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Abstract

In-context learning (ICL) allows the model to make
predictions without task-specific training. Prior works show
that in-context learning performance is sensitive to the
choice and order of in-context examples. Given the same set
of in-context examples with different orderings, model
performance may vary between near random to near state-
of-the-art.

In this work, we formulate in-context example ordering as an
optimization problem, and propose two principles for in-
context learning example ordering, guided by the label
distributions. Experiments on 13 text classification datasets
with 9 different autoregressive large language models (LLMs)
show that our method can improve classification accuracy,
reducing model miscalibration and can help selecting better
in-context examples.

The Curious Case of In-context Learning

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)

Zero-shot Fine-tuning

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

The model is trained via repeated gradient updates using a
large corpus of example tasks.

Translate English to French: task description sea otter => loutre de mer example #1
cheese => prompt
One-shot peppermint => menthe poivrée example #2

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example
plush giraffe => girafe peluche example #N
cheese => prompt
Few-shot

In addition to the task description, the model sees a few cheese => prompt

examples of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Brown et al. [1] first demonstrate that LLMs can perform in-
context learning with relatively good accuracy. Lu et al. [2]
show that ICL performance of smaller LMs are sensitive to
example orderings.
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Probability Distribution Ordering (PDO)

We consider two problem settings—FewShot with only in-
context examples, and FewShot with unlabeled examples.
Denote input x € X, label y € Y, a small set of k training

examples D = {(x1, V1), (X3 V), ... (X, Yx)}, and the
ordering function T := (D).
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Principle I: When unlabeled examples are not available,
well-ordered in-context examples should lead to the
probability distribution of a null input having the
minimum KL divergence to a uniform distribution.
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L(m) = Dk, (P(Y| ,null) || Unif. (Y)) (1)

Consider we have unlabeled examples X, and the prior
probability distribution Q over label space Y. We can define
the observed label distribution P as:
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Principle II: Given an unlabeled set of examples and the
prior label distribution, well-ordered in-context examples
should produce an observed label distribution that matches
the prior probability distribution

\__ /
L() = DKL(ﬁ(y | 7T) | (Y)) (2)

m* = arg min L (1) (3)
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(a) SST-2 results with Direct and PDO-Direct. (b) SST-2 results with PMI and PDO-PMLI.
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(a) Yahoo Topics results with Direct and PDO-Direct. (b) Yahoo Topics results with PMI and PDO-PMI.
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