RETHINKING THE BENEFITS OF STEERABLE FEATURES IN 3D EQUIVARIANT GRAPH NEURAL NETWORKS RETHINKING THE BENEFITS OF STEERABLE FEATURES IN 3D EQUIVARIANT GRAPH NEURAL NETWORKS Shih-Hsin Wang1 , Yung-Chang Hsu2 , Justin Baker1 , Andrea L. Bertozzi3

Shih-Hsin Wang¹, Yung-Chang Hsu², Justin Baker¹, Andrea L. Bertozzi³, Jack Xin⁴, Bao Wang^{1,5} University of Utah ²University of Purdue ³University of California Los Angeles ⁴University of California Irvine ⁵Scientific Computing and Imaging Institute ¹University of Utah ²University of Purdue ³Universit ⁴ University of California Irvine ⁵ Scientific Computing and Imaging Institute

Theorem 1. If \mathcal{G}_1 and \mathcal{G}_2 are two k-hop identical graphs, then any iteration of k-hop *invariant GNNs will get the same output from these two graphs. That is, there is a* graph isomorphism b such that $\bm{f}_i^{(t+1)}(\mathcal{G}_1)=\bm{f}_{b(i)}^{(t+1)}(\mathcal{G}_2)$ for any i , even though \mathcal{G}_1 and \mathcal{G}_2 *may not be identical up to group action.*

$$
\in \mathcal{N}_i^{(k)}\mathcal{B})), \tag{1}
$$

OF UTAH

Theorem 5. *Consider two geometric GNNs learning features on steerable vector spaces* V *and* W *of the same dimension, resp. Denote their update and aggregation* f unctions at iteration t as $\mathrm{UPD}_V^{(t)}$, $\mathrm{UPD}_W^{(t)}$ and $\mathrm{AGG}_V^{(t)}$, $\mathrm{AGG}_W^{(t)}$. Then for any collection $\{(\mathrm{UPD}_V^{(t)}, \mathrm{AGG}_V^{(t)})\}_t$, there exists a collection $\{(\mathrm{UPD}_W^{(t)}, \mathrm{AGG}_W^{(t)})\}_t$ such that for any fully connected graph, they learn the same corresponding invariant features $\lambda_i^{(t)}$ for *any iteration* $t \geq 0$ *on each node* i .

k**-hop Invariant GNNs: Missing Global Features**

Figure 1: A pair of graphs each consisting of $2k + 2$ nodes, called k-chains, introduced from Joshi et al. 1 . These graphs are nearly identical, differing only in the orientation of a single edge, marked in blue. Despite this minor distinction, these graphs remain k -hop identical.

> Table 1: Test accuracy for the k-chain dataset with different ks. Models are further distinguished by their use of type- L features. Cell shading is based on two standard deviations above or below the expected value. Unit:%.

Equivariant GNNs:

• **The importance of faithfulness:**

Theorem 2. *Consider* 1*-hop equivariant GNNs learning features on steerable vector space* V *where the aggregate function* AGG *learns features on steerable vector space* W*. Suppose* V *and* W *are faithful representations, and* AGG *and* UPD *are* G*-orbit injective and* G*-equivariant multiset functions. Then with* k *iterations, these* equivariant GNNs learn different multisets of node features $\{\!\!\{f_i^{(k)}\}\!\!\}$ on two k -hop *distinct geometric graphs.*

• Correspond steerable features to invariant features: according to Winter et al.⁸, we can represent any $\boldsymbol{X} \in \mathbb{R}^{3 \times m}$ using a group element $g_{\boldsymbol{X}} \in G$ and a canonical representative $c(\boldsymbol{X}) \in \mathbb{R}^{3 \times m}$ where we have $g_{\boldsymbol{X}} \cdot c(\boldsymbol{X}) = \boldsymbol{X}$.

> Table 2: Validation results of the steerable model ablation study on L and c over 4-folds of the IS2RE dataset with 10k training molecules. We observe that higher type- L steerable models may not perform best. OOM denotes models that run out of memory during training.

- k -hop neighborhoods.
- entail additional computational overhead.
- from data (universality).

Lemma 3. *Let* V *be a* d*-dimensional* G*-steerable vector space with the assigned group representation* $\rho : G \to GL(V)$ *. If* $f : \mathbb{R}^{3 \times m} \to V$ *is G-equivariant, then there exists a unique G-invariant function* $\lambda: \mathbb{R}^{3 \times m} \to V_0^{\oplus d}$ *s.t.* $f(\bm{X}) = \rho(g_{\bm{X}})\lambda(\bm{X})$, where V_0 denotes the 1D trivial representation of G^9 . In particular, the following map *is well-defined*

 ${f: \mathbb{R}^{3 \times m} \to V \mid f: G\text{-equivariant}\} \to \{\lambda: \mathbb{R}^{3 \times m} \to V_0^{\oplus d} \mid \lambda: G\text{-invariant}\}.$

• **Learning steerable features of the same dimension:**

Corollary 4. *Let* V *and* W *be two steerable vector spaces of dimension* d*. Then for any G-equivariant function* f_V : $\mathbb{X}_3 \rightarrow V$, there is a G-equivariant function f_W : $\mathbb{X}_3 \to W$ *such that for any* $\mathbf{X} \in \mathbb{X}_3$, we have $f_V(\mathbf{X}) = \rho_V(g_{\mathbf{X}}) \lambda(\mathbf{X})$ and $f_W(\bm{X}) = \rho_W(g_{\bm{X}})\lambda(\bm{X})$ for the same G-invariant function λ where ρ_V, ρ_W are the *group representation on* V *and* W*, resp.*

• **Remark:** Theorem 5 establishes the equivalence of geometric GNNs on fully connected graphs without strong assumptions on the injectivity of update and aggregate functions, holding for any representation.

Numerical Results

FRIVIS

Conclusion and Discussion

• To achieve equivalent expressiveness in invariant GNNs as in equivariant GNNs, it is essential to integrate global features that extend beyond the confines of fixed

• The traditional trade-off between performance and computational cost of using steerable features in equivariant GNNs should be reevaluated. Specifically, when maintaining a constant feature dimension, the utilization of higher-type steerable features in equivariant GNNs might not ensure improved performance and could

• Limitation: our analysis of expressiveness focuses on the capacity of features to capture information. A broader view also considers the ability to extract features

Reference: 1. Joshi et al., "On the expressive power of geometric graph neural networks", PMLR, 2023 2. Batzner et al., "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.", Nature Communications. 3. Batatia et al., "Mace: Higher order equivariant message passing neural networks for fast and accurate force fields.", NeurIPS, 2022. 4. Liao & Smidt, "Equiformer: Equivariant graph attention transformer for 3D atomistic graphs.", ICLR, 2023. 5. Passaro & Zitnick, "Reducing SO(3) convolutions to SO(2) for efficient equivariant gnns", PMLR, 2023. 6. Liu et al.,"Spherical message passing for 3D molecular graphs", ICLR 2022 7. Wang et al.,"ComENet: Towards complete and efficient message passing for 3D molecular graphs", NeurIPS 2022 8. Winter et al.,"Unsupervised learning of group invariant and equivariant representations.", NeurIPS 2022

