RETHINKING THE BENEFITS OF STEERABLE FEATURES IN 3D EQUIVARIANT GRAPH NEURAL NETWORKS

Shih-Hsin Wang¹, Yung-Chang Hsu², Justin Baker¹, Andrea L. Bertozzi³, Jack Xin⁴, Bao Wang^{1,5} ¹University of Utah ²University of Purdue ³University of California Los Angeles ⁴University of California Irvine ⁵Scientific Computing and Imaging Institute

of UTAH

$$\in \mathcal{N}_i^{(k)}$$
})), (1)

k-hop Invariant GNNs: Missing Global Features

Theorem 1. If \mathcal{G}_1 and \mathcal{G}_2 are two k-hop identical graphs, then any iteration of k-hop invariant GNNs will get the same output from these two graphs. That is, there is a graph isomorphism b such that $f_i^{(t+1)}(\mathcal{G}_1) = f_{b(i)}^{(t+1)}(\mathcal{G}_2)$ for any i, even though \mathcal{G}_1 and \mathcal{G}_2 may not be identical up to group action.

Figure 1: A pair of graphs each consisting of 2k + 2 nodes, called k-chains, introduced from Joshi et al.¹. These graphs are nearly identical, differing only in the orientation of a single edge, marked in blue. Despite this minor distinction, these graphs remain k-hop identical.

Equivariant GNNs:

• The importance of faithfulness:

Theorem 2. Consider 1-hop equivariant GNNs learning features on steerable vector space V where the aggregate function AGG learns features on steerable vector space W. Suppose V and W are faithful representations, and AGG and UPD are *G*-orbit injective and *G*-equivariant multiset functions. Then with k iterations, these equivariant GNNs learn different multisets of node features $\{\!\!\{f_i^{(k)}\}\!\!\}$ on two k-hop distinct geometric graphs.

• Correspond steerable features to invariant features: according to Winter et al.⁸, we can represent any $X \in \mathbb{R}^{3 \times m}$ using a group element $g_X \in G$ and a canonical representative $c(\mathbf{X}) \in \mathbb{R}^{3 \times m}$ where we have $g_{\mathbf{X}} \cdot c(\mathbf{X}) = \mathbf{X}$.

Lemma 3. Let V be a d-dimensional G-steerable vector space with the assigned group representation $\rho : G \to GL(V)$. If $f : \mathbb{R}^{3 \times m} \to V$ is G-equivariant, then there exists a unique G-invariant function $\lambda : \mathbb{R}^{3 \times m} \to V_0^{\oplus d}$ s.t. $f(\mathbf{X}) = \rho(q_{\mathbf{X}})\lambda(\mathbf{X})$, where V_0 denotes the 1D trivial representation of G^9 . In particular, the following map is well-defined

 $\{f: \mathbb{R}^{3 \times m} \to V \mid f: G$ -equivariant $\} \to \{\lambda: \mathbb{R}^{3 \times m} \to V_0^{\oplus d} \mid \lambda: G$ -invariant $\}$.

• Learning steerable features of the same dimension:

Corollary 4. Let V and W be two steerable vector spaces of dimension d. Then for any G-equivariant function $f_V : \mathbb{X}_3 \to V$, there is a G-equivariant function $f_W : \mathbb{X}_3 \to W$ such that for any $X \in \mathbb{X}_3$, we have $f_V(X) = \rho_V(g_X)\lambda(X)$ and $f_W(\mathbf{X}) = \rho_W(g_{\mathbf{X}})\lambda(\mathbf{X})$ for the same G-invariant function λ where ρ_V, ρ_W are the group representation on V and W, resp.

Theorem 5. Consider two geometric GNNs learning features on steerable vector spaces V and W of the same dimension, resp. Denote their update and aggregation functions at iteration t as $UPD_V^{(t)}$, $UPD_W^{(t)}$ and $AGG_V^{(t)}$, $AGG_W^{(t)}$. Then for any collection $\{(\text{UPD}_V^{(t)}, \text{AGG}_V^{(t)})\}_t$, there exists a collection $\{(\text{UPD}_W^{(t)}, \text{AGG}_W^{(t)})\}_t$ such that for any fully connected graph, they learn the same corresponding invariant features $\lambda_i^{(t)}$ for any iteration $t \ge 0$ on each node *i*.

• **Remark:** Theorem 5 establishes the equivalence of geometric GNNs on fully connected graphs without strong assumptions on the injectivity of update and aggregate functions, holding for any representation.

Layers k-hop chain SchNet 50.0 ± 0.0 50.0 ± 0.0 **DimeNet++** 50.0 ± 0.0 50.0 ± 0.0 **SphereNet** 50.0 ± 0.0 50.0 ± 0.0 **ComENet** 55.0 ± 4.5 59.0 ± 11.6 EquiformerV2 71.0 ± 3.0 76.0 ± 8.0 **EGNN** 50.0 ± 0.0 100.0 ± 0.0 9 **GVP** 50.0 ± 0.0 100.0 ± 0.0 ClofNet 50.0 ± 0.0 50.0 ± 0.0 MACE 50.0 ± 0.0 100.0 ± 0.0 **eSCN** 64.0 ± 8.0 60.5 ± 10.0 EquiformerV2 90.0 ± 0.0 95.0 ± 5.0 **MACE** 50.0 ± 0.0 100.0 ± 0.0 1 **eSCN** 62.0 ± 7.5 61.0 ± 9.4 EquiformerV2 73.0 ± 4.6 88.0 ± 4.0

Table 1: Test accuracy for the k-chain dataset with different ks. Models are further distinguished by their use of type-L features. Cell shading is based on two standard deviations above or below the expected value. Unit:%.

Model	L	\mathcal{C}	Feat. Dim.	# Param.	Loss \downarrow	Energy MAE [meV] \downarrow	EwT [%] ↑
eSCN	1	464	1856	11M	0.380 ± 0.006	865 ± 14	1.91 ± 0.09
eSCN	2	206	1854	10M	0.369 ± 0.006	842 ± 13	$\boldsymbol{1.94\pm0.12}$
eSCN	3	133	1862	9M	0.397 ± 0.001	904 ± 3	$1.85 \pm .12$
eSCN	4	98	1862	9M	0.408 ± 0.006	929 ± 15	1.74 ± 0.12
eSCN	5	77	1848	8M	0.409 ± 0.003	933 ± 7	$1.61 \pm .12$
eSCN	6	64	1856	8M	0.3836 ± 0.003	872 ± 6	1.91 ± 0.19
EquiformerV2	1	77	304	7M	OOM	OOM	OOM
EquiformerV2	2	34	306	9M	0.369 ± 0.009	841 ± 21	2.02 ± 0.14
EquiformerV2	3	22	306	12M	0.363 ± 0.009	828 ± 21	1.94 ± 0.08
EquiformerV2	4	16	304	15M	0.364 ± 0.005	832 ± 11	2.03 ± 0.14

Table 2: Validation results of the steerable model ablation study on L and c over 4-folds of the IS2RE dataset with 10k training molecules. We observe that higher type-L steerable models may not perform best. OOM denotes models that run out of memory during training.

Conclusion and Discussion

- k-hop neighborhoods.
- entail additional computational overhead.
- from data (universality).

Reference: 1. Joshi et al., "On the expressive power of geometric graph neural networks", PMLR, 2023 2. Batzner et al., "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.", Nature Communications. 3. Batatia et al., "Mace: Higher order equivariant message passing neural networks for fast and accurate force fields.", NeurIPS, 2022. 4. Liao & Smidt, "Equiformer: Equivariant graph attention transformer for 3D atomistic graphs.", ICLR, 2023. 5. Passaro & Zitnick, "Reducing SO(3) convolutions to SO(2) for efficient equivariant gnns", PMLR, 2023. 6. Liu et al., "Spherical message passing for 3D molecular graphs", ICLR 2022 7. Wang et al., "ComENet: Towards complete and efficient message passing for 3D molecular graphs", NeurIPS 2022 8. Winter et al., "Unsupervised learning of group invariant and equivariant representations.", NeurIPS 2022

Numerical Results

SNIDN

3	1	2	3	4
k = 2	k = 3	k = 3	k = 3	k = 3
	L = 0			
50.0 ± 0.0	50.0 ± 0.0	50.1 ± 0.2	50.0 ± 0.0	50.0 ± 0.0
50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0
0.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0
53.0 ± 6.4	54.0 ± 6.2	50.0 ± 0.0	46.5 ± 5.0	51.0 ± 2.0
83.0 ± 6.4	43.0 ± 9.0	67.0 ± 4.6	67.9 ± 9.0	61.0 ± 5.4
	L = 1			
5.0 ± 15.0	50.0 ± 0.0	50.0 ± 0.0	90.0 ± 20.0	100.0 ± 0.0
00.0 ± 0.0	50.0 ± 0.0	92.5 ± 16.0	91.5 ± 17.3	95.0 ± 15.0
00.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0
00.0 ± 0.0	50.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0
4.3 ± 18.2	53.0 ± 4.6	63.0 ± 9.0	60.0 ± 13.4	56.0 ± 10.2
96.0 ± 4.9	76.0 ± 6.6	84.0 ± 6.6	92.0 ± 6.0	98.0 ± 4.0
	L=2			
00.0 ± 0.0	50.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0
52.0 ± 4.0	62.0 ± 10.8	59.0 ± 9.4	56.0 ± 10.2	54.0 ± 6.6
86.0 ± 4.9	86.0 ± 4.9	89.0 ± 3.0	88.0 ± 4.0	83.0 ± 9.0

• To achieve equivalent expressiveness in invariant GNNs as in equivariant GNNs, it is essential to integrate global features that extend beyond the confines of fixed

• The traditional trade-off between performance and computational cost of using steerable features in equivariant GNNs should be reevaluated. Specifically, when maintaining a constant feature dimension, the utilization of higher-type steerable features in equivariant GNNs might not ensure improved performance and could

• Limitation: our analysis of expressiveness focuses on the capacity of features to capture information. A broader view also considers the ability to extract features

