U

THE
UNIVERSITY
OF UTAH

In Situ Visualization of Particle Simulations

Will Usher?, Ingo Wald?, Aaron Knoll', Michael Papka?, Valerio Pascucci

1 SCI Institute, University of Utah, 2 Intel Corporation, 3 Argonne National Laboratory

Simulation Rendering MPI over
Client Shared
2 Memory
[Render Pl I
J worker

Figure 1. A coal particle combustion simulation in Uintah at three different timesteps with (left to right): 34.61M, 48.46M and 55.39M particles,
with attribute based culling showing the full jet (top) and the front in detail (bottom). Using our in situ library to query and send data to our
rendering client in OSPRay these images are rendered interactively with ambient occlusion, averaging around 13 FPS at 1920 x 1080.

Render Render

worker worker
Introduction |

MPI over Network
i i i i i . . . Figure 2. Overview of liblS, showing data forwarded via MPI from the simulation to the renderer.
Exascale .5|mulat|ons will prodyce da’Fa beygnd what can be effectlvely.archlved on Renderl ng Cl ient in OSPRay
parallel file systems. Recent Uintah simulations produce hundreds of gigabytes to
terabytes of data and the recent Dark Sky cosmology simulation contains 1.07 We implement a distributed particle rendering client in OSPRay which
trillion particles (32TB/timestep). To explore this large data at full spatio-temporal periodically requests new timesteps from the simulation, and allows for
resolution in situ approaches are required. interactive camera movement and transfer function editing to cull particles by Shared Nodes
attribute. Running on the same nodes as the simulation impacts both simulation and

In situ visualization moves parts of the visualization task into the simulation code or renderer performance, but only requires a single interactive node to display the
alongside it in a separate process to analyze the data as it’s produced, relieving the viewer. This mode provides a non-intrusive method for quickly checking in on the
disk bottleneck for the simulation and analysis. | state of a long running simulation. In this configuration there’s also the possibility

that MPI will transfer data using shared memory, however this is not guaranteed by
our system. We compare both data send time and rendering performance with
LAMMPS on Maverick and compare to the separate node configuration, Fig 6-8.

Lightweight In Situ Library for Particle Data

14000f

¢

¢ ¢ Sending Data

Separate, 80 LAMMPS, 16 OSPRay o }
¢ ¢ Writing to File

Separate, 320 LAMMPS, 16 OSPRay
Separate, 320 LAMMPS, 8 OSPRay
Shared, 320 LAMMPS, 16 OSPRay

Shared, 320 LAMMPS, 8 OSPRay
10000 8 i

Results | %

We introduce liblS, a lightweight library for coupling simulations with in situ
applications which allows the client to run on the same nodes as the simulation or
different ones and connect/disconnect at will from the simulation. The library
comes in two parts, liblS-sim for integrating into the simulation and libIS-render for

12000} 8000}

@+ &+ &+ H@H H@H |
@+ @+ H&H H@ H@H

rendering or analysis clients. We evaluate liblS and our rendering client on Stampede and Maverick at TACC = 6000] - = s000| } % l _
in separate and shared configurations, rendering data in situ from Uintah (Fig _ } }
| S D H dl 1.) and LAMMPS (Fig 9.) simulations. | . | ol : , ‘
N Situ Data Aandlin L o,y
g Se Pd rate Nodes 105 4l W g bim o o P emberotraices dee)
To query data the simulation sends the world bounds to the clients, which partition | | N i T P] e o te vs. shared
. . . . - e Running the renderer and simulation on separate nodes allows for improved Figure 6. Sending data vs. writing files for 80 LAMMPS ranks T e o I R
the world into a grid. Each client then requests the brick(s) it’s been assigned to render der 4 simulati ; _ th ¥ " oaded sending to 16 OSPRay ranks. -
.) : N ¢ rendering and simulation performance since the nodes aren’t as overloade
from the simulation. This ensures the data layout is suitable for data-distributed deal f 5 oring the < pl b | od. W uate with Uint ’h
. . g . . . ideal for exploring the simulation over a long period. We evaluate wi inta B | | | * *
rendering with sort-last compositing and allows us to couple to simulations with P 5 , &P ¥ Soparate, 16 0oPRay
: on Stampede and LAMMPS on Maverick. : } {|¢ ¢ shored. s ospray
arbitrary data layouts.
§I ¢ Sending Da;ta | | 126
14.5} - 10000r1 ¢ ¢ Writing to File o
If }
140 T |] 8000] ol
® 5 % ¢
n :g 6} ®
T3 ! g 6000 1 ¢ .
o 821 NiiiirowaﬂcbiifZ;) 13i38 22;15
Renderer SO I ? 0 | Figure 8. Framerate of separate vs. shared runs Figure 9. LAMMPS single carbon nanosphere and 6° replicated
| i with LAMMPS. grid of nanospheres.
Simulation 12,50 ; | 2000 i : : °
27.70 34.61 41'.54_ 48.46 55.39 27.70 34.61 41'.54 18.26 55.39 Acknowledgements: This work was supported in part by NSF: CGV: Award:1314896, NSF CISE ACI-0904631, DOE/Codesign P01180734,
Figure 3. Data query with 3 simulations ranks Number of Particles {1e6) Number of Particles {1e6) DOE/SciDAC DESC0007446, CCMSC DE-NA0002375, and PIPER: ER26142 DE- SC0010498. Additional support comes from the Intel Parallel
coupline to 2 renderer ranks Figure 4. Framerate of separate run with 64 Uintah ranks sending Figure 5. Sending data vs. writing files for 64 Uintah ranks Computing Centers program and the Argonne Leadership Computing Facility. This material is also based upon work supported by the
upiing to 12 OSPRay ranks sending to 12 OSPRay ranks Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002375.

/ 3
A Scientific Computing and Imaging Institute A, canaon arrune

MULTIDISCIPLINARY

www.scil.utah.edu SIMULATION CENTER

