An Optimal Graph-Cut Method for Atrial Wall Segmentation from Delayed Contrast MRI

Gopal B Veni, Zhisong Fu, Suyash Awate and Ross T. Whitaker Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT

Goal

 Automatic segmentation of left atrium from Delayed Enhancement (DE) MRI using graph cuts on a proper ordered graph.

Motivation

• Atrial fibrillation (A-fib): Most common cardiac arrhythmia.

Challenges

Atrial wall Endocardium Epicardium

Analogy between image segmentation and graph cuts

- Image segmentation: Categorization of image pixels into different groups.
- Graph-cuts: Partition of graph nodes into two subsets.

Segmentation results

Optimal net surface problem on proper ordered graph

j-columr

Optimal V-weight net in 2D

i-column

Background terminal

Object terminal

Proper ordered graph illustration

Model stick computation

Due to high variability of LA shapes, a learning strategy is used to construct templates. Nested mesh layer generation using dynamic particle system.

Arcs in the graph

Intra-column and inter-column arcs

