
ShapeWorks
Particle-based Shape Correspondence and Visualization Software

Joshua Cates, Manasi Datar, P Thomas Fletcher and Ross Whitaker
Scientific Computing and Imaging Institute

University of Utah
Salt Lake City, USA

Software Release 0.2.0
Date : 2011/03/2816 : 08 : 52

Id : ShapeWorksManual.tex, v1.92011/03/2816 : 08 : 52wmartinExp

1

Contents
1 License 4

2 Introduction 4
2.1 Correspondence Models . 4
2.2 The ShapeWorks Correspondence Optimization . 5
2.3 The ShapeWorks Shape Modeling Pipeline . 5

3 The ShapeWorks Software 6
3.1 Overview of the Executables . 6
3.2 File Formats . 7
3.3 Building the Software . 7

4 Tutorial: Torus Example 9
4.1 The Torus Data . 9
4.2 Preprocessing with ShapeWorksGroom . 9
4.3 Optimizing Correspondence with ShapeWorksRun . 9
4.4 Visualization and Analysis with ShapeWorksView . 10

5 Command Reference 10
5.1 Parameter Files . 10
5.2 ShapeWorksGroom . 11
5.3 ShapeWorksRun . 12
5.4 ShapeWorksView . 13
5.5 ShapeWorksShop . 14
5.6 Important Considerations and Known Issues . 14

2

1 License
For more information, please see: http://software.sci.utah.edu

The MIT License

Copyright (c) 2009 Scientific Computing and Imaging Institute,
University of Utah.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

2 Introduction
This software is an open source distribution of the algorithm for constructing correspondence-based statistical models
of sets of similar shapes described by Cates, et al. in [2, 4]. Several relevant extensions to the basic algorithm, as well
as their application to clinical and scientific studies, are also published in [5, 3, 5, 8]. This document is intended to
provide necessary background information for understanding and using the ShapeWorks software, including a basic
tutorial and reference. This section gives a technical overview of correspondence shape models and the correspondence
optimization algorithm that is used in the ShapeWorks software. For a more detailed explanation of the ShapeWorks
optimization algorithm, please refer to Cates, et al. [4].

2.1 Correspondence Models
Correspondence point models represent shape by sampling each shape surface in a consistently ordered fashion so
as to define homologous surface points across the population of shapes. These homologous surface points are called
correspondences. Once chosen, the 3D positions of all m correspondences on a shape sample can be encoded as a 3m
shape vector, which is the point-based representation of that shape. The ordering of the particles on each shape implies
a correspondence among shapes, and the distribution of all of the shape samples in this 3m-dimensional vector space
(shape space) gives rise to the statistical analysis. The problem of how to choose the correspondence positions, and
thus the shape-space distribution of the sample population, is a model selection problem. Model selection problems
in statistics are typically resolved by choosing the simplest model that explains the observed data (see, e.g. [7]).
Consistent with this idea, the ShapeWorks correspondence optimization algorithm seeks a compact distribution for
its correspondences in the shape space (for model simplicity), while simultaneously seeking good surface samplings
in order to accurately represent the data. Figure 1 illustrates these basic concepts for a population of hand shapes.

3


xi
1

xi
2

x i
3

xi
4

⋮
xi
2m−1

xi
2m

=xi
High-Dimensional Shape SpaceWorld Space (2 or 3D) Dual Spaces

Unoptimized
(Higher Variance)

Optimized
(Lower Variance)

Optimization

Opti
miza

tio
n /

Reg
ula

riz
ati

on

Figure 1: An illustration of the basic concepts the ShapeWorks point-based correspondence optimization.

The figure shows the mapping of all the surface point samples from a single shape to a single point in the higher-
dimensional shape space, and the relative compactness of the distribution of all samples in that shape space after
optimization.

2.2 The ShapeWorks Correspondence Optimization
The ShapeWorks optimization works by modeling the correspondence positions as sets of dynamic particles that are
constrained to lie on the set of sample shape surfaces. The positions of the correspondences are optimized by gradient
descent on an energy function that balances the negative entropy of the distribution of particles on each shape surface
with the positive entropy of the distribution of the shape samples shape space. More specifically, and with reference
to Figure 1, we consider xk ∈ <3m as an instance of a random variable Z and minimize the energy function

Q = H(Z)− α
∑
k

H(xk), (1)

where H is an estimation of differential entropy. Minimizing the first term in Q produces a compact distribution of
samples in shape space, while the second term seeks uniform surface samplings for accurate shape representation.
This latter term can also be modified to adaptively over-sample in response to local surface features such as curvature.
The free parameter α balances the tradeoff between model compactness and accurate shape representation. Since
correspondence points in this formulation are not tied to a specific parameterization, the method operates directly on
volumetric data and extends easily to arbitrary shapes, even non-manifold surfaces.

2.3 The ShapeWorks Shape Modeling Pipeline
This software distribution consists of several applications that together make up a full processing pipeline for corre-
spondence computation and visualization. The stages of the pipeline are as follows,

Preprocessing⇒ Alignment⇒ Initialization⇒ Optimization⇒ Visualization&Analysis

This section gives an overview of the steps involved in the pipeline. For an example of using the ShapeWorks software
to perform each of these steps, see the Tutorial in Section 4.

Preprocessing Any set of implicitly defined surfaces, such as a set of binary segmentations, is appropriate as input
to this pipeline. By default, the software will assume a closed surface, but can also handle open boundaries (specified
by cutting planes) and non-manifold surfaces consisting of multiple closed surfaces. A binary mask, such as the output
of an image segmentation process, for example, contains an implicit shape surface at the interface of the labeled pixels

4

and the background. Binary masks contain aliasing artifacts, however, that should first be removed. Typically we
follow an antialiasing step with a very slight Gaussian blurring to remove the high-frequency artifacts that can occur
as a result of numerical approximations.

Alignment A collection of shape segmentations must often be aligned in a common coordinate frame for modeling
and analysis. The ShapeWorks software does not provide full support for this stage of the pipeline, since every new
dataset may require a different process of alignment. Some basic alignment tools that are included with ShapeWorks
are the ability to align the segmentations with respect to their centers of mass and the orientation of their first principal
eigenvectors. For some classes of data, this method is effective as a rough alignment and is followed, during the
optimization process, by iterative Procrustes alignments based on the correspondence point positions [6]. For more
information on this procedure, see Sections 4 and 5.

The ShapeWorks software distinguishes between two separate coordinate frames: a local coordinate frame for
each shape sample, and a common coordinate frame in which all shape samples are coregistered. For applications in
which the input data is completely registered, these two coordinate frames are the same. Where there is a distinction,
the ShapeWorks software will maintain and output appropriate transformations to the common coordinate frame for
each shape sample, as well as separate correspondence files for each coordinate frame.

Correspondence Initialization Typically, we initialize the ShapeWorks optimization with a single particle that finds
the nearest zero of the implicit surface, and then splits under optimization (producing a new, nearby particle) at regular
intervals until a specific number of particles are produced and reach a steady state. This initialization procedure is
supported with the ShapeWorks software. We have found this procedure to be generally applicable to classes of closed
shapes with reasonably smooth surfaces. For more complicated shapes, it may be necessary to specify initial particle
positions for the optimization using other means. Initial particle positions may be computed offline and supplied to
ShapeWorks as a text file input (see Section 3.2).

Correspondence Optimization The ShapeWorks optimization proceeds as described in Section 2.2, starting with
an initial set of particle positions and a set of implicit surfaces (e.g. distance transforms). Several types of optimization
procedures are supported: adaptive gradient descent, Jacobi updates, and Gauss-Seidel updates. By default, adaptive
gradient descent with Gauss-Seidel updates is used. Important parameters to consider for the optimization are the
regularization on the covariance matrix for the shape-space entropy estimation, and the parameter α from Equation 1
which controls the trade-off between the uniformity of the surface sampling and the compactness of the optimized
model. Also consider whether iterative Procrustes alignment is necessary and whether or not to remove Procrustes
scale from the correspondence model.

Visualization and Analysis Statistical analysis of point-based shape models is difficult because point-wise statistical
tests require multiple-comparisons corrections that significantly reduce statistical power [3]. Analysis in the full shape
space, however, is problematic due to the high number of dimensions and the difficulty of obtaining sufficient samples.
A common solution is to employ dimensionality reduction reduction by choosing a subspace in which to project the
data for traditional multivariate analysis (see, e.g. [3, 1]).

This software does not include specific code for statistical analysis of the correspondences. It does, however,
provide principal component analysis (PCA), which can be used for dimensionality reduction prior to subsequent
statistical analysis, and visualization of orthogonal modes of variation in the model (see, e.g. [3, 1]. ShapeWorks also
includes methods for computing and visualizing the Euclidean mean shapes and the median shapes of populations.
Typically, we use a separate statistical package, such as R (the R Foundation, www.r-project.org), for analysis
of the PCA loadings of the correspondence positions. For more ideas regarding visualization and statistical analysis
of correspondence models, see the various publications listed in the bibliography section of this document.

5

3 The ShapeWorks Software
This section provides an overview of how to build and use the ShapeWorks software. The tutorial in this section
illustrates a full shape analysis pipeline, starting with binary volume segmentations, and including preprocessing and
visualization of correspondences. For more detailed software usage information, see Section 5.

3.1 Overview of the Executables
ShapeWorksGroom This is a command-line preprocessing tool for image volumes. Its primary purpose is to con-
vert binary, volumetric image segmentations (label masks) into distance transforms that are suitable for input to the
ShapeWorksRun and ShapeWorksShop applications. Filtering operations are implemented using ITK (The Insight
Toolkit), and are applied in batch processing mode. Some of the filtering operations that ShapeWorksGroom supports
are antialiasing, automatic cropping, hole-filling, smoothing, and distance transforms.

ShapeWorksRun This is the command-line correspondence optimization tool, and the heart of the ShapeWorks
shape analysis pipeline. The minimum required input to this application is a set of distance transforms that are the
surface representations of the population of shapes (see Sec. 2.3). Intial particle positions and affine registration
information can also be supplied as inputs. ShapeWorksRun can be used to initialize a set of particle positions using
the particle-splitting described Sec. 2.3 .

ShapeWorksView This tool can be used to visualize optimized correspondence positions, along with surface recon-
structions based on the correspondences. It also computes a principal component analysis (PCA) of the correspon-
dences, and allows you to visualize the variation in each of the modes of the PCA. The mean shapes and the median
shapes can be reconstructed, and ShapeWorksView allows you to assign group labels to your samples, in order to
visualize the differences in mean shape between the groups.

ShapeWorksShop This is a GUI-based version of ShapeWorksRun that has some additional functionality and op-
timization parameters exposed. It provides a real-time visualization of the optimation process on the set of shape
surfaces. This tool is very useful, for example, for initializing a set of particles prior to the full optimization and for
testing parameter settings.

3.2 File Formats
Image volumes Inputs to ShapeWorksGroom, ShapeWorksRun, and ShapeWorksShop are image volumes. Shape-
Works can read and write any image file format supported by the Insight Toolkit. Image inputs to ShapeWorksRun
and ShapeWorksShop must be surfaces embedded in image volumes. Shape surfaces must be represented implicitly
as the zero level set of a distance transform.

Point files Correspondence point positions are stored in text files. These files contain no header, and are simply a
list of the point positions written as follows
x1 y1 z1
x2 y2 z2
...
xN yN zN ,
where x y z are floating point numbers and N is the number of correspondence points. Two point files are maintained
for each shape. The first has file extension .lpts, and is the correspondence positions in that shape’s local coordinate
space. The second file has extension .wpts, and is the correspondence positions in the common (world) coordinate
space. The .lpts files can be used to initialize particles on shape surfaces for optimization, while the .wpts files
should be used for any statistical analysis.

6

Parameter files ShapeWorks software parameters are specified in text files. The syntax for these parameter files is
described in Section 5.1.

3.3 Building the Software
Dependencies The ShapeWorks software depends on several open-source, freely-available software toolkits. To
build the full set of tools, including the graphical interfaces, you will need the following packages.

CMake is used to configure the build, and is available from http://www.cmake.org. The SCMoguls build is
compatible with CMake 2.6. Earlier versions of CMake may not be supported.

The Insight Toolkit (ITK) is required for all ShapeWorks applications. ITK is available from http://www.itk.org.
Make sure to use ITK version 2.8.1 or higher. For compatibility with ShapeWorks, build ITK using CMake and
compile in Release mode.

The VisualizationToolkit (VTK) is required only for ShapeWorksView and ShapeWorksShop. VTK is available
from http://www.itk.org. ShapeWorks has been tested with VTK version 5.0 and higher. For compati-
bility with ShapeWorks, build VTK using CMake and compile in Release mode.

Fast Light Toolkit (FTLK) is required for ShapeWorksView and ShapeWorksShop. FLTK is available from
http://www.fltk.org. The most recent stable release of FLTK version 1.1.x is recommended. For com-
patibility with ShapeWorks, build FLTK using CMake and compile in Release mode.

Supported Platforms The ShapeWorks software is ANSI C++ code and has been built successfully on Windows
32-bit, Linux 32-bit, and Linux 64-bit platforms. Any platform for which ITK, VTK, and FLTK are supported should,
in theory, also support the ShapeWorks software.

Binary Distributions Binary distributions of the ShapeWorks software for Windows 32-bit platforms are also avail-
able for download. Binaries for other platforms (e.g. Macintosh and Windows 64-bit) may be released in the future.
Unless you intend to do development with the ShapeWorks source code, it is highly recommended that you use a
binary distribution, if one is available for your system.

Support Questions regarding the ShapeWorks software can be addressed to the ShapeWorks mailing list at
shapeworks-users@gforge.sci.utah.edu. You can sign up for this mailing list by visiting
https://gforge.sci.utah.edu/mailman/listinfo/shapeworks-users.
You can visit the ShapeWorks discussion forums, and browse news and development information at the ShapeWorks
GForge page
https://gforge.sci.utah.edu/gf/project/shapeworks/.

Build Instructions ShapeWorks uses the CMake build system to configure the build and generate makefiles or Mi-
crosoft Project files. Once configured, ShapeWorks can be built with your platform’s native compiler (gcc, Microsoft
C++, etc). The following configure instructions are the same for every platform. For more information on using
CMake, please refer to www.cmake.org.

1. Unzip or untar the source code distribution.

2. Create a separate build directory for your ShapeWorks build files and exectuables. If your source code is in
/home/username/ShapeWorks, for example, you might choose to create a directory
/home/username/ShapeWorks build. On linux/unix platforms, you will need a build for each compila-
tion configuration, e.g. you might have two build directories: /home/username/ShapeWorks release
and /home/username/ShapeWorks debug. Note that you will also need corresponding Debug and Re-
lease builds for ITK, VTK, and FLTK.

7

3. Start the CMake GUI, or run ccmake if building from a terminal shell.

4. Enter the ShapeWorks/code directory as your source code directory and your newly-created directory as the
build directory.

5. In the CMake GUI, choose “Configure”. CMake will attempt to find your ITK build. If not found, you will need
to specify the build directory for ITK.

6. In the CMake GUI, you will have the option to choose to build the ShapeWorksView and ShapeWorksShop
applications. If selected, CMake will attempt to automatically configure FLTK and VTK. If these builds are not
found, you will need to specify their locations.

7. Specify the CMAKE INSTALL PREFIX. This is the directory in which the executables will be installed.

8. On Linux/Unix systems, specify Release mode for your build. If you also want a developmental build, you will
need to configure a separate build directory for a Debug mode. On Windows platforms, you may choose either
Debug or Release at compile time.

9. Once ITK, VTK, and FLTK are properly configured, click “Generate” to create the makefiles.

10. Build the INSTALL target in the CMake-generated makefiles using your native compiler.

! Important: Make sure to build using Release mode for best results. Because ShapeWorks and ITK both rely
heavily on compile-time optimizations, if built using a Debug configuration, SCIRunMoguls code may run up
to ten times slower!

4 Tutorial: Torus Example
This tutorial will illustrate how to use the ShapeWorksRun software to optimize correspondences on image segmen-
tations (i.e., binary volumes), which are a common format in many shape studies that rely on 3D imaging to extract
anatomy. In this example, we will compute a statistical model of 20 synthetically generated tori. The tori are pa-
rameterized by small radii r and a large radii R, each randomly sampled from a Gaussian distribution. The resulting
shape model will therefore show two orthogonal modes, with the variance in each of these modes corresponding to
that of the sampled distributions for r and R. This tutorial proceeds step-by-step through the full analysis pipeline
described in Section 2.3. An example of 7 synthetically generated misaligned ”mickey” datasets is also provided to
illustrate how iterative closest point (ICP) registration can be used to improve the alignment in ShapeWorksGroom
(ShapeWorks/example directory).

4.1 The Torus Data
The example set of torus shapes is provided in the ShapeWorks/examples directory. Navigate to this directory
and unzip the TorusExample.tgz/.zip data file. You should now have a new directory,
ShapeWorks/examples/TorusExample, which contains 20 synthetically generated tori, The tori are repre-
sented as binary volumes, i.e. as image segmentations. Pixels inside each torus have value 1, and pixels outside have
value 0.

4.2 Preprocessing with ShapeWorksGroom
As discussed in Section 2.3, the first step is to convert the binary volume into a distance transform suitable for use
with ShapeWorksRun. We will do this using ShapeWorksGroom to perform a set of filtering operations. The first
preprocessing step is to crop all of the image volumes to the same size, and shift the center of each volume to the center-
of-mass of the segmentations. This establishes a common coordinate frame, an initial, rough translational alignment,
and a common image volume size. This latter consideration is highly recommended when using ShapeWorksRun.
Note that if the shapes embedded in your own image volumes are already in alignment, then these operations are not

8

needed. (In the case of the torus data, this step is also not necessary, but is illustrated here because it may be generally
useful for real-world data.) Before cropping, we will also perform morphological operations to isolate the foreground
and fill any existing holes in the segmentations.

From the example directory, type the following command. Note that you may need to also specify a path to the
executables if they are not already in your system path. This preprocessing step should take less than 5 minutes to run,
depending on the speed of your computer. The parameter file for this step is shown in Figure 2, and contains all of the
required parameters for each stage of processing.

ShapeWorksGroom torus.preprocess1.xml isolate hole_fill center auto_crop

The second preprocessing step antialiases the binary surface, and then computes a distance transform from that
surface using the fastmarching method. Finally, we blur the distance transform slightly to get rid of high-frequency
artifacts. Type the following command. This step should also take less than 5 minutes to complete. The parameter file
for this step is given in Figure 3. Type the following command.

ShapeWorksGroom torus.preprocess2.xml antialias fastmarching blur

At this stage, you should have a set of implicit surface volumes labeled torusDT.00.mha, torusDT.01.mha,
..., torusDT.19.mha. These new files are suitable inputs to the correspondence optimization.

4.3 Optimizing Correspondence with ShapeWorksRun
The next step is to initialize and optimize the particle system. In this example, we will use relatively few points, just
256 particles per torus. Correspondences are initialized on the shape surfaces using the splitting strategy described
in Section 2.3, and optimized using Gauss-Seidel adaptive gradient descent on the minimum-entropy algorithm from
Section 2.2. We will save the progress of the optimization every 20 iterations by setting the checkpointing option. A
full parameter file for this step is shown in Figure 4. The command to start the optimization is as follows.

ShapeWorksRun torus.correspondence.xml

During the optimization, ShapeWorksRun outputs the variance associated with each of the orthogonal modes of
variation in the data, obtained via principal component analysis (PCA). As the optimization proceeds, notice how
almost all of the variation in the model is shifted into the top two modes of variation (modes 18 and 19). These two
modes represent our two real parameters of the model, big R and little r. The initialization and optimization process
will take between 5 to 10 minutes, depending on the speed of your computer. In practice, you will need to modify the
regularization parameter and the number of iterations for your data. In general, real data will require more particles
per shape and more iterations for a better model fit. Also consider setting the adaptivity strength parameter to
introduce oversampling in regions of higher curvature. The relative weighting parameter, which sets α from
Equation 1, may also be of interest. By default, α is set to 1.

4.4 Visualization and Analysis with ShapeWorksView
We will now use the ShapeWorksView application to view the output of the correspondence optimization. Note that
you can also view the intermediate results of the optimization after each checkpointing save. First, start the Shape-
WorksView application using the supplied parameter file, as given in Figure 5. Note that this parameter file load the
*.wpts files, which are the correspondences in the common (world) coordinate space. To start the ShapeWorksView
application, type the following command.

ShapeWorksView torus.analyze.xml

9

Once the applications starts, you will see the mean correspondence positions for the ensemble of tori, and a surface
reconstruction of the mean. Let’s start by adjusting the reconstruction parameters for a better visualization. From the
“Options” menu, choose “Reconstruction”, and set the “Neighborhood size” to 7, and the “Spacing” to 4.5. This will
give a slightly improved surface reconstruction.

Next we will view the correspondence points for each of the torus samples. In the “View” menu, select “Samples”.
You can now scroll through each of the samples and see its correspondences and surface reconstruction. Correspon-
dence positions are indicated by the spherical glyphs, which are colored consistently from one sample to the next to
indicate correspondence. Glyph parameters can be changed under the “Options” menu. Notice that each sample is
assigned a Group ID. For this example, we have not indicated groups, so these IDs are not valid. For group compar-
ison, however, we could specify group IDs in the parameter file, and then view the group means and group medians
separately.

Finally, we can look at the variation in the PCA modes of our model. In the “View” menu, choose “PCA Modes”.
Select Mode 1, the PCA mode with the largest amount of variation, and move the slider next to the mode selection
box right and left. You will see that this mode correspondends to little r for the torus. The units to the left of the slider
are units of standard deviation in that mode. Now select Mode 2. By moving the slider, you will see that this mode
corresponds to big R. The remaining modes can be considered noise, and show increasingly less variation. Running
the optimization further for this set of data will decrease the variation in those remaining modes.

5 Command Reference

5.1 Parameter Files
Parameter files for each of the ShapeWorks applications are XML files consisting of a list of parameters, enclosed
in XML tag syntax, and separated by a new line. Each parameter has an associated list of values. Parameter values
can be integer (<int>), floating-point (<float>), or string (<string>), and are also separated by new lines. An
example parameter with an associated list of three values (one integer, one floating point and one string), is as follows
<example parameter>
10
10.0
ten
</example parameter> <!-- here is a comment -->
As shown in the previous example, single lines of a parameter file may be commented using XML comment syntax.
Several examples of parameter files are given in Figures 2–5.

5.2 ShapeWorksGroom

ShapeWorksGroom <parameterfile> <options>

Example parameter files are given in Figures 2–3. All filtering operations must specify a list of inputs and outputs in
the parameter file. The size of the input list must match the size of the output list.
<inputs>
torus.00.mha
torus.01.mha
...
torus.19.mha
</inputs>

<outputs>
torus.00.mha
torus.01.mha

10

...
torus.19.mha
</outputs>

The following is a list of valid command-line options that specify filtering operations, followed by any additional
parameters that must be present in the parameter file. Filtering operations are applied in the order in which they are
specified on the command line.

isolate Find and isolate the largest connected component. The foreground and background intensity values must be
specified in the parameter file.
<background> <float> </background>
<foreground> <float> </foreground>

hole fill Fill any holes in the binary segmentation of interest. The background and foreground intensity values must
be specified in the parameter file.
<background> <float> </background>
<foreground> <float> </foreground>

auto crop Use this option to find the largest bounding box containing all input shapes, and crop all input volumes
accordingly. No additional parameters are required.
Note: Works only with binary volumes.

antialias Antialias the binary input volumes. The number of antialiasing iterations can be set in the parameter file.
The output of this operation is an image volume containing a distance transform in a narrow band around the
binary surface.
<antialias iterations> <int> </antialias iterations>.

fastmarching Levelset-based computation of a distance transform volume from a specified isovalue. The isovalue
corresponding to the surface of interest in the input volume must be specified in the parameter file using the
syntax
<fastmarching isovalue> <float> </fastmarching isovalue>Note: If fastmarching is car-
ried out after antialiasing, the isovalue should be set to 0.0

blur Gaussian blurring to remove high-frequency artifacts as described in 2.3. The standard deviation (in voxel-space
units) for the blurring kernel can be set in the parameter file using the parameter
<blur sigma> <float> </blur sigma>.

icp Iterative closest point 3D rigid registration to align two datasets as described in 2.3. If present, icp should be the
last option passed to ShapeWorksGroom. The number of ICP iterations can be set in the parameter file using
the parameter
<icp iterations> <int> </icp iterations>.

5.3 ShapeWorksRun

ShapeWorksRun <parameterfile>

An example parameter file is given in Figure 4. The following is a partial list of valid parameters that will affect the
optimization.

The input to the particle system is a set of implicit surfaces (e.g. distance transforms).
<inputs>
./ExampleData/preprocessed/torus.00.mha
./ExampleData/preprocessed/torus.01.mha
...

11

./ExampleData/preprocessed/torus.19.mha
</inputs>

number of particles <int>
Specifies the number of particles to be used to represent each shape in the ensemble. If enough initial point
positions are supplied for the optimization, then ShapeWorksRun will not conduct a splitting-based initialization
phase. If insufficient particle initializations are supplied (or none at all), then ShapeWorksRun will initialize the
model as described in Section 2.3 until this number of particles exists on each shape surface.

iterations per split <int>
Specifies the number of iterations to run between successive particle splits during an initialization phase. This
allows the particle system at a given granularity to converge to a stable state before more particles are added.

checkpointing interval <int>
Specifies the number of iterations between successive saves of the optimized correspondence positions (and
transforms) to files. One file per shape is written out using the prefix defined by the prefix parameter. These files
can be used to visualize the progress of the optimization process using SCIMOgulsView as described Sec. 4. By
default, ShapeWorksRun will perform no checkpointing, so it is advisable to specify this parameter.

output points prefix <string>
Specifies prefix for the correspondence point output files and transform files. Two files per shape are written,
one with points in the local coordinate frame (*.ltps), and one for points in the common (or world) coordinate
frame (*.wpts). Note that statistical analysis should generally be done in the common coordinate frame. See
Section 2.3.

starting regularization <float>

ending regularization <float>

optimization iterations <float>
Specify the range for a constant regularization factor that is added to the covariance matrix of the correspon-
dences during the optimization process. This range, along with the number of optimization iterations, define
the rate at which the system converges. The starting regularization decays to the ending regularization over the
specified number of iterations.

relative weighting <float>
This is the value of parameter α from Equation 1.

adaptivity strength <float>
If set to a value greater than zero, this parameter will introduce adaptive oversampling in higher-curvature
regions of shapes. Typical parameter settings are from 1.0 to 3.0 and roughly correspond to the relative sampling
density desired in the regions of the shape with the highest curvature, versus the regions of the shape surface
with the lowest curvature.

procrustes interval <int>)
If set, ShapeWorks will do a Procrustes registration based on the current correspondence positions at the spec-
ified interval. The registration establishes a different common coordinate frame for correspondences, but pre-
serves the local coordinate frames for each shape sample. See Section 2.3 for more information.

procrustes scaling <int>)
If set to a value of 1, the Procrustes registration will also normalize with respect to scale. Use this option if you
want to analyze shape independently from scale.

12

5.4 ShapeWorksView

ShapeWorksView <parameterfile>

ShapeWorksView only requires a list of point files as input. ShapeWorksRun produces point files in both the local and
common coordinate frames. Typically, you will want to input the point files from the common coordinate frame as
inputs to ShapeWorksView (the *.wpts files). Point files are specified in the parameter file as follows:
<point files>
./ExampleData/torus.00.wpts
./ExampleData/torus.01.wpts
...
./ExampleData/torus.19.wpts
</point files>

You may optionally also input a set of group IDs for each input file as follows. You must specify one group id per
input file. Groups must be labeled as either “1” or “2”. Currently, arbitrary group labels are recognized and may cause
runtime errors.
<group ids>
1
1
...
2
2
</group ids>

ShapeWorksView can also compute a linear regression in shape space with respect to an independent scalar vari-
able. To enable this option, specify the independent variable values in the parameter file as follows. There must be
one floating-point value per input file. When regression is indicated, a new menu option will appear under the “View”
menu, allowing you to view shape variation along the regression line.
<explanatory variable> <float>
<float>
...

<float>
</explanatory variable>

5.5 ShapeWorksShop

ShapeWorksShop <parameterfile>

ShapeWorksShop uses the same basic parameters as ShapeWorksRun. Some options, however, are not controlled
through the parameter file, and must be enabled within the ShapeWorksShop interface. ShapeWorksShop is provided
in this distribution with limited support, and may be more fully documented in future releases.

5.6 Important Considerations and Known Issues
Image Headers It is important that the image headers for your data contain correct and consistent image information.
Pay special attention to the image spacing and origin information, as ShapeWorks software relies heavily on this
information.

13

Setting Parameters The authors highly recommend constructing a downsampled subset of your data to test param-
eter settings before running full optimizations. Create, for example, five or six test volumes that are no larger then
1283 pixels, so that a full initialization and optimization can be run in just a few minutes. With a sufficiently small set
of data, you can then use the ShapeWorksShop application to initialize particles and test optimization parameters in
real time.

Floating-point Numbers in Parameter Files The parser for ShapeWorks parameter files distinguishes between
floating-point numbers and integer numbers by the presence or absence of a decimal. For this reason, any parameter
that expects a floating-point number must include the decimal (instead of 20, for example, you should enter 20.0).

Aliasing Artifacts The authors highly recommend removing aliasing artifacts in your data, as they can adversly
affect the quality of the correspondence optimization.

References
[1] J. Cates, P. Fletcher, M. Styner, H. Hazlett, and R. Whitaker. Particle-based shape analysis of multi-object com-

plexes. In Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted
Intervention, page to appear. MICCAI, 2008.

[2] J. Cates, P. Fletcher, and R. Whitaker. Entropy-based particle systems for shape correspondence. In Mathematical
Foundations of Computational Anatomy Workshop, pages 90–99. MICCAI, 2006.

[3] J. Cates, P. Fletcher, and R. Whitaker. A hypothesis testing framework for high-dimensional shape models. In
Mathematical Foundations of Computational Anatomy Workshop, pages 170–181. MICCAI, 2008.

[4] J. Cates, P. T. Fletcher, M. Styner, M. Shenton, and R. Whitaker. Shape modeling and analysis with entropy-based
particle systems. In Information Processing in Medical Imaging (IPMI 2007), LNCS 4584, pages 333–345, 2007.

[5] J. Cates, P. T. Fletcher, Z. Warnock, and R. Whitaker. A shape analysis framework for small animal phenotyping
with application to mice with a targeted disruption of hoxd11. In Proc. 5th IEEE International Symposium on
Biomedical Imaging (ISBI ’08), pages 512–516, 2008.

[6] C. Goodall. Procrustes methods in the statistical analysis of shape. J. R. Statistical Society B, 53:285–339, 1991.

[7] M. Hansen and B. Yu. Model selection and the principle of minimum description length. Journal of the American
Statistical Association, 96(454):746–774, June 2001.

[8] I. Oguz, J. Cates, P. T. Fletcher, Z. Warnock, R. Whitaker, D. Cool, S. Aylward, and M. Styner. Cortical corre-
spondence using entropy-based particle systems and local featrues. In Proc. 5th IEEE International Symposium
on Biomedical Imaging (ISBI ’08), pages 1637–1640, 2008.

14

<!-- torus.preprocess1.xml -->
<!-- Preprocessing parameters 1 for Torus example -->

<!-- Value of background pixels in the image -->
<background> 0.0 </background>

<!-- Value of foreground pixels in the image -->
<foreground> 1.0 </foreground>

<!-- Number of background pixels to pad the edges of the cropped volume -->
<pad> 10 </pad>

<!-- filename to store transforms generated during preprocessing -->
<transform_file> torus.translations </transform_file>

<!-- Output progress information -->
<verbose> 1 </verbose>

<!-- Set of input files to process -->
<inputs>
torus.00.mha
torus.01.mha
torus.02.mha
torus.03.mha
torus.04.mha
:
.
torus.19.mha
</inputs>

<!-- Output filenames to use -->
<outputs>
torusDT.00.mha
torusDT.01.mha
torusDT.02.mha
torusDT.03.mha
torusDT.04.mha
:
.
torusDT.19.mha
</outputs>

Figure 2: Parameter file for the first stage of torus preprocessing with ShapeWorksGroom: foreground isolation, hole-
filling, and automatic volume cropping.

15

<!-- torus.preprocess2.params -->
<!-- Preprocessing parameters 2 for Torus example -->

<!-- Value of background pixels in image -->
<background> 0.0 </background>

<!-- Value of foreground pixels in image -->
<foreground> 1.0 </foreground>

<!-- Number of anti-aliasing iterations -->
<antialias_iterations> 20 </antialias_iterations>

<!-- Size of Gaussian blurring kernel for smoothing -->
<blur_sigma> 2.0 </blur_sigma>

<!-- Pixel value associated with shape surfaces -->
<fastmarching_isovalue> 0.0 </fastmarching_isovalue>

<!-- Name of input files -->
<inputs>
torusDT.00.mha
torusDT.01.mha
torusDT.02.mha
torusDT.03.mha
torusDT.04.mha
:
.
torusDT.19.mha
</inputs>

<!-- Name of output files -->
<outputs>
torusDT.00.mha
torusDT.01.mha
torusDT.02.mha
torusDT.03.mha
torusDT.04.mha
:
.
torusDT.19.mha
</outputs>

Figure 3: Parameter file for the second stage of torus preprocessing with ShapeWorksGroom: antialiasing, distance
transform computation, and slight blurring.

16

<!-- torus.correspondence.xml -->
<!-- List of files containing the set of shape surfaces. -->
<inputs>
torusDT.00.mha
torusDT.01.mha
torusDT.02.mha
torusDT.03.mha
torusDT.04.mha
:
.
torusDT.19.mha
</inputs>

<!--
OPTIONALLY we could specify a set of point files to initialize the optimization like this:
<point_files>
torusDT.00.lpts
torusDT.01.lpts
:
.
torusDT.19.lpts
</point_files>
-->

<!-- If point files are not specified, then the application will initialize particles
by splitting until each shape has this total number of particles. -->

<number_of_particles> 256 </number_of_particles>

<!-- Iterations between splitting during initialization phase. -->
<iterations_per_split> 200 </iterations_per_split>

<!-- Starting regularization for the entropy-based correspondence optimization. -->
<starting_regularization> 10.0 </starting_regularization>

<!-- Final regularization for the entropy-based correspondence. -->
<ending_regularization> 0.1 </ending_regularization>

<!-- Number of iterations for the entropy-based correspondence. -->
<optimization_iterations> 200 </optimization_iterations>

<!-- Number of iterations between checkpoints (iterations at which results are saved) -->
<checkpointing_interval> 20 </checkpointing_interval>

<!-- Prefix for the output files. -->
<output_points_prefix> torus </output_points_prefix>

Figure 4: Parameter file for the correspondence point optimization of the torus data using ShapeWorksRun.

17

<!-- torus.analyze.xml -->
<!-- Set of correspondence points in "world" coordinate space. -->
<point_files>
torus.00.wpts
torus.01.wpts
torus.02.wpts
torus.03.wpts
torus.04.wpts
:
.
torus.19.wpts
</point_files>

Figure 5: Parameter file for visualizing optimized correspondence points on the torus data using ShapeWorksView.

18

