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Background

• Science, Symmetry & Steerable Features:

– Features exhibit symmetries – they remain un-
changed or change accordingly under group
transformations, e.g., rotations, reflections, and
translations.

– Steerable features are those that transform lin-
early under transformations, e.g. a matrix
"steering" the feature vector,

g · v = D(g) · v.

– For SO(3) and O(3), steerable features can be decomposed into irreducible com-
ponents, known as type-L steerable features, with actions defined by Wigner
D-matrices Dl(g).

• Geometric Graph Neural Networks:

– To leverage symmetries, people have developed geometric GNNs to learn steer-
able features up to type-L:
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*f
(t)
i denotes the steerable feature of node i at layer t,

*xi represents the input coordinates of node i,

*UPD and AGG are learnable update and aggregate equivariant functions, re-
spectively, where {{·}} denotes a multiset,

*N
(k)
i denotes the k-hop neighborhood of node i, the set of nodes in V that are

reachable from i through a path with k edges or fewer.

• Existing Insights on Geometric GNNs’ Performance:

– Joshi et al.1 have shown that 1-hop invariant GNNs (L = 0) may underperform
equivariant GNNs (L = 1).

– Several studies2345 showed that equivariant GNNs using steerable features up
to type-L improve with higher L.

Contributions

• Remaining Questions

– The impact of introducing multi-hop message passing aggregation (e.g.
SphereNet6 and ComENet7) into invariant GNNs remains unexplored.

– Existing experiments comparing different types of steerable features often lack
control over feature dimensions, making it difficult to isolate the true effect of
feature type.

• Our Answers

– Even introducing multi-hop message passing aggregation, invariant GNNs lack
the intrinsic capability to capture geometric information between local neighbor-
hoods, and hence, fail to obtain accurate global invariant features.

– When preserving the feature dimension, the performance of equivariant GNNs
using steerable features up to type-L may not increase as L grows.

k-hop Invariant GNNs: Missing Global Features

Theorem 1. If G1 and G2 are two k-hop identical graphs, then any iteration of k-hop
invariant GNNs will get the same output from these two graphs. That is, there is a
graph isomorphism b such that f (t+1)

i (G1) = f
(t+1)
b(i) (G2) for any i, even though G1 and G2

may not be identical up to group action.
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Figure 1: A pair of graphs each consisting of 2k + 2 nodes, called k-chains, introduced from Joshi et
al.1. These graphs are nearly identical, differing only in the orientation of a single edge, marked in blue.
Despite this minor distinction, these graphs remain k-hop identical.

Equivariant GNNs:

• The importance of faithfulness:

Theorem 2. Consider 1-hop equivariant GNNs learning features on steerable vector
space V where the aggregate function AGG learns features on steerable vector
space W . Suppose V and W are faithful representations, and AGG and UPD are
G-orbit injective and G-equivariant multiset functions. Then with k iterations, these
equivariant GNNs learn different multisets of node features {{f (k)

i }} on two k-hop
distinct geometric graphs.

• Correspond steerable features to invariant features: according to Winter et al.8,
we can represent any X ∈ R3×m using a group element gX ∈ G and a canonical
representative c(X) ∈ R3×m where we have gX · c(X) = X.

Lemma 3. Let V be a d-dimensional G-steerable vector space with the assigned
group representation ρ : G → GL(V ). If f : R3×m → V is G-equivariant, then
there exists a unique G-invariant function λ : R3×m → V ⊕d

0 s.t. f (X) = ρ(gX)λ(X),
where V0 denotes the 1D trivial representation of G9. In particular, the following map
is well-defined

{f : R3×m → V | f : G-equivariant} → {λ : R3×m → V ⊕d
0 | λ : G-invariant}.

• Learning steerable features of the same dimension:

Corollary 4. Let V and W be two steerable vector spaces of dimension d. Then
for any G-equivariant function fV : X3 → V , there is a G-equivariant function
fW : X3 → W such that for any X ∈ X3, we have fV (X) = ρV (gX)λ(X) and
fW (X) = ρW (gX)λ(X) for the same G-invariant function λ where ρV , ρW are the
group representation on V and W , resp.

Theorem 5. Consider two geometric GNNs learning features on steerable vector
spaces V and W of the same dimension, resp. Denote their update and aggregation
functions at iteration t as UPD

(t)
V , UPD(t)
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fully connected graph, they learn the same corresponding invariant features λ
(t)
i for

any iteration t ≥ 0 on each node i.

• Remark: Theorem 5 establishes the equivalence of geometric GNNs on fully con-
nected graphs without strong assumptions on the injectivity of update and aggregate
functions, holding for any representation.

Numerical Results

Layers 1 2 3 1 2 3 4
k-hop chain k = 2 k = 2 k = 2 k = 3 k = 3 k = 3 k = 3

L = 0

SchNet 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.1± 0.2 50.0± 0.0 50.0± 0.0
DimeNet++ 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0
SphereNet 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0 50.0± 0.0
ComENet 55.0± 4.5 59.0± 11.6 53.0± 6.4 54.0± 6.2 50.0± 0.0 46.5± 5.0 51.0± 2.0

EquiformerV2 71.0± 3.0 76.0± 8.0 83.0± 6.4 43.0± 9.0 67.0± 4.6 67.9± 9.0 61.0± 5.4

L = 1

EGNN 50.0± 0.0 100.0± 0.0 95.0± 15.0 50.0± 0.0 50.0± 0.0 90.0± 20.0 100.0± 0.0
GVP 50.0± 0.0 100.0± 0.0 100.0± 0.0 50.0± 0.0 92.5± 16.0 91.5± 17.3 95.0± 15.0

ClofNet 50.0± 0.0 50.0± 0.0 100.0± 0.0 50.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0
MACE 50.0± 0.0 100.0± 0.0 100.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
eSCN 64.0± 8.0 60.5± 10.0 64.3± 18.2 53.0± 4.6 63.0± 9.0 60.0± 13.4 56.0± 10.2

EquiformerV2 90.0± 0.0 95.0± 5.0 96.0± 4.9 76.0± 6.6 84.0± 6.6 92.0± 6.0 98.0±4.0

L = 2

MACE 50.0± 0.0 100.0± 0.0 100.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
eSCN 62.0± 7.5 61.0± 9.4 52.0± 4.0 62.0± 10.8 59.0± 9.4 56.0± 10.2 54.0± 6.6

EquiformerV2 73.0± 4.6 88.0± 4.0 86.0± 4.9 86.0± 4.9 89.0± 3.0 88.0± 4.0 83.0± 9.0

Table 1: Test accuracy for the k-chain dataset with different ks. Models are further distinguished by
their use of type-L features. Cell shading is based on two standard deviations above or below the
expected value. Unit:%.

Model L c Feat. Dim. # Param. Loss ↓ Energy MAE [meV] ↓ EwT [%] ↑
eSCN 1 464 1856 11M 0.380± 0.006 865± 14 1.91± 0.09
eSCN 2 206 1854 10M 0.369± 0.006 842± 13 1.94± 0.12
eSCN 3 133 1862 9M 0.397± 0.001 904± 3 1.85± .12
eSCN 4 98 1862 9M 0.408± 0.006 929± 15 1.74± 0.12
eSCN 5 77 1848 8M 0.409± 0.003 933± 7 1.61± .12
eSCN 6 64 1856 8M 0.3836± 0.003 872± 6 1.91± 0.19

EquiformerV2 1 77 304 7M OOM OOM OOM
EquiformerV2 2 34 306 9M 0.369± 0.009 841± 21 2.02± 0.14
EquiformerV2 3 22 306 12M 0.363± 0.009 828± 21 1.94± 0.08
EquiformerV2 4 16 304 15M 0.364± 0.005 832± 11 2.03± 0.14

Table 2: Validation results of the steerable model ablation study on L and c over 4-folds of the
IS2RE dataset with 10k training molecules. We observe that higher type-L steerable models may
not perform best. OOM denotes models that run out of memory during training.

Conclusion and Discussion

• To achieve equivalent expressiveness in invariant GNNs as in equivariant GNNs,
it is essential to integrate global features that extend beyond the confines of fixed
k-hop neighborhoods.

• The traditional trade-off between performance and computational cost of using
steerable features in equivariant GNNs should be reevaluated. Specifically, when
maintaining a constant feature dimension, the utilization of higher-type steerable
features in equivariant GNNs might not ensure improved performance and could
entail additional computational overhead.

• Limitation: our analysis of expressiveness focuses on the capacity of features to
capture information. A broader view also considers the ability to extract features
from data (universality).
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