR values for EEG are

systematically larger than SNR values for MEG. The differences between median

values ranges between around 10 dB and 20 dB.

Second, the difference between results related to (4CI) and (6CA) is very low,

whereas the difference between (3CI) and (6CA), or (3CI) and (4CI), is larger, for

every subcortical areas. Third, the SNR values of EEG and (3CI) are larger than

SNR values of EEG when (4CI) or (6CA) is considered. The opposite is shown

for SNR values of MEG: the SNR values are lower when (3CI) is adopted in all

subcortical areas but the cerebellum, where there seems to be no remarkable

difference between the three models.

Finally, for the tangential case, in Figure 5.14b, we do not notice a clear difference

between EEG and MEG. It is indeed remarkable that the range of MEG SNR

values coincide with the one of the EEG SNR values.

As a further investigation, we reproduced SNR values when (m1) is adopted as
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noise estimation method. We compared the SNR values when (m1) and (m2)

are used and the results are in Figure 5.15. We see that when (m1) is used, the

trend is maintained, while the absolute values are remarkably higher than in the

(m2) case. This is in line with the fact that the averaging procedure increase the

SNR level of the signals. We can therefore conclude that the choice of (m1) and

(m2) does not influence the main results.

(a) (b)

Figure 5.15.: EEG and MEG SNR values for both cortical and subcortical sources
when (m1), on the left, and (m2), on the right, are adopted to
compute the noise level.

5.3. Discussion

In this chapter, we compute and compare SNR values when the EEG and

MEG forward problems are solved for cortical and subcortical sources in three

different volume conductor models: a three compartment isotropic (3CI), a

four compartment isotropic (4CI) and a six compartment anisotropic (6CA)

realistically shaped head models.

In Material and Methods we introduce the definition of SNR we adopted in the

study together with the description of the variable the SNR formulation depends

on. We started with the introduction of the EEG and MEG noise estimations

and we continued with the EEG/MEG forward model simulations. In particular,

the three head models and the two source spaces generation used for CG-FEM

are described in details. Moreover, we introduced the definition of source depth

and orientation we utilized to investigate their modulation on the SNR values.

Finally, we described how we visualized results, i.e., SNR maps on the source
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space, boxplots and heat maps.

The Results section is divided in two parts. First, results for cortical dipoles are

presented. The so-called differential SNR (5.2) is visualized on both the source

space and the inflated source space, for each of the three head model forward

computations. Furthermore, the modulation of source depth and orientation is

investigated and visualized through boxplots and heat maps. With regard to

subcortical sources, boxplots showing the behavior of SNR values for EEG/MEG

for tangential and radial dipoles, and the different head models are presented.

As a general result, we noticed that EEG SNR values are remarkably sensitive

to head modeling. EEG SNR values are higher when a three compartment

head model is used and decrease when the number of compartments considered

increases. In particular, the main difference is given by the introduction of

the CSF layer. When such a conductive material is indeed included in the

model, a shunting phenomenon occurs and leads to a decrease of the signal

amplitude. This effect is in line with other findings in literature. In [87], for

example, a guideline for EEG and MEG forward modeling using lagrangian FEM

in realistic head models with a varying number of layers and conductivity profiles

is proposed. The inclusion of the CSF compartment had a large impact on the

EEG signal magnitude, and the EEG signal magnitude is directly connected

to SNR values by definition (see formula (5.1)). In the MEG case, the signal

magnitude was not remarkably modified by the CSF inclusion and so are the

SNR values reported in our study. This modulation is notable, in our study, both

for cortical and subcortical sources. EEG SNR values are overestimated in a

three compartment head model therefore a four or six compartment head model

delivers a more reliable EEG sensitivity map. It is not the case for the MEG

sensitivity map, since the variation between MEG SNR values throughout head

models is not evident nor remarkable. On the other side, the effect of source

depth and source orientation for cortical sources is extremely large for MEG

SNR values and weaker for EEG SNR values. It is indeed visible how MEG

SNR values are higher for tangential dipoles and decrease for radially oriented

sources. This phenomenon is a clear consequence of the well known blindness

of MEG signals to radially oriented dipoles outside of a sphere [78]. Even if

in the proposed scenario the geometry is closer to a human head model, the

symmetry effects valid outside of a sphere propagate in the realistic scenario.

For the same reason, the MEG sensitivity deteriorates when the source depth
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increases, as the dipoles get more and more radial. In this regard, we observe an

almost null modulation of EEG SNR values to both depth and orientation. In

[87], the depth effect for cortical dipoles was also estimated and results are in

line with the ones presented in this chapter.

Figure 5.12 describes and summarizes clearly the sensitivity of the MEG signal.

For the most superficial dipoles (dipoles with a distance of up to 2 mm from the

inner skull compartment), MEG SNR values reach the minimum. This behavior

is easily justifiable by the fact that the most superficial dipoles corresponds to

sources lying on the top of the gyri, where the orientation of the pyramidal cells

is radial to the inner skull surface. When considering dipoles with a slightly

higher depth (around 3 mm), the MEG SNR values abruptly increase and reach

the maximum. The focus has been indeed shifted to dipoles lying on the sulci

walls, where the orientation is tangential. Dipoles on the upper part of sulci

walls represent the most visible sources for MEG and give the absolute maximum

SNR values for both MEG and EEG. From approximately 8 mm distance to

the inner skull compartment, we consequently see a linear decay of MEG SNR

values for the increasing source depth.

When analyzing subcortical results, first of all, we observe that subcortical SNR

values are lower than cortical SNR values, especially in the MEG case. Depth

modulation is indeed more evident for subcortical sources for both EEG and

MEG SNR values. This result is in line with what already discussed about the

modulation of depth in EEG and MEG SNR values, i.e., strong in the MEG case

and weaker in the EEG case. In this scenario we again observe rather constant

values for the EEG case and largely varying values for the MEG case. Here, the

dipole orientation was chosen a-posteriori and based on the assumption that

the MEG is less sensitive to radial sources. What is clear from Figure 5.14 is

that the difference between radial and tangential component is large, i.e., more

than 15 dB. On the other side, it is important to observe that, for tangential

subcortical dipoles, the range of MEG SNR values is the same as the one of

EEG SNR values. Moreover, in the case of the cerebellum, MEG SNR values

are even higher than EEG SNR values.

In other studies, the sensitivity of EEG and/or MEG has been analyzed. In [47],

which is an extension of the former work in [43], EEG and MEG sensitivity to

epileptic spike activity as function of source orientation and depth is studied. In

this work, the SNR is defined as a quantitative measure of the linear amplitude
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ratio between the background activity and the spike peak, and it is based on the

best channel for each source, therefore the values are not directly comparable

with the SNR values presented in our work. However, the general results are

in line with the ones presented in this chapter, namely, for more superficial

sources, EEG SNR values are higher for radial sources and MEG SNR values

are higher for tangential sources (as shown, e.g., in [43]). On the other side, for

deeper sources, the SNR in the EEG was consistently slightly higher than in

the MEG, which is in agreement with [38]. The forward problem was solved

in a four layered isotropic head model with BEM and considering only cortical

sources. They showed that EEG and MEG have complementary sensitivities to

dipolar and patch sources. They conclude that simultaneous EEG and MEG

recordings increase the probability to detect epileptic spikes.

In [6], the focus is on subcortical sources. In this review, they present the basic

physiology of MEG/EEG data and report the state-of-the-art of deep brain

activity reconstruction. There is an explicit MEG sensitivity study for cortical

and subcortical sources, while the analogous study for EEG signals is missing.

The subcortical source orientations were chosen to be random for thalamus,

striatum and amygdala; along the main axis of the surface envelope of nuclei

with oriented sources, i.e., reticular perithalamic nucleus, lateral geniculate

nucleus and external pallidum; normal to the surface for hippocampus. The

forward problem was solved in a sphere model, while the source locations were

extracted from a brain template. The average root mean square for all locations

in the source space of each structure is chosen as measure of sensitivity, while

in our work we used the SNR expressed in formula (5.1), therefore the results

are not directly comparable. However, our results are in line with the ones

presented in [6]. More specifically, they found that the MEG sensitivity drops

off drastically with the distance from sensors between cortical and subcortical

dipoles, which is reflected in our Figures 5.13 and 5.14. Furthermore, due to

their higher depth within the brain, the thalamus and lateral geniculate nucleus

gave the lowest root mean-squared values and this is the case also for our SNR

values in Figure 5.14, right column, where thalamus and ventral diencephalon

give the lowest values. In our study, unlike [6], we considered dipoles in the

whole volume of hippocampus as done in [49], furthermore, we included the

study on the cerebellum.

Our results are also in agreement with [45], where the MEG sensitivity was
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studied through probability maps of localizing any source on an MRI-extracted

cortical surface to within a cubic volume of 1 cm3. They computed MEG forward

solutions in spherical head models and considering cortical dipoles lying on the

gray/white matter surface interface. The main message of their work is that

gyral sources are not invisible to MEG and that depth is more crucial than

orientation to MEG sensitivity, since only 5 % of the cortical dipoles have a

predominantly radial orientation. These findings are clearly reproduced in Figure

5.11 and Figure 5.10a, where we see that only thin strips at the troughs of sulci

and at the crests of gyri together with deeper sources have lower MEG SNR

values, and that overall tangential dipoles represents the majority of the cortical

dipoles, respectively.

Finally, in [38] EEG and MEG SNR maps are computed, compared and visualized

in inflated cortical surfaces. Although the SNR formula is the one we adopted

in our study (see (5.1)), in [38] a BEM computation was performed in a three

compartment isotropic head model and only cortical dipoles were considered

in the gray/white matter surface interface, with normal orientation. They

adopted two different noise estimations, namely, one from realistic EEG and

MEG recordings and one from an analytical model. Their final recommendation

is to rather estimate noise from actual recordings, which motivated our noise

estimation method. Their results confirm complementarity of EEG and MEG

techniques, therefore a combined analysis is recommended. EEG is more sensitive

to deeper and radial dipoles, while MEG is more sensitive to tangential dipoles.

Nevertheless, according to our results, the same EEG SNR overestimation is

present in the differential SNR map presented in [38], leading to the conclusion

that the strips where MEG is less sensitive than EEG are even thinner than the

one presented in [38]. As a final remark, the general trend of the results are not

influenced by choosing a noise estimation dependent or independent from the

number of trials (see Figure 5.15).

5.4. Conclusions

In this work we computed and analyzed EEG and MEG SNR mappings for three

head models, from a simple isotropic three compartment head model, to an
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isotropic four compartment head model, until a more detailed six compartment

head model with anisotropic white matter, and two source spaces, namely a

cortical surface and a subcortical volume. The forward model was solved using

a state-of-the-art lagrangian finite element method implemented in the duneuro

software [64]. Aim of this work was dual. First, assess the level of accuracy

needed to achieve more reliable sensitivity maps. Second, extract useful insights

from accurate EEG and MEG sensitivity maps. Results show that, first, a three

compartment head model leads to overestimated EEG SNR values, it is therefore

recommended to rely on sensitivity maps which were built on top of a head

model where at least the CSF compartment is taken into account. MEG SNR

maps resulted to be less sensitive to the head model used. Second, on the cortical

level, only MEG SNR values are strongly modulated by source orientation and

depth, but the number of deep and radial sources is lower than superficial and

tangential sources, therefore overalls MEG SNR values are higher than EEG SNR

values when considering cortical sources. With regard to subcortical sources,

SNR values are overall lower than cortical SNR values for both EEG and MEG.

While EEG SNR values are less sensitive to source orientation also in the context

of subcortical sources, MEG SNR values remarkably vary with the orientation.

MEG SNR values are indeed more than 10 dB lower when considering radial

sources, if compared to MEG SNR values for subcortical tangential dipoles.

Therefore, these simulation results show that deep tangential sources can be

detected by both the EEG and MEG modalities [69].
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Summary After presenting both a physiological and a mathematical back-

ground in Chapter 1, where the EEG and MEG forward problems have been

derived, CG- and DG-FEM have been presented and extensively tested in Chap-

ter 2 and 3, respectively. Here, we have analyzed the behavior of the MEG

solution with regard to different mesh resolutions and representations of the

singular source term, such as the subtraction approach, the partial integration

and Venant’s approach. In Chapter 4, the performances of CG- and DG-FEM

for solving the MEG forward problem have been compared both in spherical

and realistically shaped head models. We were able to show the convergence

of the methods, the overall outperforming performance of both methods when

the partial integration approach is adopted in comparison to those when the

subtraction approach is chosen as discretization of the source term. Furthermore,

in sphere models, DG-FEM provided results that are in a comparable range of

high accuracy as to the CG-FEM, whereas in realistically shaped head models,

we reported slightly more accurate results when DG-FEM is utilized.

The introduction of DG-FEM was motivated by a previous EEG study [31]

where more accurate EEG forward solutions were achieved in presence of skull

leakages when DG-FEM was employed. In contrast, the skull leakage effects did

not play a crucial role for MEG. However, for EEG or combined MEG/EEG

source analysis scenarios, DG-FEM offers an interesting new alternative to CG-

FEM, considering the importance of a high accuracy of the forward problem

solution in MEG/EEG source reconstruction.

Finally, in Chapter 5, a sensitivity study is presented. In this work we computed

and analyzed EEG and MEG SNR mappings for three head models, from a

simple isotropic 3 compartment head model, to an isotropic 4 compartment

head model, until a more detailed 6 compartment head model with anisotropic
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white matter, and two source spaces, namely a cortical surface and a subcortical

volume. Results show that, first, a three compartment head model leads to

overestimated EEG SNR values, it is therefore recommended to rely on sensi-

tivity maps which were built on top of a head model where at least the CSF

compartment is taken into account. MEG SNR maps resulted to be less sensitive

to the head model used. Second, on the cortical level, only MEG SNR values are

strongly modulated by source orientation and depth, but the number of deep and

radial sources is lower than superficial and tangential sources, therefore overalls

MEG SNR values are higher than EEG SNR values when considering cortical

sources. As to subcortical sources, SNR values are overall lower than cortical

SNR values for both EEG and MEG. While EEG SNR values are insensitive to

source orientation also in the context of subcortical sources, MEG SNR values

remarkably vary with the orientation. MEG SNR values are indeed more than 10

dB lower when considering radial sources, if compared to MEG SNR values for

subcortical tangential dipoles. Therefore, these simulation results show that deep

tangential sources can be detected by both the EEG and MEG modalities.

Outlook We now discuss possibilities for further accuracy increase that it is

worth to evaluate in future works. First of all, in every simulation performed

in this thesis the sources were just chosen randomly, i.e., the influence of the

source position relative to an element of the discretization was not yet investi-

gated. It is well known that, for the subtraction approach, the combination of

computing leadfields only for the most accurate sources combined with leadfield

inter- and extrapolation techniques for other sources might not only speed up

computations, but might also further increase numerical accuracy [98, 85]. In

the DG-FEM scheme, indeed, already in the EEG forward computation (see

Equation (3.16)), the contribution given by the integral over the internal skeleton

can reach high values when the source is relatively close to a quadrature point

on the internal skeleton, because of the singularity in ∇u∞. In addition, the

degrees of polynomials in V 1
h can be increased, together with the order of the

Raviart-Thomas function space used to extend the conservative flux into the

volume of each element. On the other hand, increasing the order of function

spaces results in increased computational costs, so this intervention should be

treated carefully.
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Furthermore, the DG-FEM constitutes the first step for the unfitted discon-

tinuous Galerkin FEM implementation. This method, already tested in an

EEG study [65], reduces the geometrical error of the forward simulations in

hexahedral models while drastically decreasing the computational cost and thus

its application to the MEG forward modeling represents an interesting future

goal.

Within the DG-FEM framework, further studies can be conducted with respect

to different source term discretization, such as the localized subtraction approach

[63], Venant’s approach and Whitney approach. More in details, the main idea of

the localized subtraction approach is to consider the infinity potential u∞ only on

a subdomain D∞ of Ω which contains the dipole. The idea and first evaluations

of the localized subtraction for the EEG forward problem can be found in [63],

where it has been shown that the same accuracy as the classical subtraction

approach is achieved, with a remarkable reduction of the computational time.

As to the MEG forward problem, Biot-Savart’s law has to be modified in order

to take into account the new shape of u = ucorr + u∞χD∞ , where χD∞ indicates

the indicator function in the subdomain B∞. It is to be noted that, despite the

boundary-discretization of the classical subtraction approach presented in [30], σ

can jump in D∞ and that Ω∞ ⊂ D∞. Also in this scenario, the numerical inte-

gration of the singular ∇u∞ has to be carefully treated. The general framework

has already been implemented in duneuro but more tests and evaluations are

necessary.

So far, the discretization of the localized subtraction has been derived in a

DG-FEM context, since the indicator function belongs to the test function space.

An alternative formalization might be conducted where smooth functions are

considered instead of the indicator function and therefore the method can be

implemented also in a CG-FEM scenario. Moreover, a boundary representation

of Biot-Savart’s law can be considered not only on the patch where σ is supposed

to be constant (cfr. Section 2.7), but globally over the whole computational

domain.

In addition, since we deduced from this thesis that the MEG forward solution

is extremely sensitive to the flux representation close to the source position,

the assumption made on the source model as a single dipolar source might

be too strong. A point dipole does not reflect the physiological behavior of a

neural population activity when the observation point approaches the source
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position. Furthermore, it has already been shown that a dipole model yields

depth deviations which are small but systematic if compared to a more realistic

and slightly extended source patch with finite amplitude [27]. Therefore, on one

side, numerical approaches to discretize the source term which are modeling

a more extended source, such as Whitney approach, might lead to remarkable

improvements in the accuracy of MEG forward problem solutions. On the other

side, reference analytical solutions which include an extended source might be a

more realistic description of the physiological behavior of the underneath neural

activity.

With regard to the sensitivity study in Chapter 5, some aspects might be further

examined. First, the level of noise used in the SNR index used in our study is

related to a particular SEP/SEF experiment, while it would be more desirable

to have a level of noise which is experiment-independent. Second, this study can

be extended in order to create and study sensitivy maps for infants, children or

patients with brain lesions, together with different sensor configurations, e.g.,

intracranial EEG sensors.

Finally, an important aspect that should be considered is the usability of the

implemented new methods in duneuro [64]. We are planning to let the source

code be open-source and educational courses have been already internation-

ally taught at an international conference (http://www.fieldtriptoolbox.

org/workshop/ohbm2018, where a first attempt of duneuro-Fieldtrip integra-

tion was performed) and a summer school (https://www.tu-ilmenau.de/bmti/

wissenschaftliche-veranstaltungen/summer-schools/bme-school-2018/).
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A. Appendix

In this Appendix we gathered the description of the input data which are used

in Chapter 2, 3 and 4, the definition of the error measures adopted throughout

the whole thesis and the transfer matrix approach.

A.1. Volume Conductor Models

For numerical accuracy tests of our CG- and DG-FEM implementations, we

generated 4-layer homogeneous sphere models for which an analytical solution

for the MEG exists. We used four compartments with different conductivities in

order to evaluate if, besides the analytical solution in (1.14), also our numerical

implementations show conductivity-independence of MEG in spherical volume

conductors and because the four compartment model is closer to a realistic

head model as shown in Figure 3.15. The four compartments, whose radii

and conductivities are shown in Table A.1 (same parametrization as in [31]),

are rough approximations for skin, skull, cerebrospinal fluid (CSF) and brain

compartments. The spherical domain is represented via hexahedral meshes with

three different resolutions, namely 4 mm, 2 mm and 1 mm.

Tissue Outer radius Conductivity Reference

brain 78 mm 0.33 S/m [75]
CSF 80 mm 1.79 S/m [16]
skull 86 mm 0.01 S/m [25]
skin 92 mm 0.43 S/m [25],[75]

Table A.1.: Parameters of 4-layer sphere model.
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Segm. Res. Mesh width (h) #vertices #elements

seg 4 res 4 4 mm 4 mm 56,235 51,104
seg 2 res 2 2 mm 2 mm 428,185 407,907
seg 1 res 1 1 mm 1 mm 3,342,701 3,262,312

Table A.2.: Parameters (from left to right) of the regular hexahedral meshes of
the 4-layer sphere models used for validation purposes: segmentation
resolution (Segm. Res.), mesh width (h), number of vertices and
number of elements.

A.2. Sources and Sensors

As only tangential orientation components produce an MEG signal in a multi-layer

sphere model, we generated 10,000 dipoles with purely tangential orientations

and unit strengths. The sources were uniformly distributed inside the brain

compartment on spherical surfaces with 10 different logarithmically scaled eccen-

tricities reported in Table A.3. A source with eccentricity value of 0 is positioned

in the center of the sphere, while a source with eccentricity value of 1 belongs to

the surface separating brain and CSF compartments. The logarithmic scaling

was chosen, since it is well known that numerical errors increase with decreasing

distance of a source to the next conductivity jump [96, 30]. We therefore expect

larger numerical errors especially for the sources at the highest eccentricity of

0.9873, which only have a distance of 0.99 mm to the CSF compartment. As

the cortex has a thickness of 4 to 2 mm [60, 41] and the sources are located in

the center of the gray matter, the sources which are most important to analyze

are those with a distance of 2 to 1 mm to the CSF compartment. Therefore we

focus on the results of sources whose eccentricities are between 0.9642 (2.79 mm

from the CSF compartment) and 0.9873 (0.99 mm from the CSF compartment)

and especially on those with the middle value of this range, i.e., 0.9796 (1.59 mm

from the CSF compartment). Furthermore, in praxis, sources are usually placed

so that at least one layer of elements is between the source element and the

conductivity jump, which is fulfilled for the considered eccentricities 6 0.9873 in

the 1 mm model (seg 1 res 1) and 6 0.9642 in the 2 mm model (seg 2 res 2).

See Table A.3 for details on the eccentricities and the corresponding distance

from the CSF compartment. Furthermore, dipoles not belonging to the brain

compartment are excluded from the statistics (990 for the 4 mm mesh and 330
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for the 2 mm mesh). With regard to the MEG sensors, we used 256 point-

Eccentricity Distance to
CSF comp. (mm)

0.1 77.22
0.5025 38.80
0.7487 19.60
0.8718 9.99
0.9334 5.19
0.9642 2.79
0.9796 1.59
0.9873 0.99

Table A.3.: Source eccentricities and corresponding distances to the CSF com-
partment.

magnetometers outside the sphere model at a fixed radius of 110 mm (see Figure

A.1).

Figure A.1.: Visualization of the 256 point-magnetometers used in the sphere
model analysis. Radially (left) and tangentially (middle) oriented
point-magnetometers have been employed exclusively in Section 2.7,
while in all other studies all the three Cartesian components (right)
of the vector fields Bp, Bs and B have been considered.
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A.3. Error Measures

We used the two error metrics that are commonly used for validating EEG and

MEG forward approaches [56, 17, 83, 54, 79, 96], namely, the relative difference

measure in percentage (RDM%) for topographical errors:

RDM%(fana, fnum) = 50

∥∥∥∥ fnum
‖fnum‖2

− fana
‖fana‖2

∥∥∥∥
2

, (A.1)

and the magnitude error in percentage (MAG%):

MAG%(fana, fnum) = 100

(
‖fnum‖2

‖fana‖2

− 1

)
, (A.2)

where f is either the secondary B-field Bs or the full B-field B. Note that we

considered vector-magnetic fields (Bp, Bs, B) without projecting them into

radial nor tangential directions, i.e., without distinguishing between radial and

tangential point-magnetometers. Statistical results of numerical accuracies are

visualized with mean curves, boxplots and cumulative relative frequencies curves.

In the boxplots, the analysis includes maximum and minimum, indicated by

upper and lower error bars, and thereby the total range (TR). Furthermore, it

includes the interval between upper and lower quartile, i.e., the interquartile

range (IQR), which is marked by a box with a black dash showing the median.

A cumulative relative frequency graph of a quantitative variable is a curve

graphically showing the cumulative relative frequency distribution. For example,

a point in the cumulative relative frequency curve of the RDM% shows the

frequency proportion of dipoles (on y-axis) whose correspondent numerical

solution has an RDM% which is less or equal to the level given by the x-axis.

A.4. The Transfer Matrix Approach

In order to speed up the many numerically expensive computations of the

secondary B-field Bs for all of these sources, following [95], we adapted and

implemented transfer matrix approaches for all three presented CG- and DG-
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FEM-based MEG forward modeling schemes.

If Au = l represents the resulting linear system of the EEG forward computation

discretization, we can formally write

u = A−1l. (A.3)

If we combine (A.3) and (2.20) or (3.23) in the CG- or DG-FEM case, respectively,

we obtain

Bs
h = Su = S(A−1l) = (SA−1)l = BMEGl, (A.4)

where S is a generic secondary magnetic field integration matrix. BMEG is the

so-called MEG transfer matrix and allows computing Bs
h with a matrix-vector

multiplication, instead of solving the EEG forward problem and applying S. To

compute BMEG = SA−1, we can multiply its definition by A from the right and

then transpose it. Using the symmetry of A, we arrive at the following matrix

equation,

ABt
MEG = St, (A.5)

which can be solved for each row of S (column of St). In the case of the

subtraction approach, we have

Bs
corr,h = Su = S(A−1l) = (SA−1)l = BMEGl, (A.6)

and the same procedure to compute BMEG and Bs
corr,h can be applied. After

Bs
corr,h is computed, analogously to the subtraction approach for the EEG forward

problem, Bs
∞,h is added in order to obtain the complete contribution to the

secondary B-field.

A.5. Implementation Aspects on Solving the MEG

Forward Problem in duneuro

The CG- and DG-FEM for solving the MEG forward problem are implemented in

duneuro1, which is a software toolbox for modeling in neuroscience [63]. More in

1www.duneuro.org
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general, duneuro in a flexible open-source C++ software library which computes

EEG and MEG forward problem solutions, and allows for brain stimulation

simulations. duneuro is a module of the Distributed and Unified Numerics

Environment (DUNE) 2 [14, 13, 12], which is a modular toolbox for solving

partial differential equations with grid-based methods. In particular, we used

the DUNE-ALUGrid module [5] for the representation of hexahedral meshes and

the DUNE-PDELab module [15] for the discretization of the partial differential

equations.

duneuro has a Python and Matlab interfaces so that users in neuroscience do

not necessarily have to be confronted with C++ programming. Moreover, both

interfaces allow for possible integrations with already existing toolbox used

in brain research, e.g., Fieldtrip or Brainstorm (via the Matlab interface), or

MNE-Python (via the Python interface).

In this thesis all the simulations have been conducted through the Python in-

terface (Python3 and the jupyter notebook), while examples of Matlab scripts

integrated in FieldTrip used in a live demo and hands sessions have been gathered

in tutorials3.

With regard to solving the MEG forward problem in a general framework, i.e.,

independently from CG- or DG-FEM, the idea is to first write the flux in (1.3)

in terms of the basis of a suitable vector-valued function space (cfr. Section 3.5)

given the numerical electric potential (i.e., the solution of the EEG forward prob-

lem) in the computational domain. Second step is to integrate the cross product

between the projected flux and the relative distance to the center of the coil (cfr.

(2.19) and (3.22), for the CG- and DG-FEM, respectively). The integration step

can be optimized by pre-computing the S matrix in (A.4). Furthermore, when

the secondary B-field has to be computed for several dipoles, the transfer matrix

approach introduced in Section A.4 is preferred. In the following the main parts

of a python code for the resolution of the MEG forward problem via the transfer

matrix approach (Section A.4) is presented and commented.

The code is divided into 5 main steps. First, the MEEG driver is built, which

is a python object that creates the volume conductor and through which all

functions can be called.

c o n f i g = {

2http://www.dune-project.org
3http://www.fieldtriptoolbox.org/workshop/ohbm2018
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A.5. Implementation Aspects on Solving the MEG Forward Problem in duneuro

’ type ’ : ’ f i t t e d ’ ,

’ s o l v e r t y p e ’ : ’ cg ’ ,

’ e l ement type ’ : ’ hexahedron ’ ,

’meg ’ : {
’ in torderadd ’ : ’ 3 ’ ,

’ type ’ : ’ p h y s i c a l ’

} ,

’ volume conductor ’ : {
’ g r i d . f i l ename ’ : ’ path2gr id . msh ’ ,

’ t e n s o r s . f i l ename ’ : ’ path2tensor . dat ’

}
}
d r i v e r = dp . MEEGDriver3d( c o n f i g )

In particular, in solver type we can specify the FE method to employ (CG- or

DG-FEM available for the MEG forward problem), in element type the type of

the element of the mesh is specified, in intordadd the integration order for the

quadrature rule is controlled, and in type the implementation of the flux can be

chosen between ‘physical’ for the CG case (see (2.18)) and ‘numerical’ in

the DG case (see (3.19)). Second, the S matrix in (A.4) is assembled as follows

d r i v e r . s e tCo i l sAndPro j e c t i on s ( co i lPos , c o i l O r i )

where the coil positions and projections are loaded from files and converted into

lists of FieldVector3D.

Third, the transfer matrix is computed as follows

tm = d r i v e r . computeMEGTransferMatrix ( configTM )

where the config dictionary should contain the reduction parameter, which is

the minimum defect reduction to achieve when solving the linear system:

configTM = {
’ s o l v e r ’ : {

’ r educt i on ’ : 1e−7

}
}
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Fourth, the transfer matrix is applied, giving the secondary B-field in output:

meg = d r i v e r . applyMEGTransfer (tm , d ipo l e s , configTM )

In particular, the function applyMEGTransfer has in input tm, i.e., the transfer

matrix computed above; dipoles, that is:

d i p o l e s = [ dp . Dipole3d (p ,m) for p ,m in zip ( dipPos , dipMom ) ]

where dipPos and dipMom are python lists of dipole positions and moments,

respectively. In the last input of applyMEGTransfer the approach to discretize

the source term can be specified. So far, for the MEG resolution of the forward

problem, the subtraction and the partial integration approaches are available

and tested for both CG- and DG-FEM, while Venant’s approach is implemented

and tested only for CG-FEM, and a first implementation of localized subtraction

approach is included for DG-FEM but not yet extensively tested.

Moreover, in the particular case of the boundary subtraction approach (see 2.7),

in order to add the contribution given by Bs
∞, in the configuration dictionary

the key ‘‘post process meg’ has to be set to True.

Finally, the primary component of the B-field can be analytically computed and

the full B-field can be assembled. Note that the output of applyMEGTransfer

has to be multiply by −µ0
4π

.

A.6. Software Tools

Many softwares were adopted to realize this thesis:

Dune implementation of the different finite element methods (duneuro and

duneuro-py)

GIMP image editing

FieldTrip - Matlab pre-processing of EEG and MEG data, elaboration of

realistic head models

FreeSurfer segmentation of MRI images

FSL co-registration and manipulation of MRI and DTI images
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iso2mesh creation of the volumetric meshes

Latex typesetting the thesis

MeshLab manipulation of meshes

numpy numerical elaboration of results

pandas computation of statistics on results

ParaView visualization of meshes and results

seaborn visualization of results

Seg3D manipulation of volumetric masks
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[71] M. C. Piastra, A. Nüßing, J. Vorwerk, H. Bornfleth, R. Oostenveld, C. Eng-

wer, and C. H. Wolters. The discontinuous galerkin finite element method

for solving the meg and the combined meg/eeg forward problem. Frontiers

in Neuroscience, 12:30, 2018.

[72] S. Pursiainen, J. Vorwerk, and C. H. Wolters. Electroencephalography (EEG)

forward modeling via H (div) finite element sources with focal interpolation.

Physics in medicine and biology, 61(24):8502, 2016.

[73] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S. LaMantia,

R. D. Mooney, M. L. Platt, and L. E. White, editors. Neuroscience. Springer,

6th edition, 2018.

[74] A. Quarteroni and S. Quarteroni. Numerical models for differential problems,

volume 2. Springer, 2009.

[75] C. Ramon, P. Schimpf, J. Haueisen, M. Holmes, and A. Ishimaru. Role

161



Bibliography

of soft bone, CSF and gray matter in EEG simulations. Brain topography,

16(4):245–248, 2004.

[76] J. K. Rice, C. Rorden, J. S. Little, and L. C. Parra. Subject position affects

eeg magnitudes. NeuroImage, 64:476–484, 2013.

[77] L. Ruthotto, H. Kugel, J. Olesch, B. Fischer, J. Modersitzki, M. Burger,

and C. Wolters. Diffeomorphic susceptibility artifact correction of diffusion-

weighted magnetic resonance images. Physics in Medicine & Biology,

57(18):5715, 2012.

[78] J. Sarvas. Basic mathematical and electromagnetic concepts of the biomag-

netic inverse problem. Physics in medicine and biology, 32(1):11, 1987.

[79] P. H. Schimpf, C. Ramon, and J. Haueisen. Dipole models for the EEG

and MEG. Biomedical Engineering, IEEE Transactions on, 49(5):409–418,

2002.

[80] M. Stenroos and J. Sarvas. Bioelectromagnetic forward problem: isolated

source approach revis (it) ed. Physics in medicine and biology, 57(11):3517,

2012.

[81] R. T. Thibault, M. Lifshitz, and A. Raz. Body position alters human

resting-state: Insights from multi-postural magnetoencephalography. Brain

imaging and behavior, 10(3):772–780, 2016.

[82] S. Van den Broek, H. Zhou, and M. Peters. Computation of neuromag-

netic fields using finite-element method and Biot-Savart law. Medical and

Biological Engineering and Computing, 34(1):21–26, 1996.

[83] S. P. van den Broek, F. Reinders, M. Donderwinkel, and M. Peters. Volume

conduction effects in EEG and MEG. Electroencephalography and clinical

neurophysiology, 106(6):522–534, 1998.

[84] F. Vatta, F. Meneghini, F. Esposito, S. Mininel, and F. Di Salle. Solving the

162



Bibliography

forward problem in EEG source analysis by spherical and fdm head modeling:

a comparative analysis-biomed 2009. Biomedical sciences instrumentation,

45:382–388, 2009.

[85] J. Vorwerk. Comparison of Numerical Approaches to the EEG Forward

Problem. Diploma thesis in Mathematics, Westfälische Wilhelms-Universität

Münster, 2011.

[86] J. Vorwerk. New finite element methods to solve the EEG/MEG forward

problem. PhD thesis, PhD thesis in Mathematics, Westfälische Wilhelms-

Universität Münster, 2016.

[87] J. Vorwerk, J.-H. Cho, S. Rampp, H. Hamer, T. R. Knösche, and C. H.
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