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Research Question Implementation

e How can high throughput computing from federated e Leveraged OSG to create a parallel workflow for enhancing the speed and user
cyberinfrastructure be leveraged and optimized to experience of FakeQuakes simulations: FakeQuakes DAGMan Workflow (FDW)
accelerate and streamline FakeQuakes (FQs) e Utilized HTCondor DAGMan workflows to automate the steps of FQs
earthquakes simulations? e Containerized MudPy and its dependencies with Singularity to deploy across OSG

nodes
e Developed a system to monitor the progress of running and completed DAGMans,
Background
o Synthetic data from simulated large earthquakes e Created system for remotely launching DAGMans simultaneously

(MW 7.5+) is valuable for training Al-based
earthquakes early warning (EEW) models to

predict earthquake magnitudes e Implemented a VDC bursting simulation framework in Python to simulate execution
e MudPy, a Python-based simulation framework, can times and associated costs of offloading OSG jobs to the Cloud

be used for simulating the necessary data e Leveraged submission, execution, and termination times from real OSG workloads
¢ Open Science Grid (OSG) provides users with fair e Developed OSG-tailored job bursting policies to address low throughput, congested

access to processing & storage capacity contributed queues, and gaps in job submissions

by university campuses, government-supported
supercomputing institutions, and more

Experimental Evaluation

_ ] 1. Increasing Earthquakes Simulation Quantities
oE

2. Concurrent HTCondor DAGMans

e The MudPy earthquake simulation framework has
limitations: (1) lengthy simulations, (2) lack of
user-friendliness, and (3) no current platform for
discovery and sharing generated data

3. Simulated VDC Bursting

Experimental Results e FDW significantly reduced execution tme and
increased throughput for generating earthquake
5 (S T S wonmme waveforms compared to running FQs sequentially
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