Interactive Visualization of Time-Varying Flow Fields Using Particle Tracing Neural Networks

Mengjiao Han, Jixian Li, Sudhanshu Sane, Shubham Gupta, Bei Wang, Steve Petruzza, Chris R. Johnson

Lagrangian-Based Flow Field Explorer

We present a comprehensive evaluation to estabilish a robist and efficient framework for Lagrangian-based particle tracing using deep learning.

MODEL INFO	SEED PLACEMENT SEEDBOX O	SEEDBOX CONFIG	
Model ScalarFlow Bounds: X Range:[44, 64] Y Range:[0, 7] Z Range:[38, 58] Flow Maps: Start Cycle: 0,30,60 Stop Cycle: 30,60,90 Interval: 1 Step Size: 0.0167	Display Active position_x position_y position_z size_x size_y	48.9 1.75 43 10 3.5 10	
+ TRACE PARTICLES ~	■ ADD SEEDS		
DELETE TRACES			

FIC COM

SNIDN

Model Archtecture

Interative Visualization Tool for Post Hoc Analysis

Integrated with OSPRay for High-Performance Rendering

This work was partially supported by the Intel OneAPI CoE, the Intel Graphics and Visualization Institutes of XeLLENCE, and the DOE Ab-initio Visualization for Innovative Science (AIVIS) grant 2428225. Additional support comes from NSF SHF award 2221812 and DOE DE-SC0023157.

