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Abstract L S — Solid and Gas Results

A temperature and pressure dependent model for combustion of a rep- - oaw 0y . Temperatures differ negligibly for MPM and MPMICE
resentative expl_osive, octahy_dro-l,3,5,7-_tetranitro-1,3,5,_7-tetrazocine B o Wy ‘ a) MPM WGl (Figure 5a). MPMICE allows pressurization of gases trapped
(HMX), has been implemented 1n the massively parallel Uintah Compu- AR T - et , \71%\%1 (61 BRT{S1110Sc:5l  in 10 to 100 micron pores (Figure 5b). Reaction occurs in the

tational Framework and applied to mesoscale simulations of granular ., X Fa! | \ sV e 696 m/s experiment similar pressure and velocity at impac-
beds. The work underscores the importance of high pressure gases " ‘ | | tor boundary (Figure 5c). Temperature profiles for different

trapped 1n pores between grains. Further experimentation may lead to ‘ : b) Gases trapped density beds over compared favorably with other simulated
better understanding of deflagration-to-detonation transition, which in pores results [14] (Figure 6). Reaction begins in a pore for the 696
has caused a number of accidental explosions. Results will help in the | m/s Impact experiment is shown (Figure 7).
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. Mass average temperature for 3 different density packings (right).
Reaction Models

A temperature dependent induc- 5 : " Gas 0.0 0.25 0.325 0.375 0.525
tion time model [5], and a tempera- Temberature b
ture and pressure dependent burn p u .

0.675 0.825  0.975 1.125
Figure 7. A sequence of images

model were used [6]. Scheme 1. Experimental setup where V 2500. K o . ’ .., . _,u...f' J‘d - " il for a 65% density HMX bed im-
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varies from 150 and 700 m/s.

pacted at 696 m/s undergoing re-

m’ BT -Ty-277] - - ' | action. The gas pore where reac-
L ' | .‘ ' ‘ I. s " ' tion begins is indicated with the

1.0

Simulation Setup !“ | . red circle. Reaction beings close
The computational methods Mate- . | | -

| flyer and the explosive, as In the

experiments [11]. Pressures at

perimental distribution [9,10] were CRONE Catd ' ' Ny | those of the experiments. Tim e

impacted at different velocities WSS T 325K * T . . . E . | after impact in microseconds is

examined (Figure 1). 0 Fa
Figure 1. A granular explosive impacted at 288 m/s. Stress (left) and temperature COHCI“SIOHS and Future Work

rial Point Method (MPM) and e Ay to the interface and between the
MPM-Implicit Continuous Eulerian "’_;_‘ ';7‘;{"_'; _' ¥ 550 K |
(MPMICE) were utilized |[7,8]. AR el ﬂ“l SLL
Random cylinder packing from ex- s Rg o - i the flyer surface are similar to
. . . . ;\l-: 5 400 K ' '
(Scheme 1). | — R g indicated above each frame.
The effect of Input stress was fop LR S _
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(right). Features: A) plastic flow, B) compaction, C) stress fingers, D) friction hot-spots

1) Induction time is required to limit reaction in non-reactive experiments. Figure 8. Digitized

2) High pressure gases trapped in pores play a key role. version of optically

Constitutive Model Validation 3) Simple kinetic modeling can help elucidate mechanism of deflagration-to- acquired HMX micro-
detonation transition. SEALEINE |y Lt

. . . . . etal. [2
Single crystal experiments [13] used to validate the bulk material 4) Optically obtained microstructures (figure 8) will be used to study surface 2]
response (Figure 2). area and pore size effects on reaction rate.

Stress and velocity profiles [11] reproduce the major features of

experiments (Figure 3,4). A C kn OWI e d ge me nt S Re ferenc eS
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