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Abstract

In this thesis, adjoint error estimation techniques ardiagpo complex elastohydro-
dynamic lubrication (EHL) problems. A functional is intnackd, namely the friction, and
justification is provided as to why this quantity, and hertseaccuracy, is important. An
iterative approach has been taken to develop understaodlithgg mechanisms at work.
A series of successively complex cases are proposed, ediclagyoint error estimation
techniques applied to them. The first step is built up from a@ehdree boundary prob-
lem, where the cavitation condition is captured correcing a sliding mesh. The next
problem tackled is a hydrodynamic problem, where non-livescosity and density are
introduced. Finally, a full EHL line contact problem is iattuced, where the surface
deforms elastically under pressure. For each case presemestimate of a finer mesh
friction, calculated from solutions obtained only on a g@amesh, is corrected according
to the adjoint error estimation technique. At each stages ataken to ensure that the
error estimate is computed accurately when compared agamsneasured error in the
friction.

Non-uniform meshes are introduced for the model free boygi@blem. These non-
uniform meshes are shown to give the same excellent predgdf the error as uniform
meshes. Adaptive refinement is undertaken, with the mesigbefined using the adjoint
error estimate. Results for this are presented for both tbdaifree-boundary problem
and the full EHL problem. This is shown to enable the accucateulation of friction
values using an order of magnitude fewer mesh points thamawiniform mesh.

Throughout this thesis, standard numerical techniquesdtmulating EHL solutions
have been used. That is, regular mesh finite difference appations have been used to
discretise the problem, with multigrid used to efficientbhse the equations, and spatial
adaptivity added through multigrid patches. The adjointyems have been solved using
standard linear algebra packages.
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Chapter 1

Introduction

Friction is the resisting force which acts when one body nsaweer or through another.
Clearly friction is essential whenever traction is reqdiréor example to avoid slipping
when walking. In this case, relative motion of the two suefats undesirable. However,
a machine like a car has many moving parts which are frequamtielative motion as
part of its normal operation. Any work which is required toeoome friction in order to
achieve or maintain relative movement will be a waste. Intamidto the energy wasted
overcoming friction, a further source of waste is that causg the wear of the surfaces
which are in contact.

An excellent introduction to some of the different aspedtériction and wear can
be found in [84]. An indication of the magnitude of the prahl@resented by friction
and wear is given by Taylor [68], who says “According to somelgsts, however, the
direct costs of friction and wear can account for nearly 1G%e gross national product
(GNP) in many industrial nations”. The effective use of arloént, defined by [85] as
“Any substance interposed between two surfaces in relatiweon for the purpose of re-
ducing the friction and/or the wear between them”, is chkeldy in mitigating this waste.
Taylor goes on to say “Moreover, they estimate that cosinggvof up to 1% of the GNP
could be achieved simply by using the right lubricant for jiblg”. Apart from the clear
economic incentive to reduce the amount of this waste (th® GDBritain in 2006 was
approximately $trillion), there is also the environmental impact. Bowvioig [7] says
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“The main driving force behind changes in automotive desigd in lubricant require-

ments is the need to reduce levels of gaseous emission,levalserve hydrocarbon fuels
and maintain emission levels over extended periods. Msation of lubricant-related

friction and wear is a key contribution to the achievemertheke targets.”

There are four categories of lubrication problem: hydraayic, boundary, mixed and
elastohydrodynamic (EHL). Hydrodynamic lubrication, and film lubrication, is where
there is a full fluid film that is maintained between the sugfaby the pressure generated
though the relative motion of the surfaces. Boundary ludiran is the case where the film
breaks down, potentially due to increased load or decreggedd, and there is signifi-
cant contact between the surfaces. Mixed lubrication isxdure of hydrodynamic and
boundary lubrication, where the surfaces may contact, butegularly. The main focus
of this work is the fourth type of problem, EHL, however hydymamic lubrication is also
introduced in Chapter 6 as an intermediate step between alrfred-boundary problem
in Chapter 5 and the full EHL problem of Chapter 7. Elastoleggnamic lubrication
(EHL) is the study of elastically deforming lubricated sggs. This occurs in a wide
range of situations, from so called “soft EHL” in human hins [40], to “hard EHL" in
roller bearings etc. [63]. In this work, reference is laggelade to the latter, where the
lubricant is likely to be a mineral oil, with the lubricatedrfaces typically made of steel.
EHL occurs where the contacting elements are non-confoftin@larea over which they
would contact unlubricated is small) and the loads appleethé components are large
compared to the elastic modulus of the contacting mateggiserating very large pres-
sures within the contact region. In such circumstances haig@t reasonably expect the
lubricant to be squeezed from within the contact area, fepthe surfaces unlubricated.
However, due to the pressure exerted on the lubricant, @sldgy changes significantly,
and “becomes glass-like and behaves more like a solid thauia'l [68]. This massive
increase in viscosity and the adhesion of the lubricantécstirfaces ensures that a fluid
film is maintained. This leaves the load to be borne by theieldsformation of the steel
components.

One factor which makes this lubrication regime so effecitivpreventing direct con-
tact, and hence wear, of the surfaces is that the thickneks afbricant film is remarkably
insensitive to increases in the loading of the contact [G®]is is because it is easier to
further deform the steel components than to compress thieéutt film.

The topic of this thesis is computational simulation of EHithaa view to estimating
the friction in a contact. As explained in the next sectioiction is an important quantity
which can be computed from an EHL solution. This will requardiscussion of both the
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mathematical and numerical models and also the need toagstitmre error in the friction
calculation. This will be achieved through the use of a @iseadjoint approach [77].

The motivation for this work stems from a key goal of lubricat engineers: the
design of lubricants and machine elements. In order to demnything, there must first
be a goal which is the principal aim of the design, and in otd@ssess whether this goal,
or even progress toward the goal, has been achieved, a wagasiuning the success of a
particular solution is necessary. As mentioned, one medseguently calculated in EHL
simulations is the friction within the contact. It is the @alation of this key quantity that
will be the driving motivation throughout this thesis.

Chapter 2 provides further background and an introductioBHL, starting with a
brief history, the full numerical problem and an overviewpapular solution methods
employed, including multigrid and multi-level multi-irdeation. Chapter 3 follows a sim-
ilar course, although this time introducing the use of amcadjoint for the purposes of
error estimation. A brief history, and some background té® provided, after which,
Chapter 4 presents some work on the accurate calculatitredfiction for a typical EHL
problem. Chapter 5 then focuses on application of the atjdeas introduced in Chap-
ter 3 to the solution of a model free boundary problem, whiHesigned to represent a
much simplified EHL problem. Results are presented thawalto the free boundary to
be included into the adjoint formulation, and hence the emuof the method in pre-
dicting the error in a derived quantity, similar in formutat to the friction introduced in
Chapter 4, is investigated. Results are also shown for sstigpspatial mesh adaptation,
based on the information gleaned from the adjoint erronesion process. This process
is demonstrated to still give excellent predictions of themin the friction. In Chapter 6,
the problem being solved moves a step closer to the full EFle c&he addition of both
non-linear viscosity and non-linear density moves the iflean a rather simple model
free boundary problem to a model of the hydrodynamic lulioceregime. Two different
formulations of the residual equations are investigatedding to two different adjoint
systems to be solved. Results for both are presented, vétifigation for the choice that
is taken forward to the next chapter. Results are preseotstidw that the error pre-
dictions for both adjoint systems are good for this new naedr problem. Chapter 7
introduces adjoint error estimation as applied to the fidlLEoroblem. Results are pre-
sented for rolling and sliding friction on uniform meshes écseries of loads, all showing
the excellent inter-grid friction error estimates. Folliog this, spatial mesh adaptation is
introduced and used to get non-uniform mesh solutions ftn bee forward and adjoint
problems. Again, results are presented showing the acgofdbe estimation of the fric-



Chapter 1 4 Introduction

tion error. The potential benefits of using this error estena drive local mesh adaptivity
are also demonstrated. Finally, Chapter 8 discusses thésgsesented, and discusses
areas where future research is likely to be fruitful.



Chapter 2

Background to EHL

In this chapter, elastohydrodynamic lubrication (EHL)ngroduced. First the problem
will be defined before moving on to provide an overview of sarhéhe most significant
other work in the area.

2.1 Governing equations

As the name suggests, the EHL equations are based upon@ahidmmiapproximation ap-
plied to the Stokes flow of an incompressible fluid. This agpration serves to reduce
the dimension of the model from three to two by assuming flothendirection perpen-
dicular to the contact is negligible. Two further simplificans will be made throughout
this thesis: firstly, the dimension of the problem will be wedd further by only consid-
ering the line contact problem (in which end effects are amslito be negligible); and
secondly, only steady-state problems will be considered.

Before introducing the equations describing the probleenghantities involved, and
the variables representing them, are established. In th&flL point contact problem
there are three independent variables. The distance thritthegcomputational domain is
given byx, the distance perpendicular givenyywith the centre of the contact located at
(x,y) = 0. The time the contact has been running for is given.gince the work in this

5
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thesis is entirely concerned with steady-state line cariglt, y andt will be introduced
only briefly before being simplified out.

The pressure is the hydrodynamic lubricant pressure, and is assumed wohe
stant through the thickness of the lubricant film, The lubricant viscosity is denoted
by n and the lubricant density by. The flows that are simulated represent a lubricat-
ing fluid squeezed between two contacting surfaces in velatiotion to each other (see
Figure 2.1). The speeds of the two surfaces are givemlandup, with the entrainment
velocity, essentially the speed at which lubricant is pliilgo the contactys = Uy + Up.
There is also an applied load, perpendicular to the contduth is denoted by.

2.1.1 Reynolds equation

The main equation solved is the Reynolds equation (2.1)s ¢&n be derived from the
Navier-Stokes equations using two simplifying steps. Tis i to assume that the mass-
inertia terms are negligible compared to the viscous teifh& second is to assume that
the gap between the surfaces is narrow, and hence variattbez-direction is negligible
compared to th& andy directions. These steps eventually lead to equation (A i)ore
comprehensive derivation can be found in [61].

In dimensional form, for flow parallel to the x-axis, the Re\als equation is given by

9 (phdap\ & [ph3dp d(ph) d(ph)
&(T&)+E/(Td_y —Bus—g ~ —12—2— =0. (2.1)

This describes a point contact situation, arising from aohbetween two spheres. For
a 1D line contact, the bodies considered are infinitely lavigers, rather than spheres
(see Figure 2.1). In this case there is no variation inytd@ection, due to symmetry. In
addition, the edge effects can be ignored, so the secondftenrmequation (2.1) can be
eliminated. Further to this, all the work in this thesis refto “steady state” EHL, where
there are no transient effects. This means that the final teraguation (2.1), the time
dependent “squeeze term” can be neglected to give equatidh (

d (phdp d(ph)

For a given film thickness, fluid viscosity and density, thiedential equation can be
solved to give the hydrodynamic pressure in the fluid. Thetirsn describes the Poiseuille
flow, or laminar flow, of the lubricant. The second term is edlthe wedge term, or Cou-
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Figure 2.1: Simplification steps to get 1D line contact getsyne

ette flow term, and these are the two different pressure génarmechanisms within the
EHL contact.

EHL is a challenging problem to solve numerically. Howewss especially difficult
to solve at high loads due to the huge change in charactee &e¢lgnolds equation through
the contact. In the inlet region, the Poiseuille term dort@aaand hence the problem
is largely elliptic in nature. However, moving into the caat region, the wedge term
dominates making the problem more hyperbolic. Essentidgieydominant term changes
from being the Poiseuille flow outside the contact area \diffe terms), to the wedge
term when inside the contact region (advective-like terfife reason for this is expanded
upon in Section 2.4. It is the dominance of this term which esatke film thickness and
pressure solutions highly sensitive to changes in eitherasrthe other. With increasing
loading, the pressure becomes increasingly sensitivestioges in the film thickness. This
is because the lubricant becomes very dense and viscousjrmgem increasingly large
increase in pressure is required to further reduce the filokitiess.

2.1.2 Film thickness

The next equation described in the context of EHL is the fitmekness equation. This
arises due to linear elastic deformation that occurs in theacting elements due to the
very high pressures that they experience at their surfacgh®matically, this deformation
may be added to the undeformed contact geometry (assumedoarabolic) to yield the

film thickness: ,

NG 4 [ |x—X
h =hy+ ——+— I
(X7p) 0+2Rx+7TE//oon Xo
The above equation is made up of three parts which between, then a pressure

profile p, specifies the fluid film thickness. The first terng, gives the separation of the

p(x)dx.. (2.3)
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undeformed surfaces. The second term gives the undeforemuejry of the contacts,
and is derived according to Figure 2.1. The starting poinvith two infinitely long

rollers contacting along a line (hence line contact). Dusyimmetry and the ability to
avoid edge effects, these infinitely long 3D cylinders cardoleiced to two 2D discs. Both
of the discs can then be approximated accurately as pashwiin radius of curvature
R« andRy,. This approximation is possible due to the fact that the fiimekness and
the contact width are both small compared to the radius ofature in the contact region.
Beginning with the equation for a circle centred on #heis a distanc&® above the-axis

(z—R??+x° =R,
expanding the first term yields

Z-2Rz+ R+ ¥ =R

After cancelling the=? terms, it is noted that sincas small, thez? term may be neglected
and so, re-arranging f@ the expression becomes

X2

Z= j?

Finally, the two parabolas, with radii of curvaturg; andRy, can be reduced to a plane
and a parabola of equivalent radiggsusing

1_1.,1
Rx Rx1 RXZ'

This reduces the problem to one-dimension. The final ternguagon (2.3) defines the
elastic deformation at a given point in space due to a prestistribution, given by linear
elastic theory. More details of this can be found in [36, 4This final part is one of
the reasons that makes this problem especially difficulbteesnumerically, since even
pressure applied at some distance can have a significant effehe local deformation.
Altogether this gives the deformed geometry of the cont@utl hence the lubricant film
thickness.
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2.1.3 Force balance

The final, and most straightforward, of the EHL equationsiesfbrce balance equation:
/ p(x)dx = L. (2.4)

This simply states that the total pressure generated inufteffilm must equal the applied
load,L. Whilst it not immediately obvious, it is this equation whiis used in the numer-
ical simulation to determine the correct separation of theiés Hp). This connection is
described in Section 2.4.2.

2.1.4 \Viscosity

The lubricating film is non-Newtonian and consequently isswgsity is highly dependent
upon the pressure. Two different models for viscosity amesatered in this work but
in both cases the viscosity varies exponentially with iasreg pressure. This ultimately
results in a glass-like behaviour of the lubricant in thehhpgessure contact region [1,89].
The two models that are considered in this work are the Rdslaquation [62]

n(p) = noel T+ (%)) (2.5)

Y

and the Barus equation [2]
n(p) = noe’", (2.6)

wherepg is the pressure viscosity coefficiemtis the viscosity indexg is the pressure-
viscosity index andjg is the viscosity at ambient pressure. Although we initialtiysider
the algebraically simpler form (2.6), it is fair to say thatg) is more widely adopted
in practice (and is considered later in this work). This isdagse, whilst the viscosity
clearly increases exponentially for both models, when teegure gets very large a simple
exponential relationship, such as that given by the Barusitsan, tends to significantly
overestimate the viscosity.

2.1.5 Density

Finally, it is necessary to introduce a density-pressuedioaship to the system of equa-
tions. The density, equation (2.7), is based on empiricakplation. The model used
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here is the standard model of Dowson and Higginson [17], sigémerally of less impor-
tance (in the sense that the model is less sensitive to tieesprehoice of density-pressure
relation) than the more highly non-linear viscosity

0.59x 10°+1.34p
059x1P®+p ’

p(P) = po (2.7)

wherepg is the density at ambient pressure.

2.2 Non-dimensionalisation

In this section, we provide a description of the standardr@ggh that is used for the

non-dimensionalisation of the EHL equations. This is fekad by a summary of the

non-dimensional equations themselves. Non-dimensgatadn is simply the process
of removing the dimensionality from the variables withiretaquations involved. It is

useful in that different physical problems may have the samgerlying mathematical

formulation. This means that non-dimensional parametdriisiwhave similar effects on

the solution can be grouped together, reducing the dimemdithe parameter space. For
example, if doubling the surface speed has the same effeant &L solution as halving

the load, there is no need to solve two separate EHL cases.

At the same time that non-dimensionalisation occurs, thiebkes are often scaled to
have a value somewhere around 1. This is achieved by divitinogigh by characteristic
solution values. By doing this, rounding errors in the enguiumerical calculations can
be reduced.

The non-dimensionalisation used here is based on Heresytor a dry contact [36].
Introducing the maximum Hertzian pressupg, as

2L

Pnh = s (2.8)

whereb is the Hertzian radius, describing the half width of a cothweith reduced modu-

lus of elasticityE’, given by
b, /%, 2.9)
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and the non-dimensional variables

_X _ P _ R
X=g  P=  H=T (2.10)
—_n —~ P
_ . 2.11
L No P Po ( )

it is possible to rewrite equations (2.2) to (2.7) as theofelhg non-dimensional equation
set. After substitution of the above variables, and withrappate use of the chain rule,
the Reynolds equation can be rewritten as

0 oP Jd(pH) B
X (Eﬁ) ~ X 0 (2.12)
where 3
g P
nA
and
b3y

are both non-dimensional parameters. Similarly, the filrokiless equation can be writ-
ten as
X2 1 * !/ / !/
H(x,F>):Ho+7+7—T In|X —X'|P(X")dX’, (2.13)

with the force balance equation given by
o m
/ P(X)dX = 2. (2.14)

The remaining constitutive equations for viscosity andsitgrbecome

m(P) = ([ (1+5) ) (2.15)
for Roelands viscosity, with Barus viscosity as
n=e", (2.16)
and density as
TR
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2.3 Discretisation

Finite difference approximations have long been used aadanerally well understood.
They can be easily derived through Taylor series expansan$sform a straightforward
way of discretising differential equations. For more imf@tion on finite difference meth-
ods, a comprehensive text is [67]. Here, the basic stenséd in this work are derived.
Before this, however, we note that the first step in the digagon process is to replace
the infinite domain by a finite domaiXin, Xc|. Here,Xi, is taken to be far upstream of
the contact and; is chosen to be downstream of the contact. Further disausdithe
choice ofX; will appear later in the thesis. We can now discretise théapdomain with

a uniform grid ofn points with mesh sizAx

The Taylor series expansion of a functib(x — Ax) is given by

f(x—AX) = f(X)—AXf/(X)+(A2—XI)2f//(X)—.... (2.18)

Combining all terms in the series after the second into on& éerm, wheref is some
unknown point inx — Ax, x|, yields

f(x—Ax) = f(x)—Axf’(x)+(A2—Xl)2f”(E) (2.19)

which is easily re-arranged to form the first order backwalifference formula

£(x) = f(’o_g(x_m‘) +%(f”(f). (2.20)

The last term, which is not used in the calculations, is theréerm due to the truncation
of the series, and shows this approximation ta@jAx), or first order accurate.

To derive the second order backwards difference, the twamsipns required are

F(x—AX) = (x) — AXF'(X) + (AZ’?Z £(x) — (Aé?s £(&1) (2.21)
and ) 3
f(x— 2A%) = f(x) — 28 F'(X) + (2210 £(x) — (2‘%") 1(8),  (2.22)

whereé; € [x—Ax,x] andé, € [x— 2Ax,X]. Subtracting four times equation (2.21) from
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equation (2.22) gives

f(x— 2AX) — 4f (x— AX) = —3f (X) + 2Ax ' (x) —4(A3—X!)3 (&) —

3
(227() fm(EZ)-

(2.23)

Rearranging forf’(x) yields the second order backwards formula, shown as

f/(X) _ 3f(X) —4f(X—22))?—|— f(X_ZAX) +(AX)2 (4%f///(51)+%f///(52)) ) (2.24)

In this case the error term is multiplied \x)2, and so the formula is second order
accurate.

Having derived these two backwards difference formulags, ftossible to decide on
one with which to discretise the wedge term in the Reynoldsaggn. For the work
presented throughout this thesis, the first order backwdifterence will be used. The
main reason for this choice is primarily historical, sinbe first order difference has been
demonstrated to be stable under a far greater range of pnatdses than the second order
one [55], leading to a more robust solver. Although transtases are not discussed, were
there to be a case where the direction of flow reversed, tlegadisation would need to
change to a forward difference formula. The second ordekward difference is used in
the cavitation boundary derivative used from Chapter 5 ads:ar his is because, with the
right-hand boundary fixed witR = 0, the first order backwards difference would require
that the first grid point inside the boundary would also be@zerorder that the derivative
be zero, effectively fixing the cavitation point in the wroplgce.

Finally, the second order central difference approxinratmf” is derived as follows.
First, the Taylor series is expanded up the 5th term for botvéird

2 3 4
f (x4 Ax) = f(X) +AxF (X) + <A2X|> £ (x) + %f’"(x) + m;? f4 (&), (2.25)
and backward differences
f(x—Ax) = f(x) — AXF/ (X) + (Az—)?zf”(x) - (A3—XI>3f”’(x) + <A%>4f<4>(§4), (2.26)

whereés € [x— 2Ax,x] andé, € [x— 2Ax,X]. Adding equations (2.25) and (2.26) gives

(8%)?
2

(Bx)*

4| (Ax)* ¢(4)

41

f (X+AX) + f(x—AX) = 2f (x) +-2 £ (x) + 4 (&3) + (&). (2.27)
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This can then be rearranged to give

f(x+Ax) —2f(X) + f (x— AX)

f//(x> — (AX)Z

+(8%)? (%f(‘”(g‘s) + % f<4><f4>) . (229

Looking at the multiplier in the error term, this is clearlijga second order accurate. This
stencil is used to discretise the second order Poiseuite itethe Reynolds equation.

Discretisation of the film thickness and the force balanegéqns is relatively straight-
forward, being based on standard quadrature formulae. »anple, (2.13) is approxi-
mated at a grid pointby

_2 1 n-1

When it is assumed that a finite difference mesim efqually spaced points is used, the
dense matriX may be precomputed.

2.4 Solution method

In this section, the solution procedure used within the ruaml’ [71] industrial EHL
solver is described. This is the code that is used to gen#ratéorward solutions for
Chapters 4 and 7. A modified version is also used to generatedlutions in Chapter 6.
A detailed overview is therefore justified. For more spedaiétails than contained here,
the reader should consult [26].

2.4.1 Single grid solution

The basic iterative solution procedure on a single grid timed first. For given solution
profiles ofH, 17, andp, and a latest solution profile for pressuRg,the first step is to
solve the Reynolds equation. This is calculated using aéiterations of an approximate
Newton solve:

JAP = —R. (2.30)

whereJ'is the approximate Jacobian, aff is the correction to the pressure. In this work
a penta-diagonal Jacobian approximation is sufficient.

The Nurgat Jacobi line scheme [55], which is used througlmwolving for this
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equation, distinguishes between the contact and non-ciorggion of the solution. It
does this based on the sizegfwheree = HA—? as in the above formulation of Reynolds
equation (2.12). Outside the contact region, wheres large andj is small,€ is large.
Conversely, moving into the contact regidthbecomes small ang becomes very large,
so & becomes very small. This is the reason why the Reynolds equia¢haves so dif-
ferently in the two different regions, as the equation is dated by the different terms.
This is reflected in the solver since, after each Newton sahecorrection calculated is
used to update the pressure profile only at those pointsdautse contact region. The
points inside the contact region are then updated afterasiesblve. In each case, an
under-relaxation factor is applied. In this work, typigaalues of under-relaxation used

are Q15 for the points outside the contact, and tr those inside the contact region.

A number of iterations of this procedure would result in tRa& solution foiP for the
values ofH, 17, andp given. However, since these values themselves are all depenn
P, there would be little point in solving exactly at this stage. So following each pressure
updateH, n, andp are recalculated. This process is repeated until the pressved
for, along with the values dfl, 1, andp, calculated from it, give sufficiently small values
for the Reynolds residual equations. In this case, thatés g#fe RMS (root mean square)
value of the residuals is below 18 in size.

In the context of describing the FAS Multigrid algorithm be{ this whole process
from Newton-Iteration through to recalculation Hf, 77, andp and hence the Reynolds
residuals will be referred to as one “smooth”, and is sumseakin Figure 2.2.

2.4.2 Force balanceHilp) update

The final addition to the single grid solution process is tlag/wm which the force balance
equation is satisfied. During the process of solvingRoH, 17, andp outlined above,
there is no guarantee that the integral of the pressure beezdmputational domain will
remain equal to the load (i.e. force balance may be violatéal) this reason, it is neces-
sary to alteHg (the separation of the undeformed solids) during the coofrige process
so that once a solution is found, it also satisfies the fortanca equation. By integrating
over the domain, it is possible to ascertain how close to tineect non-dimensional load
of 7 the sum of pressures is. By recognising that increasingeparation of the surfaces
decreases the total pressure in the domain, it follows fhtéei sum of pressures is too
large, the surfaces are too close anddgonust be made larger. Equally, if the sum is too
small, the surfaces are too far apart atglshould be made smaller. However, since all
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Approximate

Pressure
Solve for Pressure Calculate;
using new Film Thickness
Film Thickness, Viscosity,
Viscosity, Density,
Density Force Balance.
Evaluate
Residual

NO sufficiently
small?

YES

END

Figure 2.2: High level EHL numerical solution algorithm
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of theH values are affected by a changeHg, which then has a corresponding effect on
the P solution, there is no simple relationship which descriliesrelationship between
Ho and the sum of pressures. Hence, the standard update foansedato achieve this is
given by

n—2

R+P

Ho « Ho— @ (’_T_ Z) i+ '“Ax> : (2.31)
i=

2 2

wherew is some under-relaxation factor (typically somewhere leetwv005 and 02 in
this work). This is not necessarily updated every time thahaoth is performed.

2.4.3 FAS multigrid

In order to speed up the convergence of the Reynolds sojunaitigrid is used. Multi-
grid is so-called because of the sequence of meshes thesakisolved on. The basic
principle is that errors in a solution can be removed on aeseoi grids. The errors of
comparable wavelength to a particular grid can be efficyaeitiuced before restriction to
a coarser mesh, where the errors of a different wavelengtibeaeduced. This requires
a smoother which can efficiently reduce the components oétre which are high fre-
guency compared to the resolution of the mesh. The first egidin of multigrid to EHL
was by Lubrecht [50].

Standard texts by Briggs [11] and Trottenbetal.[70] provide full technical details.
Multigrid as applied to EHL is well presented in both of [28]8but a brief overview is
presented below.

In this work we use FAS (Full Approximation Scheme) multtgbiecause this is able
to be applied to non-linear systems. The basic idea is to fydige right-hand side of
the equation system on the coarser grid to be equivalentatosthlved for on the finer
grid. In this example, only two grids will be used, but it isasghtforward to extend to
multiple levels. Once the actual system of solutions has lexplained, the restriction
and prolongation operators used in this wa andI/}) will be prescribed.

Consider a non-linear system
Lu=f, (2.32)

whereL is a non-linear operatof, is the right-hand side function, ands the solution to
be approximated. For a fine mesh with spadmnthe discrete system can be written as

Lhuh = fh. (2.33)
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The residual equation can then be written as
= fh_Lhgh (2.34)

whereu is an approximate solution obtained by a small number of shsosing the
selected iterative scheme. By defining the error equatideto

e =u"— ", (2.35)
and after re-arranging (2.34) fdf', substitution into (2.33) of (2.34) and (2.35) yields
LN+ ") = Lhah 4 N, (2.36)
On the coarse grid, with mesh spacidgwhereH = 2h, this can be approximated by
LHgH = £H (2.37)
whereut is the coarse grid solution variable given by
=1 @+ ") = + 11 @). (2.38)
The FAS right-hand side is
fH = 17 Lhah 4y = 17 (Lhah) + 17 (. (2.39)

It can be shown [83] that bot" and! (L") can be used as an approximation to the fine
grid system, and since it is more straightforward to form rle@-linear operator on the
coarse grid, that is what is used. The FAS right-hand siderbes

fH=LHaf @)+ 1 . (2.40)

There are now two clear parts to this right-hand side. Thetérsn, L™ (111(0")), is the

part which adjusts the coarse grid system to be equivalehgetéine grid system. This is
really just the coarse grid right-hand side, plus the redidained when putting the fine
grid solution into the coarse grid system. The second 1§Y(nh) is the residual from the
fine grid after restriction to the coarse mesh. So the othgrteahink of the FAS right-

hand side is as the coarse grid right-hand side functionsteljl by two different residuals.
These are the coarsened fine grid residuals, and the coalsegjduals computed from
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Figure 2.3: Schematic of a multigrid V-cycle

the coarsened fine grid solution.

Having formulated this system, it can be solved more chetiqay the fine grid ver-
sion. In practice, this system would be restricted to a yerser mesh for recursive
solution down to a coarsest level.

Once the coarse grid solution is solved, the coarse gricibkaii! can then be used
to update the fine grid solutiaif according to

"= d+1f at —1fah). (2.41)

After this, the solution is again smoothed on the fine grid.

Having described the solution process, a note on the imtértgansfer operators is
required. For reasons of stability and robustness, theicgsh operator in this work
uses injection. That is, when coarsening a solution fromedind to a coarse one, the
coincident points on the fine grid are used to give the valumethe coarse grid. In some
circumstances, injection may not represent fine grid emocaurately on the coarse grid,
leading to degraded solution convergence, but that is natsare here since the error is
generally well smoothed on the fine grid before restrictiakes place. The prolongation
used is equivalent to linear interpolation. This may introgl a small amount of high
frequency errors, but again, this is not an issue as highuéeqgy errors can be removed
efficiently on the fine mesh. A more detailed discussion oerigtid transfer operators
can be found in [70]. The whole process is summarised for cogcié in Figure 2.3.

In Chapter 7, the goal is to solve EHL problems adaptivelys Téquires the problem
to be discretised on a non-uniform grid. Fortunately, theAllscheme [70] can be used
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in conjunction with FAS multigrid. This is where the problamposed on a series of
uniform meshes, and solved using multigrid, but “patchdseéinement are used where
additional refinement is required. The solution is compagdormal on the coarse grid,
before the region inside the patch is interpolated to thedne The end points of this
patch are then set to be Dirichlet boundary points on thetfmesh, and the solution can
continue. As with normal multigrid, this would typically ppen over a number of levels
with patches of different sizes on different levels.

There are various types of multigrid which are more applieab certain other situ-
ations. Linear multigrid is a technique for solving a systehlinear equations. On each
level of the multigrid solve, it is the error equation whichsolved for, rather than the
solution adjusted for the difference between the grids.sTéionly possible because of
the linear nature of the problem [11].

Algebraic multigrid uses a series of coarser approximatitmthe original system
matrix, but doesn’t require an underlying hierarchy of grid1], whereas P-multigrid
uses polynomials of different orders to achieve faster eayence [24].

2.4.4 Multilevel multi-integration

Multilevel multi-integration (MLMI) [8] is a powerful tooffor reducing the time taken
during the film thickness calculation. With the deformatairevery point influenced by
the pressure at all points, the calculation time will clgdmt O(n?) for a grid of n points,
since equation (2.29) will be calculatedtimes and require®(n) operations. MLMI
exploits the smooth nature of the deformation kernel awamfthe central singularity, by
summing for the local deformation first on the coarsest @] then correcting in local
patches near the singularity on the finer grids. This redtleesomplexity taO(nlogn),

a huge saving.

By starting off on the finest grid, the pressure values art&xiotsd using high order
operators onto coarser and coarser grids, until the cadesed is reached. There, the
local deformation is calculated using the whole mesh. Thkalldeformation values for
each point on the grid are then prolonged back up to the nexsest grid using high order
interpolation. Here, the effect of the pressures withinvaiieesh points of the singularity
X" = X is calculated for the more accurate kernel on that levelc&ihat small region
has influenced the deflection twice, the coarse grid effeetseamoved, on that area only,
and the process is repeated until the finest level is reached.
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This effectively means that the summation is performed oiffardnt adaptive mesh
for each point, even though the underlying structure isabtwa uniform mesh every-
where. It should be noted however that we do not make use of Mhkhis work since it
requires uniform refinement of the grids at each level. Smaeultimate goal (achieved
in Chapter 7) is to apply local mesh refinement for the EHL ol developing a new
variant of MLMI for such grids is beyond the scope of this work

2.5 A brief history of EHL modelling

EHL was born out of the realisation that both a viscositysptee dependence in the
lubricant and an elastic deformation of the contacting bax@ynecessary to explain satis-
factorily the lubricant film thickness of certain non-confong contacts. In other words,
before then, hydrodynamic lubrication had been augmeniddbwoth effects individu-
ally, and while both increased the film thickness, neithereased it sufficiently to be
validated by the practically observed life of bearings. rEhieave been several excellent
reviews into the history of EHL, including [15], [16], and9B and it would serve little
purpose to recreate them in full. However a brief overviewarticular areas of relevance
to this thesis follows.

2.5.1 Overview of numerical methods for EHL problems

Since the first numerical solution of both the elastic equraand the Reynolds equa-
tion by Petrusevich [57] in 1951, a number of different nuicedrmethods have been
developed for the solution of EHL. The first extensive setadfisons was calculated by
Dowson and Higginson [17], using an inverse approach. Tiverse approach involves
solving the Reynolds equation for the film thickness, in &ddito using the more stan-
dard film thickness equation, (2.3), and the difference betwthese film thicknesses is
used to correct the pressure. This approach allows for theigo of extremely highly
loaded cases, but is unstable at low loads.

The standard way of solving EHL numerically is detailed byiver and Lubrecht [83],
and summarised here in Section 2.4. That is, using finitemiffce discretisations on
regular uniform meshes. This is accelerated by the use omthiélevel techniques of
multigrid and multilevel multi-integration.
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There is also a need for a different solver to be used outsittee@ontact region [80].
In the contact region Venner uses a distributive relaxasicimeme [80], whereas in this
work the Jacobi line scheme of Nurgat [54] is used.

In the following subsections a more detailed survey of méshased for spatial mesh
adaptation is given, along with methods for dealing withuh&nown cavitation position,
and a brief discussion of surface roughness.

2.5.2 Adaptive EHL

Adaptivity in numerical computation is not a new idea. Theigeto minimise the com-
putational load and/or maximise numerical accuracy of atgmi is common across many
disciplines. EHL is no exception, although efforts haverbsemewhat less than in other
areas of engineering. With the majority of numerical sans historically based on finite
difference discretisations, spatial adaptivity is veryamuhe exception rather than the
norm. The first adaptive finite difference solution was cesytof [49], shortly followed
by [4] and [80]. The second of these is the more comprehensitie an alternative dis-
cretisation and automatic refinement algorithm. A lack ¢dtoon of this paper over the
years is likely due to the unfashionable choice of solutia@thnd, the Newton iteration,
and the incompressible nature of the formulation. All thvesre restricted to smooth
EHL. More recently, work on adaptive grids has been condlibieGoodyer [26, 30], in-
cluding adaptive time-stepping, but in the words of the auth.it has been seen that there
are powerful numerical tools available, such as grid adegtawhich require further ex-
ploration and deeper understanding with regards to th@li@gion to EHL modelling.”

Finite element solutions, which perhaps lend themselvesp&tially adaptive solu-
tions more naturally than their finite difference cousinaydr unsurprisingly been used
to get adaptive solutions far more often. Wu [90] was in faet tirst spatially adaptive
EHL solution, and used finite elements. Since then, Wu anch@@®&-93] in the late
eighties, and more recently the work by Durany, Garcia anziwaz [19, 20] have all
done work with adaptive finite elements. More recently, Ls Baccessfully combined
mesh adaptivity with high order discontinuous Galerkintérelements [46]. One of the
major disadvantages for unstructured meshes remains thelkeatrix for the deforma-
tion calculation. By precomputing the kernel matrix on auleg mesh, a large amount of
computational expense is saved.
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2.5.3 Free boundary

Toward the outlet of an EHL contact there is a sudden drop lipreissure to ambient
pressure. At this point, air and other gases dissolved irduibecant form bubbles and
the fluid cavitates. The position of this cavitation is nobwm a priori, and hence a
free boundary is introduced into an already complicatedlgm. Formulation of this
phenomenon mathematically is covered in detail in [18haligh here only the Reynolds
condition is considered. The Reynolds condition statessthi®apressure and the pressure
gradient should be zero at the cavitation poXat, A number of approaches to finding the
correct cavitation position have been taken over the years.

First, the use of an over-sized domain is explored. The Regnequation (2.2) in-
cludes no physical constraints on the solution produceds Jimply means that a phys-
ically and numerically valid set of input parameters maywedb give values that are a
valid numerical solution of the equation, but that does et ghysically meaningful re-
sults. Unfortunately, this happens in the cavitation ragiwhere negative pressures are
generated. Whilst this is clearly not physically realisdditional difficulties arise when
attempting to calculate values of viscosity and densityes# ways of dealing with this
problem have been identified for this sub-problem.

The simplest, though least accurate, is to essentiallyregytice cavitation point, and
just let the points whose pressure is negative form the aott region. During the solu-
tion procedure, and indeed after convergence of the Regmajdation on a fixed grid, the
negative pressure values are simply set to zero. Unfortyyainless the domain is close
to the correct size, through priori knowledge, this not only gets the cavitation position
wrong, it also means the pressure solution may be inacguaate hence so are all the
other quantities calculated from it. This is the approadéensby [95].

The next approach, and the one taken in the numerical soldgscribed in Sec-
tion 2.4, is to have some kind of outer iteration. Given tharmtary conditions, that both
the pressure and the pressure gradient are zero at thetmavpasition,X;, thenX will
be the last grid point to give a non-positive pressure valdace this has been found,
the cavitation condition can then be imposed as a Diriclibe¢d value) boundary, and
subsequent solutions calculated on that smaller domaiweMer, due to the highly non-
linear system of equations being solved, this boundary aidoe imposed exactly where
it might seem correct, as the cavitation position may “monsiad” while the solution
is converging. This method has been observed to be sensititree discretisation. A
suitable choice of domain will result in the cavitation paiesting on or very near a grid
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point. A bad choice may lead to difficulties solving the systes the cavitation point tries
to move between grid points, although adaptive refinemeatsdight perturbation of the
domain may well alleviate this problem.

Solutions using Finite Element methods often use the penadthod to obtain a cav-
itation position [90]. Rather than finding the cavitatiorsfimn explicitly, a penalty func-
tion is introduced into the discretisation of the Reynoldsaion. This term forces any
negative pressure to be zero (arbitrarily small) by pemadisiny negative values through
ajump in the residual, but has no effect on the solution wttergressure is positive. [56]
uses an approach similar to that described for finite diffees.

2.5.4 Surface roughness

It was realised fairly early on that realism would not be agkd without some attempt to
account for the rough surfaces which are inevitably found@achine components. Some
of the very early work on surface roughness was done by ChaiCéreng [14] in 1976,
although at this stage it was simply based on the asperitiesireg a different pressure
at the inlet. Full numerical solutions for simple bumps ensoidal waviness have been
conducted for steady state EHL by many authors. In modetings, this means the
addition of a further geometry term to the film thickness dmum thus modifying the
shape of the undeformed surface. Works include those ofdalthet al.[51] and Kweh,
Evans and Snidle [42]. A simple bump, and subsequently veaginwere applied to
a simple EHL conjunction by Venner and Lubrecht [81], and ¢beaclusion was that
transient analyses are essential, and they went on to dowhigears later in [82], as did
Yang, Perian and Shen [94]. Again, both were for simple haimmughness, although
the latter work did include non-Newtonian fluid behaviout.the same time, Evans and
Snidle [21] conducted a line contact simulation with reafate roughness, but only for
the steady-state case.

More recently, work has been done by Faat@l.[23] about ascertaining information
on how EHL conjunctions behave without resorting to nune@naodelling of the com-
plete problem. However, only sinusoidal roughness is darsd and, although useful in
getting trends in certain conditions, it is limited in itsder applicability to more general
problems.

In [96], Zhu details how surface roughness is modelled uigicig the transition from
full film to mixed lubrication. This is a challenging problerand one which may well
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need far greater mesh resolution to capture accurately.lethe computational mesh
spacing is comparable to that used in other papers, thes®erasenooth contacts, and
would need many more points to capture the roughness prafdarately, as shown
in [31]. Since this, Holmeet al. have performed transient rough surface calculations
with significantly more mesh points [37]. There, asperityteat is said to have taken
place where the film thickness values are negative in thdisealuThis seems a very sen-
sible starting point, although even with the increased miesblutions, there is concern
that the numerical model may still not be solved with suffitiaccuracy. There is also
concern over exactly how the force balance equation issetilisince arguments based
upon physical realism are best used at the mathematicallhmgdetage, rather than the
stage of the numerical calculation.

Lubrecht and Venner [52] make two interesting points regaycgurface roughness.
The first, that grid resolutions must be sufficient to captheefeatures, and hence will
take the order of 10 points to resolve the surface properly in 1D, and then a aimil
number of time steps for the transient solve. In itself, thisot the challenge that it posed
at the time of writing, but when consideration is taken of kge amount of different
solves required when designing a lubricant, it quickly bees clear that some way of
reducing the computational load of each solve would be vernelcial. The question
of the appropriate time-step size for rough surfaces wasidered by [28]. They found
that the temporal error estimate required that the timebgepery much smaller than
would usually be assumed (a factor of 32 smaller) when thiasaroughness had large
amplitudes. They also considered, in [28], how parallel pating techniques could be
applied to EHL cases in order to get sufficient grid resolutior point contact surface
roughness cases.

The second point made by Lubrecht and Venner is “more fundgaiiein that the
usefulness of solving for rough surfaces is called into tjaes The point made is that
solving for a roughness profile would not allow the predictiof a second roughness
profile measured a millimetre further on. Whilst this is untedly true, we consider it a
useful goal to be able to parameterise roughness profildshamce predict how surfaces
with similar parameter values might behave.

Work on discontinuous Galerkin finite element methods fansient surface rough-
ness problems has been considered in [47], which is theiératrextension of [48].
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Background to Adjoints

3.1 Adjoint background

The study of adjoints is a wide and varied field. They are prilpased for sensitivity
analysis, but from this many different uses may be derivedniples include duality in
linear programming [13], shape optimisation [53], and eastimation [73]. In this work
we shall concern ourselves exclusively with the last. A gahpaper discussing error
analysis from a mathematical perspective is by Giles and &].

In particular, in this work concentration is focused on egstimation based upon the
accuracy of specific outputs of interest. Adjoint theory b&nused to provide a frame-
work for finding such estimates. That is, finding the senijtiof the output quantity
of interest to other computable quantities. Exactly how teiachieved is explained in
greater detail in the next section, but it revolves arourmthidating and solving an ad-
joint system which is related to the original “forward” pitem. There are two distinct
but related approaches to formulating the adjoint systeamticuous and discrete. A
comprehensive comparison of the two methods for a shapenigatiion problem is given
by Nadarajah and Jameson [53], but the basic differencegcketthe two approaches
are highlighted here. In the continuous approach, the adRIDE is formed analytically
from the continuous PDE, and then discretised afterwards,[88]. If the analysis can
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be performed to get to the adjoint PDE, the boundary conustean be difficult to formu-
late [45]. In the discrete adjoint approach, however, thjeiatlsystem is formed directly
from the discretisation of the continuous forward problé€dme advantage of this method
is that it can be applied to complex problems, where an aicagtution of the continuous
adjoint problem may be difficult or impossible to find. The hwd followed in this thesis
is that developed by Darmofal and Venditti [72—78]. This tiscrete approach which, as
stated in [77], “is a discrete analogue of the Pierce andsGi8] technique”. One of the
main reasons for our choice of this method over the PierceGles approach is that, for
a complex engineering problem such as EHL, formulating thjeiat PDE problem (in-
cluding appropriate boundary conditions) would be extrgrdéficult, if not impossible.
However, by realising that, to benefit from a comparableaase in functional accuracy,
all that is required is a discretisation of the “forward” s31® being solved. Through the
use of the discrete approach, adjoint error estimation iesoa realistic prospect for ap-
plication to EHL. The details of the discrete approach usédbs discussed further in
the next section.

Having discussed the detail of the adjoint error estimaidess formal description of
the process forms the following section; the idea being ¢wigie further insight into what
is actually going on in the formal description. Followingstha simple linear problem is
provided to introduce the effectivity index. The chaptenclodes with some justification
for the choice of cubic spline interpolation between grats] some notes on the boundary
values for the adjoint systems used for the work in this thesi

3.2 Adjoint error estimation

In this section, the theoretical background to the adjostingation of an error is intro-
duced. The starting point is to define two meshes with spatiagix andH = AX =
mx Ax, {me N | m> 1} (i.e. H is some multiple of the mesh space sige The idea is
that mesh sizél is fine enough to capture the features of the problem beingedphnd
coarse enough to be solved in a reasonable time, while thensé sizén would give the
solution to a greater accuracy but in an unacceptable timtalst\the coarser of the two
meshes need not necessarily be very coarse, nor necegbariimer mesh particularly
fine, for ease of terminology these two meshes will be refetoeas the coarse mesh and
the fine mesh hereatfter.

Consider an arbitrary non-linear problem whose discretefmay be represented as
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An(up) = fp on the fine mesh, andly (uy) = fy on the coarse mesh, where in each case
A(u) is a non-linear operator. Le@]‘ be an approximation toy, obtained by interpolation

of the coarse mesh solutionf! = IHuy. Throughout this work the interpolation for the
adjoint solution will be through cubic splines, unless otlise stated. The reason for this
choice is justified later in this chapter. The solutowill be referred to as the forward
solution. The discrete fine grid residual is given by

Rn(un) = fr— An(up).

A Taylor series expansion about the interpolated coarsbsgﬂhtion,uﬂ, shows that

Ro(un) = Ra(uf + (un—up))

_ Hy. | 9Fn
- Rh(uh ) + lﬁuh

] (up—uth) +hoot. (3.1)

H
Un

which, ignoring the higher order terms, is the linearisataf the fine mesh system of
H} is the Jacobian evaluated usid;‘;. Given thatR,(up) = 0,

. Ry
equations, Whe”%a_uh "

0
—Ra(U) = [a—i:

H
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and re-arranging gives
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an expression for the error in the interpolated coarse grigti®n with respect to the fine
grid solution.

Suppose that the quantity of interest for this problem isracfional which may be
expressed ai,(up) on the fine grid. As with the fine grid residual, this can be ezl
about the interpolated coarse mesh solution to give

o,

T
H

—-— unh—u h.o.t. 3.3

aur u,'j) (Up—up ) + (3.3)

Fr(un) = Fn(uf) + (

Substitution of equation (3.2) into equation (3.3) fop — uﬂ), and again ignoring the
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higher order terms, yields

F(Un) = Fin(Ul) — (Z—E:

T R, -1
H
u,'j') ld—uh uﬂ] Rn(up ). (3.4)

]
IRy
) [a“h

Fi(Un) = Fn(uf) — Wi Ra(uf). (3.6)

By introducing a new variabléyy,

0
T— [
LPh N <0Uh

equation (3.4) may be rewritten as

-1
] (3.5)

Post multiplying equation (3.5) b{/‘;%h } gives

:
]:<0Fh )
]\ Oty

Taking the transpose of both sides, and givém)" = v' AT, it follows that W}, must

satisfy .
o
w, = ) 3.7
] h (a“hUE> &0

Hereafter, equation (3.7) will be referred to as the fine @uijbint system, an&}, the
fine grid adjoint solution. Once the adjoint solution hasrbebtained, an approximation
to Fn(un) may be calculated using equation (3.6) without actuallyifrggolved forup
explicitly. For highly non-linear problems, the need toypkrform a linear solve on the
fine mesh (i.e. equation (3.7)) to get a value of the functibméhe same order of accu-
racy as that gained from the solution of a whole non-lineabfam, possibly consisting
of many linear solves, is hugely advantageous. In fach i$ a linear operator, rather
than a non-linear operator, then the “functional correttierm W} R, (ul), obtained in
equation (3.6), will be exact. However, there is a furtheraadage to be gained at this
stage.

ORn

o
h 0Uh

dun

[aRh

Whilst the forward solutiortuﬂ used in equation (3.6) is only solved for on the coarse
mesh, the adjoint solution is still solved for on the fine mdstrtunately, it is possible to
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solve an alternative system to equation (3.7), also on theseanesh, shown here as

oR4 1T oF
o) v (Ga) e

This adjoint system, which will be referred to as the coarse gdjoint system, with¥y
the coarse grid adjoint solution, is an approximation tofihe grid adjoint system given
in equation (3.7). This is formed directly on the coarse fpadn the coarse grid solution
and coarse grid residual equations, rather than on the fideuging the interpolated
coarse grid solution. The basis for this approach is thataghygroximation should be
satisfactory once the meshes are refined sufficiently swattthle solutions have entered
their asymptotic ranges. In other words, as the meshes keouore refined, the higher-
than-first order errors should become small in comparisotinéolinear approximation.
This coarse grid adjoint solution is then interpolated offite fine grid to giveW} =
Iﬁ\PH. Equation (3.6) can now be reworked in terms of the coargkagjoint solution,
to give

Fi(Un) ~ Fn(Un) = Fn(ufl) — (W) TRa(uR). (3.9)

An approximation to the fine grid functional has now been wige simply by solving an
additional linear problem on the coarse grid, the adjoistasy given in equation (3.8).
As was previously mentioned, the expressi&#f)TR,(ul!) will be referred to as the
“correction” to the functionaFy (ul!), since this is essentially what is happening.

The final point that must be made pertains to the applicaticgheoabove theory to a
finite difference discretisation. In [77], is it pointed aiat “A typical finite difference
stencil would need to be scaled by an appropriate volume (erran area term in two
dimensions) so that the residual became analogous to ggrahexpression”. This is key
in applying the procedure to non-uniform finite differenceshes. This idea is expanded
on further in Chapter 5.

3.3 Alessrigorous view of adjoints

Having seen the mathematical theory underpinning adjoiot estimation, a rather more
informal description of the approach is attempted in thidise.

The approach taken in this method is to take two things whieheasily calculated,
and use them to estimate a quantity which is computationagful, but not directly
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accessible. It is straightforward to compute the linearsgities of both the friction
calculation and the residual equations to the solutioralédes. By formulating the adjoint
problem, a solution can be obtained giving the linear seitgiof the friction calculation

to the residual equations, a far more useful quantity. Téisdcause the residuals are
easily calculated, and given a change in the residualsearimpproximation to the change
in the friction can be predicted.

First, a similar example is presented, the Newton Iterationhis,

R
~—du=-R
duéu

is solved fordu, where thed is used to signify a (hopefully) small changeunWe can
also calculate the (linear) sensitivity of any residual &gn to the unknowm at any
point. Let [%} denote the Jacobian matrix whose entry in itterow and jth column
gives the rate of change of th&h residual equation w.r.t. thgh solution value. A
particular row of the Jacobian gives the sensitivity of atipatar residual equation to
all the different solution values, whereas a particulauouoh of the Jacobian gives the
sensitivity of all the residual equations to one of the goluvalues.
So now, for our adjoint problem, we have

T Y T
W |
UE] < h|ur|?> <0Uh uﬁ)

A row of the transposed Jacobian is just a column of the caiglacobian, i.e.

[aRh

dup

0R; Ry R,
0uj’duj’ 7(9Uj’

and multiplied out with the adjoint variable vectd,

oRy R, R of

W W Y=

ou; 1t ou; 2+ +(9Uj i+ ou;
It follows, using the chain rule, that the adjoint variabées the sensitivities of the func-
tional to the residuals. That s,

R 01 O OT  oROT ot
ouj 0Ry  0duj dR, ou;j 0R N 5Uj’
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and so

3.4 Example problem

In this section a very simple linear problem is used to ilais the adjoint error estimation
procedure. This will serve purely as an introduction to ofigne main analysis tools used
with this work, the effectivity index. As such, the forwartbplem and adjoint correction
procedure are briefly described.

3.4.1 The forward problem

A simple linear PDE is defined by the following equations:

d dP

where
X2
H(X)=Ho+ —
2
on a finite computational domai¥, < X < X;. The boundary conditions are given
as P(X) = P(X;) = 0, and the operating parameters for this example Hye= 5.0,
X = 1.502 andX; = 1.502— 50. Using the finite difference approximations derived in
Chapter 2, these equations may be discretised on a coatdarrggd ofn points, yielding

the discrete equations

(Rri—P)Hiy12—(R—R-0)Hi 12 _

(BX)? A

and
2

Hi=Ho+—=-,
fori=1...n—2, withPy = PB,_1 = 0. The next step is to form the systek® = f, with
Athe linear tri-diagonal matrix of coefficient®,the solution vector, and the right-hand
side with the valued X;. This is easily solved foP and the functional of interest, defined
to be

n-2 X
F= 3 05(R+ R, 10X %/ PdX,
= X
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is easily calculated from it. The residual equations can tieedefined as

(Rt1—P)Hiy12— (R—=R-1)Hi_12

fori =1,...,n—2. Having differentiated each of these with respect to thefathe
solution variablesPj, the Jacobian can be formed. In this case, the Jacobiantithpis
(n—2) x (n—2) matrix A, which also happens to be symmetric in this case. The right-
hand side of the adjoint system is then the vectdkXfvalues, and the adjoint system can
be formed and solved fd¥y. Once these two solutions have been calculated, they are
then interpolated onto the fine grid (i.e. a uniform refinetradrthe current coarse grid),
using quadratic interpolation in this case. Having obtditiee interpolated solutions on
the fine grid, the functional can be computed. Once the intatpd solution has been
used to generate the residuals for that level, the cormrectzm be calculated. Results are
shown in the following subsection.

3.4.2 Results

In Table 3.1, results are shown for the example problem abblwe main purpose of this
table, and those like it in the following chapters, is to shelaether or not the calculated
correction to the functional (i.e. the estimate of the irgad functional error) is close to
the actual error when measured. This is achieved by solViagystem and calculating
the quantity of interest on the fine grid, giving the true \eafar that mesh. Thus, when
the solutions are solved on the coarse grid and interpolatéue fine grid, followed by
the calculation of the estimate of the quantity of interest aubsequent correction, it is
possible to see how close the two are.

The columns of Table 3.1 are as follows: Column 1 shows theseogrid on which
the solutions of the forward and adjoint problem are solweith column 2 the number
of mesh points on that grid. Column 3 shows the interpolatedtional. That means
the functional calculated on grigl+ 1 using the solutions calculated on ggdThe cor-
rection to the value in column 3 as calculated by the adjairdresstimation procedure
is then shown in column 4. It is this quantity in whose accynae are interested. Col-
umn 5 contains the resulting computed corrected functionhle, which can then be
easily compared to the actual functional value for grid 1 which is shown in column 6.
The measured error, as shown in column 7, is the differentedas columns 6 and 3,
I.e. the actual error in the functional computed from a soluinterpolated to the fine
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Grid | No. | Interpolated| Calculated| Corrected| Functional| Measured| Effectiv.
(9) | Points| Func. @) | Correction| Func. @) (9+1) Error Index
3 17 1.10973 0.19470 | 0.94278 | 1.36493 | 0.25520 | 1.311
4 33 1.36194 0.09868 | 1.26625 | 1.47011 | 0.10817 | 1.096
5 65 1.47049 0.02760 | 1.44251 | 1.49940 | 0.02890 | 1.047
6 129 1.49941 0.00750 | 1.49190 | 1.50698 | 0.00757 | 1.009
7 257 1.50698 0.00191 | 1.50507 | 1.50889 | 0.00191 | 1.002
8 423 1.50889 0.00048 | 1.50841 | 1.50937 | 0.00048 | 1.000
9 692 1.50937 0.00012 | 1.50925 | 1.50949 | 0.00012 | 1.000
10 964 1.50949 0.00003 | 1.50946 | 1.50952 | 0.00003 | 1.000
11 | 1152 1.50952 0.00001 | 1.50951 | 1.50952 | 0.00001 | 1.000

Table 3.1: Adjoint based inter-grid functional error onfanm meshes for a linear model
problem

grid, compared to the functional value as solved on the firee gihis is the value that the
adjoint error estimate from column 4 should closely appmate. Finally, the last col-
umn in the table gives the effectivity index of the adjointoerestimate. This is defined
to be the ratio of the actual error (that in column 7) to thedpreed error (i.e. the adjoint
error estimation in column 4). For this linear problem, itiear that the effectivity index
tends towards a value of unity with increased grid refinepgwing the accuracy of the
predicted correction to the functional. Furthermore, elarmvery coarse grids the error
estimate is demonstrated to be remarkably accurate.

3.5 Cubic spline interpolation

Cubic spline interpolation is a third order accurate metbbidterpolation (i.e. when data
points from a sufficiently smooth function are interpolatesing cubic splines the error
is third order [12]). It is piecewise cubic interpolationjtivthe cubic on each interval
constrained to be such that:

e The cubic segment interpolates the values at either enceaf@ggment;

e The first derivative of the segment matches the first dexieadt the interface with
the adjoining segments (i.e. it is continuous);

e The second derivative is continuous.
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Along with the information from the end point conditions {rezknot is used for this
work), this gives sufficient information to be able to solv&y/atem of equations to get the
interpolating cubics. Further details of this can be foum{b0].

As mentioned near the beginning of this chapter, cubic splterpolation is used
throughout this work. In Chapter 5, the discretisation & thodel problem is second
order. According to [73], the order of the interpolation d$e move coarse grid solutions
onto the fine grid should be at least as high as the discretisat the system being
used. Therefore, second order interpolation would be seiffign that case, and so using
quadratics would be an option. However, fitting a quadrdiiough the last three points
of the domain would always exactly satisfy the cavitationaiton, equation (5.8), on the
fine mesh. This would lead to a loss of information about the thee functional should be
corrected due to the boundary being incorrectly placed.tiisreason, and since higher
accuracy is generally regarded as a good thing, cubic spireused.

3.6 Sparsity patterns

In this section, the reason that the boundary points areote¢d for in the adjoint sys-
tem is described. There are two reasons why the boundaryspoould potentially be
necessary in the formulation of the adjoint equation systdime first is because there
may be a contribution to the correction term from that poamd the second is because
the equations there may affect the adjoint system, leadirsgdifferent adjoint solution.
Here, the reasons why the adjoint values at the boundamesameeded for this work
are outlined.

Throughout this work, the boundary conditions are all defiteebe Dirichlet, or fixed
value, points. This means that the residual on any grid dtdls@dary points must always
be zero, and so in the context of the adjoint error estimatioese points will make no
contribution.

The adjoint solution variables specify the linear comborabf the Jacobian matrix
columns which, when multiplied, yield the correspondingssvity of the functional
to the solution variables. Since the residual equationd@tbundaries for all of the
problems considered in this thesis are essentially

Ro=—PyandR,_1 = —Pn_1,
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Figure 3.1: The sparsity pattern for an example Jacobiatesyswith zero Dirichlet
boundary conditions
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Figure 3.2: The transposed sparsity pattern for an exanguebjan system, with zero
Dirichlet boundary conditions

there is no sensitivity to any solution variable other tHaadne at that point, and as such
the row in the Jacobian is empty apart from the one on the di@g®nce the Jacobian
matrix has been transposed, this becomes a column. Now alhaf the entries are zero
apart from those pertaining to the boundaries, whateveati@nt boundary values are
after the adjoint system has been solved makes no diffeterthe other adjoint variables.
In other words, the boundaries have been de-coupled frometh®f the adjoint solution.
This means that there is no need to consider the boundaryspehren formulating the
adjoint system because the variables there are a) not iargart their own right as the
residual there will always be zero, and b) do not influencedise of the adjoint solution
since they are decoupled from it. The situation for an adjeystem that would arise
from a system similar to that considered in Chapter 7 is shiowfigure 3.1, along with
the transpose of the system in Figure 3.2. This shows padtptiow, after being trans-
posed, the first and last columns contain entirely zerost &men on the diagonal. This
fits with the theory for continuous adjoints since homogersdooundary conditions for
the forward problem often lead to in-homogeneous boundangitions for the adjoint
problem [45].

Finally, a technical consideration is highlighted. Whemsidering interpolation be-
tween grids, special treatment must now be used for the enidpsince there will be
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points on the finer mesh outside the end points on the coarsk.nidis is easily reme-
died by extrapolating the cubic spline segments at the edges



Chapter 4

Friction as a Quantity of Interest

Historically, research into error estimation and contrahended to assume that, in a
numerical simulation, it is the accuracy of the computedisoh which is of interest. In
many practical situations however, the solution field isdus®e calculate some derived
guantity, such as friction, drag, lift, etc. In this work, aee interested in such cases,
where a quantity of interest depends on the solution. It is gmantity in which the
accuracy is really required, rather than for the whole of sleéution. In this chapter
an output of interest in EHL problems, the friction withiretbontact, is introduced. In
subsequent chapters it will be seen how these ideas can biedtarthose of the previous
chapter, where the accuracy of an output functional can tima&®d. The results in this
chapter are for EHL on a uniform grid using the numerical cddeeloped as part of the
Carmehl [71] software.

4.1 Motivation

Solution times for numerical models for solving elastolgadimamic lubrication (EHL)

problems continue to decrease as the algorithms used im@og the computers on
which they are solved become more powerful. Converselyhasubricant models used
by industry become more complex, the demands for robustaessiracy and speed of
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the software increase. In addition as the breadth of casesases the generality of the
software must also increase, so a single code should be @ldekle a wide range of
problems with the minimum of user input.

The main requirement of a user of such a code is to obtain the€ct” solution as
quickly as possible. This leads to the consideration of tnestjon of what is meant by
“correct”. In order to consider a solution “correct” it musdtisfy some objective criteria
and it could be that the spatial mesh resolution required ¢etnthese criteria for one
solution component is inadequate for another. Typicalfjner resolution computational
mesh leads to more accuracy but at the expense of increakamisdimes. Therefore
if the user is only concerned with solution components tihaaaly meet the objective
“correctness” criteria at a certain level of grid resoluatiot may be unnecessary to in-
crease the grid resolution further. However care must bertals not only can solution
components which are not accurately resolved affect otberponents, but in transient
problems the growth of errors in these other components esuitrin completely inac-
curate solutions at later times. In this chapter it is showw laccount may be taken of
some of these requirements when considering accuracynstef the ability to reliably
estimate solution-dependent quantities such as friction.

In order to measure the error in a computational experimestiecessary to measure
how far the computational result is from the true solutionnc® EHL problems only
have an analytic solution in very special cases, the “troditgon will be taken to be that
obtained as the number of points increases, and hence thespasing decreases. In
particular, the “true” solution will be defined here by thanheputed on a very fine mesh,
often termed a “truth mesh” in the computational scienceroomity. Providing the truth
mesh is sufficiently fine, it is possible to model the dissaion error numerically on
much coarser meshes.

In this chapter only the key quantity of friction will be cadsred. The motivation
for this is that in many real simulations being performeds thill be the only quantity
considered by, and of interest to, the user [29].

Investigations into friction have been mainly confined tpexmental work such as
Blencoeet al. [6] and Workelet al.[88]. As will be shown later in this chapter, e.g. Fig-
ures 4.1 to 4.4, the friction appears to be closely relatettairately capturing the profile
of the pressure spike. Work by Bisset and Glander [4] showatiwhen more fine mesh
points are used in the region of the spike then it is no longensas a singularity in the
solution, but a smooth profile. This work only resolved thispising up to 1000 points,
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however it did still highlight the importance of this areatbé solution. Results later in
this chapter show this resolution extended to over a milfieesh points. Further consid-
eration of this area in respect to the elastic properties/egoy Hall [33] and the benefits
of this approach for better accuracy is shown by Lee and H3L1 [4

The consideration of friction will be seen to have great dael@mce on the resolution
of the pressure profile, as will be explained with refererméhe governing equations.
The consideration of the resolution of the single presspileesn a line contact case will
be used as an example which must be applied to the much moeeafjeases of surface
roughness, where sharp pressure spikes will occur thrdwgglength of the contact region.
Accurate resolution of these features will lead to moreatdk computational results for
the key quantities of interest.

Whilst not considered in this work, subsurface stress carepts [38, 44] calculated
from the pressure play a significant role in determining ifee d¢f a bearing. Accurate
resolution of the pressure solution will be equally impatten computing this and other
guantities of interest.

4.2 Friction

As mentioned in Chapter 1, friction is a force which oppos@siom. The friction gener-
ated in an EHL contact is given by the shear stress generathohwhe lubricant. This
comes about through two mechanisms, rolling friction anmec (sliding) friction.

Within the contact, a pressure gradient is generated. $higcause the deformation
of the contact is largest in the centre, requiring the giggiressure to maintain it. As the
two surfaces move into the contact, lubricant is pulled viligm (entrained). However, it
is also squeezed out by the pressure generated in the coegamt, and so the lubricant in
the middle is moving at a different speed to the surfacesingut to shear. The resistance
to this motion is called the rolling friction and forms thestiterm of (4.1) and (4.2) below.

The second mechanism for the generation of shear stresg,happens when the
surfaces are in relative motion, hence sliding frictionw\the lubricant is sheared at the
rate of the difference in speed of the two surfaces per uitktiess. Given the viscosity,
n, i.e. the resistance to shear, the force at any positionaircéimtact can be determined.
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It is possible to derive the shear stress on each surface [65]

ho
TuzalX) = —3 50+ 1 (U= Ua) (4.
ho
Tizb() = 5 50+ (U= Ua). 42

for the lower and upper surfaces moving at spagdsnduy, respectively. From these ex-
pressions it is possible to work out the total (dimensiofrad}ion through a line contact,
F as either

F= / ) Txza(X)dX (4.3)

or

F= /m —Txzb(X)dX (4.4)

depending on which surface is required. In this work, thetitvh on the lower surface will
be used, i.e. equation (4.3), although this choice is alyit(This is a key quantity of in-
terest as it gives a measure of the force opposing the shte lnbricant, e.g. [5, Chapter
6]. Experimentally, the rolling friction and the slidingdtion cannot be measured inde-
pendently, and hence in this work only the total frictionMaé considered, although in
some cases this will be made up of only rolling friction.

4.3 Pressure spike resolution and friction

The speed of modern EHL codes and the computers they are rmmakes it possible to
obtain solutions to line contact problems with up t& Iesh points, as will be shown
below. The quality of the results obtained varies betwead Igvels. This variation
may give a larger error in key quantities of interest, suclthastotal friction defined by
equation (4.3), than just the discretisation error in thespure. For example, the total
error in the friction depends on errors in the pressure dﬂ'ﬂeg—i, the film thickness, the
reciprocal of film thickness and also on the viscosity. As filmtkness depends on all
the pressures, the error in the film thickness at any poinéxdép on all the errors in the
pressure values.

An example of the differing quality of solution is shown inl]3 They considered



Chapter 4 42 Friction as a Quantity of Interest

257 pointls ya

1025 points

2049 points ‘\
08 B / /“J‘ -

0.7 ‘,9‘/‘ \ i

0.6 | : \ .

0.5 r / ‘ i

Non-dimensional pressure - P

0.3 r / \‘ 4

0.2 F / \ 1

-3 > - O 1 |
Non-dimensional distance through contact - X

Figure 4.1: Non-dimensional pressure plot of a line corpaablem with increasing mesh
resolution

increasing the mesh resolution and observed the changetintie primary solutions

and the derived friction. In Figure 4.1, the pressure dstion across the whole domain
is shown. It can be seen that the curves are almost coinaidepart from around the

pressure spike. This area is shown in detail in Figure 4.Zre/the addition of several
orders of magnitude more points has now captured the prespike completely and

appears to have achieved a converged continuous solutiare Work has been done
recently to achieve convergence of the pressure spike with @ fraction of the mesh

points used here, using high order Discontinuous Galerkitefelement solutions [48].

The effect of extra grid resolution can be seen to only atiesshall portion of the pres-
sure plot, namely the spike area, and only to a very smallesiegnce the grids greater
than 4097 points have been reached. However, as Figurdus8ales, an increasingly
refined spike, achieved through finer meshes, has a morelgfibet on the film thick-
ness. Similarly, considering the total friction througle #tontact, as shown in Figure 4.4,
the resolution of the pressure profile, and hence pressuke,sp important if the total
friction through the contact is to be calculated accurately

It is the derivatives of pressure in equation (4.2) that apeeially important in purely
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rolling friction calculations. If the pressure spike is matptured well enough then these
derivatives will not represent the true friction througle tbontact. These derivatives are
also present through the calculation of the shear stresgives in equations (4.1, 4.2).

These shear stresses have an even more extreme profile omisées as shown in

Figure 4.5. It can be seen how the results on grid levels wiherealculated key quantities

have converged are still not capturing the maximum sheassujuite so accurately.

4.4 Domain size

The size of the domain used for the calculation of purelyimglfriction is also very im-
portant. In Figure 4.6, again taken from [31], the calcuddtection against the length of
the negativeX domain is shown, i.e X, for fixed grid levels. It is seen that with very large
negative domains, i.e. large inlet regions, the sengjtviitthe friction to further changes
in the domain size will be negligible. Obviously, for eaclddevel the mesh spacing will
increase as the value ¥f gets larger, however it can be seen from the coincident surve
for the finest meshes that this is not enough to account foctimeergence behaviour
of the friction. The conclusion to be drawn is that the inlegion has a very important
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effect on the friction results calculated, in many cases @086 of the calculated friction.
This result will be significant in the next three chapterssirin all of those chapters, the
left-hand boundary will not be identically placed betweases, so it is important that the
domain is sufficiently large so as to have negligible effelsewthis happens. Fortunately
this result is mitigated to some extent by two factors. Th& fg that the introduction of
some sliding to the contact reduces the increase of friatidmdomain size. The second,
and more important point, is that due to the solution procsssl, the left hand boundary
will only move at most by one mesh point when a finer grid is useghin a more accurate
solution. This means that the domain only needs to be largagimthat a small change
in the size results in a negligible change in the friction.

4.5 Discussion

In this chapter it has been shown how accurate resolutioheoptessure profile leads to
accurate values of computed friction. In the next chapteodehfree boundary problem
is introduced, and this is used to show how adjoint erromesiion techniques can be
used for accurate prediction of the friction on a uniformdyined mesh and also how it
can be applied to driving adaptive refinement.



Chapter 5

A Model Free Boundary Problem

For such a complex and highly non-linear problem as thatrdesttin Chapter 2, itis use-
ful to take several simplifying steps. These facilitateidxetinderstanding of how adjoint
error estimation needs to be applied to each of the varioolsi@m-specific mechanisms
at work. To this end, a sequence of model problems are prdpekeh retain sufficient
similarities to the full EHL problem to be useful, whilst miding a relatively straightfor-
ward set of increments. In this chapter, a linear PDE withea fvoundary is considered,
and in the next chapter this is generalised to a non-line&.FAlthough the PDE consid-
ered here is linear, because the position of the free boyrtigrends upon the solution of
the PDE in a non-linear way, the overall free-boundary problis still non-linear. Force
balance is also present in this model through the separpicametet,.

5.1 Forward problem

This section defines the forward problem to which adjoinbeastimation will then be
applied. First, the mathematical model is described. Thi®liowed by its discretisa-
tion, and finally its solution method. An expression for ¢fion” is also defined and
discretised.

47
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5.1.1 Mathematical model

Although the model proposed here may be thought of as an ipeessible, isoviscous
hydrodynamic problem, this is just a model problem. The &gua have been chosen
to look similar to the EHL equations, but the quantities, lsthieferred to as such, have
no physical meaning. By using this model, the non-lineasitarising from the density,
viscosity, and elastic deformation are removedandp having been assigned nominal
values of unity. The PDE, similar to the non-dimensional iegs equation, after taking
account of andp, is given by:

d [ ,dP dH
d—X<H d—x)—)\d—x_o. (5.1)

With no deformation of the solid bodies, the film thicknessimaply given by the separa-
tion Ho, and the parabolic geometry of the surfaces, thus
x2
H(X) = Ho+?. (5.2)
As usual, the force balance equation is applied, so thattpkeal load is balanced by the
sum of the pressures generated within the lubricant film,

Xe
/)Q P(X) dX = L. (5.3)

The presence of a load, on the right-hand side of equation (5.3) enables a range of
cases to be tackled. This is akin to non-dimensionalisagainst a reference loading, as
is done for transient cases with variable loads, such asGy?[2 87]. The boundary and
cavitation conditions are specified as in the full EHL casehghat

P(Xin) = P(Xc) = P'(Xc) = 0. (5.4)

AlthoughP(Xin) = P(Xc) = 0 is enforced at the boundarid®(X;) = 0 becomes one of
the conditions to be satisfied by the solution. This is addeby finding the value of
X¢ such that the above cavitation condition is satisfied. Thisnknowna priori, and as
such forms part of the set of solution variables which musfdoed. In equations (5.3)
and (5.4)X, is defined to be equal % minus a given, constant, domain sige,As dis-
cussed in Chapter 4, this is chosen to be sufficiently large ast influence the solution
in the contact region, and hence the friction. Precise ldet&iX; and the role it plays in
the solution are detailed in the next section.
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Figure 5.1: A uniform computational mesh
5.1.2 Numerical model

Having specified the mathematical model, it is simple to faate the numerical problem
using finite difference approximations on a uniform gridngsn nodes, numbered=
0,...,n—1, as in Figure 5.1. On this mesh, the valuesptan be calculated b} =
Xc—D+iAX, whereAX is the spacing between the grid points. First, given equdbd),
clearlyg—?( = X. Hence the discretisation of the Reynolds equation, (5it¢s

(Rr-P)H®,  (R-RH®,
I+5 . -5

AX BX AX =0
AX X =0

This approximation is derived using a central differenceath ofi +1/2 andi —1/2,

both of which are second order accurate. The central diffexas then taken between

these two to form the above equation. The second order diggva approximated by the

difference of two first ordﬁgfdfgferences. This uses the filmtkness at the midpoint in
i i+1

the cell, defined alslf’il = ———=. Alternatives to this approximation exist, eh;q?’il =
2 2

(HtHi1)3 . Simplifying and rearranging gives

H3 ,P.1—(H3,+H3 )P+H3 P,
H’? H—? =5 =5
(AX)2

— A% =0, (5.5)

fori=1,...,n—2. The film thickness equation becomes

2

Hi= Hot o (5.6)

with the force balance )
n_
> i +2R+1AX ~L (5.7)
i=
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The cavitation boundary condition in equation (5.4) canierg as shown in Section 2.3,
using a second order backwards difference stencil,

3P 1—4P 2+ P-3 -

0 5.8
W , (5.8)

and Dirichlet boundary valud% = B,_; = 0 are imposed. The cavitation condition above

then reduces to
—4P 2+ Ph3 o

2AX
As previously mentioned, the cavitation position is an@&xinknown to be solved foX.
is the value oiX that satisfies the cavitation condition (5.9). Using a slidyrid (moving
domain), as detailed in Section 5.1.4, the right-hand banndan be moved such ths
is at the cavitation point. In other words, the domgdi, X¢] is repeatedly moved untdc
satisfies (5.9) to within some tolerance.

0. (5.9)

5.1.3 Friction

The friction calculation for the model problem proposedhistchapter is given by

F(P):/X:C (—g—ig+%) dX. (5.10)

In this, x is used to emulate the sliding term in equation (4.3). Thiseisessary for this
problem because the viscosity is simgly= 1, and the individual roller speeds, anduy,
are not defined for this model problem. As sycls taken to be a combination of the two
factors, i.e.x = n(up—U,). By varying it is possible to introduce a sliding component
to the friction, and results are presented that show thigsufficient to illustrate how the
adaptive mesh should change for different sliding valuasci@tising (5.10) over the cell
mid-points, yields

_ "Z(PRy1—PR)
F(P) == i;) %HH

NIl

n—2 X
+ AX. (5.11)
=L
2

5.1.4 Sliding grid solution method

Having defined a system of equations to solve, attentiorrmetiito the solution method.
It should be noted that this solution method has not beegdediwith speed or efficiency
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in mind, rather as a simple, robust way to solve the modellprob The sliding grid
approach outlined below is used because it alldy$o vary continuously, thus easing
the derivation of the adjoint system, and also allowingtaaby accuracy of solving the
cavitation boundary condition.

There are three steps (which must be repeated) to solvinguheerical system as
defined by equations (5.5)-(5.8). They are:

1. Solve the linear system (5.5) fBr
2. Find the correck; for the currentHg (using (5.9))

3. Find the correcHg for the input parameteids andA (using (5.7))

Each of these is discussed in turn, with the overall desonpif the algorithm following
in Figure 5.3.

5.1.4.1 1: Solve foP

The discretisation shown in equation (5.5) leads to a agdnal matrix, which for given
values ofH (and hencéHp), A, AX, andX; (and henceXc), a solution forP is easily ob-
tained using (banded) LU decomposition. Having found thetgm for P, the algorithm
moves on to step 5.1.4.2.

5.1.4.2 2: FindX;

Given a solution foP (solved for in the previous step), the cavitation boundamds-
tion (5.9) can be evaluated. If the gradient is sufficientbse to zero ’(% <
108 in this case), the cavitation poiXt has already been found and the algorithm pro-
ceeds to step 5.1.4.3. If noX; moves according to Figure 5.2. Clearly, in Figure 5.2
(a), the gradient is positive &, and the boundary is too far to the right. Therefoxg,
(and hence the grid) should be moved left. Conversely, inif€i.2 (b), the gradient is
negative because the boundary is too far left, anHsshould be moved to the right.

The new position oiX; is determined by the repeated use of a bisection algorithm.
Given that the cavitation position must be to the right ofd¢betre of the conta¢iX = 0),
and starting with a large value &t (such as that pictured in Figure 5.2 (a)), itis simple to
form the initial solution bracket. At this poinX; is set to be the mid-point of the interval.
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@P(Xc) >0 (b)P'(Xc) <0 ©P'(X)=0

Figure 5.2: The three cases for the right-hand boundary. NA\deeiding how to move
this boundary position, cases (a) and (b) result in the mesVing either left or right
respectively.

ConsequentlyX, is recalculated aX; — D and the values oX; andH; are calculated for
all of then grid points, and the algorithm returns to step 5.1.4.1. Gstep 5.1.4.1 has
been completed again (assuming tRais not yet close enough to zero), one of the right
or left-hand brackets will be set to the valueX depending on the sign & (Xc). Xc
can then be set to the midpoint of this new bracket and theepliwe repeated.

In Chapter 7, where one solve for a given valueXgtakes longer@(n?) compared
to O(n) here), a faster way of findin¥; is introduced.

5.1.4.3 3: FindHp

Having found a solution foP andX., the force balance equation (5.7) must be evaluated.
If the force balance residual, equation (5.13) defined irti&e®.2, is sufficiently small
(again, 10°® for the work in this chapter), the whole system of equaticasteen satisfied
and the solution has been obtained. If it is not, thigmMmust be adjusted according to the
following procedure. The reason for this approach has beptamed in Section 2.4.2,
but is recapped here for convenience. If the sum of the presssicurrently greater than
the applied load, the pressure generated in forcing thédiduough the gap is too large,
andHp must be increased. If the sum of the pressures is less thaapfiieed load, the
pressures generated are insufficient to balance the agpiddand so the surfaces must
move together, i.eHp must be decreased. This happens according to

n—2
Ho « Ho— w <|_— Z) P'+2P'+1Ax> ,
i=

wherew is a relaxation parameter (typicallyDhere). Oncédg has been adjusted, th
values can be recalculated and the algorithm goes backpgdstet.1.
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1 Solve for P
2 If P'(XC) > TOL

3 Then

4 Adjust XC

5 Goto 1

6 Else If FBres > TOL
7 Then

8 Adjust H,

9 Goto 1

10 END

Figure 5.3: Model problem solution algorithm
5.1.4.4 Overall algorithm

The overall process is illustrated in Figure 5.3.

Before moving on to the formulation of the adjoint problem,aternative approach
to the sliding grid method is discussed. One idea which waekpX; as a continuous
variable, would be to fix the left hand boundary of the gridd &concertina” the grid to
find the correct cavitation position. So a solution procedewuld be followed, similar
to that above, only instead of shifting all of the grid poibis the same amount a&
is moved, the mesh points become closer togethef.awoves left, and further apart
as Xc moves right. One disadvantage to this approach would be/tKatvould then
be dependent o, and so extra terms would be introduced into the Jacobiaugir
the force balance and the cavitation condition. Whilst nobasideration for the model
problem introduced in this chapter, a further disadvantadfee full EHL line contact case
would be the need to recalculate the discrete kernel usdekidéformation calculation.

5.2 Adjoint problem

The residual equations implicitly solved for in achieviimg tsolution detailed in the pre-
vious section, are listed here fo= 1,...,.n— 2,

Hi:i_lpl—kl_(Hiil+Hi:3_l)R+Hi:3_lR—1
R=AX[AX— —2 Z(AX)Z 2 2 =0, (5.12)
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along with,
n—-2
P+R
Ryg=L—§ +2 LAY =0, (5.13)
i=
and 3P, 1—4P, »+P
Ry — 1= 2t (5.14)

20X
Unlike standard pointwise finite difference residuals agsed with the discretisation

of the Reynolds equation, the residual equations here hese multiplied through by
AX. In order to understand why this scaling is necessary, imigartant to remember
what is happening. The solution of the adjoint system shgiud the sensitivity of the
friction calculation to the residuals [77]. Since the figet is an integral quantity, each
pointwise shear stress value is effectively multiplied bg area over which it is acting,
AX. Equally, in order to find the total effect of each residuaimust be multiplied by
the area over which it acts. This makes the finite differeeséduals roughly analogous
to finite element residuals. So now, each element of frictalculated is related to an
equivalent element of residual. The other two residualsaggns (5.13) and (5.14), have
no need for such scaling. This is because the whole integrapated when calculating
the friction is sensitive to botHg andX.. This means there is no mesh dependence of the
right-hand side of the adjoint, and so no scaling is necgssar

For uniform meshes it is equally valid to remove the mesh ddpecy from the right-
hand side of the adjoint system and use standard finite €iféer residuals to get the
adjoint system, i.e. relate pointwise residuals to poisénriction values. This is because
all of the grid points contribute equally to the overall qtigncalculated. However, this
approach is not valid for non-uniform meshes, because nouatds then taken of the
amount by which a particular element contributes to the @lVguantity calculated, and
so the effect on the friction from coarse regions of the meshld/be underestimated.

5.2.1 Jacobian

Here, the non-zero entries in the Jacobian, made up of theatlees of the residu-
als (5.12)-(5.14) with respect to time- 2 pressuredily andX., are presented.

Once transposed, these form the system of equations to\exdol the adjoint prob-
lem (3.8). The first terms to consider are those associatddthe Reynolds residuals.
Clearly, each residual equation depends on three pressiegzressure at the same place,
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and the ones on either side:

3 3 3
oR Hi*% R _ H' %+H 3 R Hi+%
oP_1 AX |’ oP AX ’ oP 1 AX |’

giving the Jacobian its main tri-diagonal structure. Theeotwo terms on each row of
the Jacobian are

2 2 2 2
0—R|:_3 HH_%PH—]._(HH_%+Hi_%)P|+Hi_%PI—1
JHo AX
WhereHZil _ H +2H|il and
2 2 2
@:)\_3 H_%HJrl (‘S 1+‘9 %)R‘*‘gi_%ﬁfl
0Xc AX
H2Xi+H2  Xiz1
wheregil = ———=——. The remaining terms to consider come from equations (5.13)
and (5. 14)
17} 17}
RHO:—AX, RHOZO, RHO:Q
0P JHp 0Xc
ORx, _ 1 ORx, _ 2 aRxCZO IRy, o
0Py 3 2AX’ 0P, > AX’ JdHo ’ 0Xc

The structure of the Jacobian therefore is an arrow, as shoWwigure 5.4.

5.2.2 Adjoint right-hand side

Here, the values for the right-hand side of the adjoint sysdee derived. These represent
the sensitivity of the friction to each of the variables.

First, the discrete friction calculation, (5.11), is résthas

|+1— Z)

OM T
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Figure 5.4: Model problem Jacobian sparsity pattern
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The sensitivities of this sum to the pressure variaBleg = 1...n— 2, are given by

Next, the sensitivity tddg is considered. Noting th#HﬂO =1,

oF n—2 |+1_P| n_2 —X
- — _ + AX (5.15)
— _w_nzj H)Z( AX. (5.16)
i=0"%1
Given that since
P(Xin) = P(Xc) =0, (5.17)

Po=P,_1 =0, itisimmediately clear the first term is identically eqtmakero, and so the

expression becomes
oF "2
Ty X ax
JdHp H2
2
Last, the sensitivity to the cavitation boundary positi¥g,is found. By taking only the
first term of the integrand in equation (5.10), and noting tgg’é = X, the expression

becomes
oFt "PRa-R

X & 2

Finally, considering the second part of (5.11),

an - X'+2AX
H

i+3

which put altogether, gives

5F n—2 1+1— )<|+2

% & 2 %

5.2.3 Sparse matrix solution method

AX.

The numerical package used to solve the adjoint system defirthe previous two sec-
tions is SPARSKIT [64]. The sparse matrix format used is thepressed row format,
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and the specific method is ILUT preconditioned GMRES (Gdrsa@ Minimal Resid-
ual).

5.3 Results

In this section, a series of results are presented startittgumiform meshes and global
refinement. This is followed by non-uniform adaptivity, \d#n by the adjoint solution.
The method provides similar tables of results for all loggdiand so a single representative
case is presented in detail here.

5.3.1 Uniform mesh results

Before considering a sequence of locally refined meshegltsesn uniform meshes are
presented. This case has been solved for a nominal loag-.0, and sliding parameter
X = 20.0. Table 5.1 shows the performance of the predicted errohénftiction, as
calculated using the adjoint approach, by comparing it whehtrue error when solving
on the next mesh. Note that in this context the term errorésius mearf (ul) — F (up)

(as opposed t& (ut!) — F(u) whereu is the unknown exact solution of the continuous
problem).

The first column of the table shows the grid level for the ceads the two grids, and
has a number of points equal t8'2 + 1. Using the solution from this grid, interpolated
onto gridg+ 1, a friction value is calculated which is shown in the secooldmn. Col-
umn 3 shows the correction to this friction, as calculatadgighe adjoint system solved
on the coarse grid. The corrected friction is shown in column 4, with the “trdettion
value for gridg+ 1 shown in column 5. The measured error between columns 2 and 5
is shown in column 6. The final column shows the ratio of the sue=d error to the
estimated error (known as the effectivity index). One of ¢keatral beliefs of this work
is that with increasing mesh resolution the estimated eshauld become increasingly
close to the measured error. This is because the higher taxdas not accounted for in
the Taylor expansions in (3.3) and (3.1) will become lessifiant with increasing mesh
resolution, so the system solved will be a better approxonaSince the effectivity index
can be seen to approach unity as the number of mesh pointsngedses, this gives a
strong indication that for uniform grids the friction errestimate is remarkably accurate.
The “correction” procedure can therefore be used with a highree of confidence. If
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Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv.
(9) Fric. (9) correction | Fric. (9) (9+1) Error Index
5 87.95668 | 15.27956 | 72.67711| 68.02241| 19.93427 | 1.304
6 68.67781 | 2.64095 | 66.03686| 66.37680| 2.30101 | 0.871
7 66.52919 | 0.31057 | 66.21862| 66.31442| 0.21477 | 0.691
8 66.35216 | 0.01504 | 66.33712| 66.34818| 0.00398 | 0.264
9 66.35761 | -0.00255 | 66.36015| 66.36125| -0.00365 | 1.432
10 66.36361 | -0.00124 | 66.36484| 66.36496| -0.00135 | 1.094
11 66.36555 | -0.00037 | 66.36592| 66.36593| -0.00038 | 1.035
12 66.36608 | -0.00010 | 66.36618| 66.36618| -0.00010 | 1.016

Table 5.1: Adjoint based inter-grid friction error on unifio meshes for a model free
boundary problemt. =5, x = 20.0

the adjoint solution were not available, it would be necastakeep computing on finer
and finer grids until the friction changed by less tlgmat which point the last (and most
expensive) solution does not yield a friction value thaigndicantly more accurate than
the previous. By using the adjoint estimate, the same acgwrdl be achieved without
the cost of computing a solution on the finest mesh in thisesecgl This is a significant
computational advantage.

Having considered in detail the case in Table 5.1, more tean presented for three
different values ofy; 0.0, L0 and 20. These are given in Tables 5.2 to 5.4. In addition,
Table 5.5 shows the predicted correction when the cornectoonponents from thidg and
Xc adjoints are neglected, and only the corrections fromRlaaljoints are used. In this
case the effectivity index not only does not converge to aevaf 10, but is approximately
a factor of three out. This shows the importance of the modetwand the subsequent
adjoint formulation.

5.3.2 Non-uniform and adaptive mesh results

Table 5.6 shows that with non-uniform meshes the adjoimdrerstimation approach is
still reliable, in the sense that the ratio of the predictedection to the actual difference
in friction on consecutive meshes still tends to one as thehe®are refined. Note that
in order to obtain these results global mesh refinement,doapen element bisection,
has still been used, but now the initial mesh (and hence bBBesguent meshes) is non-
uniform. Clearly the residual equation (5.12) at an integfé@etween different levels of
refinement must take account of the non-uniformityAld. One approach would be to
define a different finite difference stencil based on theeddhtAX either side of the
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g gridg error between| computed effectivity
func. value| gridsg,g+1 correction index
5 | 5.503589 | -7.354570e-01 -6.906117e-01 9.390238e-01
6 | 4.768132 | -3.514585e-01 -3.694314e-01 1.051138
7 | 4.416673 | -1.833214e-01 -1.876365e-01 1.023538
8 | 4.233352 | -9.324546e-02 -9.410017e-02 1.009166
9 | 4.140107 | -4.689058e-02 -4.708537e-02 1.004154
10| 4.093216 | -2.350241e-02 -2.354944e-02 1.002001
11| 4.069714 | -1.176439e-02 -1.177598e-02 1.000984
12| 4.057949 | -5.885350e-03 -5.888227e-03 1.000489
13| 4.052064 | -2.943447e-03 -2.944163e-03 1.000243
14| 4.049120 | -1.471914e-03 -1.472092e-03 1.000121
15| 4.047649 | -7.360050e-04 -7.360488e-04 1.000059
16| 4.046913 | -3.680116e-04 -3.680250e-04 1.000036

Table 5.2: Adjoint based inter-grid friction error on umife meshes for a model free

boundary probleml. =5, x = 0.0

gridg
func. value

error between
gridsg,g+1

computed
correction

effectivity
index

8.550387e+0(
7.720641e+0(
7.414090e+0(
7.287840e+0(
7.226455e+0(
7.194833e+0(
7.178650e+0(
7.170452e+0(
7.166326e+0(
7.164256e+0(
7.163219e+0(
7.162700e+0(¢

-8.297460e-01
-3.065513e-01
-1.262497e-01
-6.138486e-02
-3.162180e-07
-1.618346e-02
-8.197283e-03
-4.126227e-03
-2.070142e-03
-1.036843e-03
-5.188670e-04
-2.595404e-04

-3.698735e-01
-2.688710e-01
-1.310124e-01
-6.465935e-02
-3.269289e-07
-1.648038e-07
-8.274910e-03
-4.146044e-03
-2.075144e-03
-1.038098e-03
L -5.191804e-04
L -2.596229e-04

4.457671e-01
8.770834e-01
1.037724e+0(
1.053344e+0(
1.033872e+0(
1.018347e+0(
1.009470e+0(
1.004803e+0(
1.002416e+0(
1.001211e+0(
1.000604e+0(
1.000318e+0(

Table 5.3: Adjoint based inter-grid friction error on umife meshes for a model free

boundary probleml. =5, x = 1.0
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«Q

gridg
func. value

error between
gridsg,g+1

computed
correction

effectivity
index

o0 ~N o o1

9
10
11
12
13
14
15
16

1.159718e+01
1.067315e+01
1.041151e+01
1.034233e+01
1.031280e+01
1.029645e+01
1.028759e+01
1.028296e+01
1.028059e+01
1.027939e+01
1.027879e+01

1.027849e+01

-9.240350e-01
-2.616441e-01
-6.917809e-02
-2.952425e-072
-1.635302¢e-07
-8.864516e-03
-4.630173e-03
-2.367103e-03
-1.196836e-03

-6.017713e-04 -6.041047e-04
-3.017290e-04 -3.023121e-04
-1.510691e-04 -1.512208e-04

-4.913524e-07
-1.683107e-01
-7.438827e-02
-3.521853e-02
-1.830042e-07
-9.411308e-03
-4.773844e-03
-2.403861e-03
-1.206125e-03

5.317465e-02
6.432811e-01
1.075316e+0(
1.192868e+0(
1.119085e+0(
1.061683e+0(
1.031029e+0(
1.015528e+0(
1.007761e+0(
1.003877e+0(
1.001932e+0(
1.001004e+0(

Table 5.4: Adjoint based inter-grid friction error on umife meshes for a model free

boundary probleml. =5, x = 2.0

«

gridg
func. value

error between
gridsg,g+1

computed
correction

effectivity
index

00 ~N o O

9
10
11
12
13
14
15
16

1.159718e+01
1.067315e+01
1.041151e+01
1.034233e+01
1.031280e+01
1.029645e+01
1.028759e+01
1.028296e+01
1.028059e+01
1.027939e+01
1.027879e+01
1.027849e+01

-9.240350e-01
-2.616441e-01
-6.917809e-07
-2.952425e-02
-1.635302¢e-07
-8.864516e-03
-4.630173e-03
-2.367103e-03
-1.196836€e-03
-6.017713e-04
-3.017290e-04
-1.510691e-04

-1.209958e+0(
-4.992491e-01
-2.360559e-01
-1.150627e-01
-5.685207e-02
-2.826390e-02
-1.409213e-02
-7.036178e-03
-3.515625e-03
-1.757197e-03
-8.784450e-04
-4.391841e-04

1.309429e+0(
1.908123e+0(
3.412293e+0(
3.897226e+0(
3.476549e+0(
3.188431e+0(
3.043542e+0(
2.972484e+0(
2.937431e+0(
2.920041e+0(¢
2.911371e+0(
2.907173e+0(

Table 5.5: Adjoint based inter-grid friction error on unifio meshes for a model free
boundary problemt. =5, x = 1.0. Only theP components of the estimate were used in
calculating the estimate, not tig or X; contributions for this case
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(¢) —K—K+>K+

Figure 5.5: Three possible finite difference stencils fa ifiterface between refinement
levels. Case (a) shows the stencil for a fine mesh point. Tthedad value would need

recovering from the neighbouring points; Case (b) showscds®e for a non-symmetric
stencil. Care would need to be taken over the weightingsehtide values to preserve
second order accuracy; Case (c) shows the coarse gridlstdmch is used in this work

interface. A further approach would be to treat the intexf@oint as a fine grid point,
using interpolation to get values for the missing mesh pomtthe coarse side of the
interface. The approach taken here, however, is simpletd the equation at the interface
as a coarse grid point. This is the simplest approach, shmeedarse stencil can now be
applied to the interface point by ignoring the first mesh paoin the refined side of the
interface. The three different approaches are illustratédgure 5.5.

Having demonstrated that the predicted error is still l&aon non-uniform meshes
it is now possible to use these values as the basis for loatder than global, mesh
refinement. It should be noted, however, that the correctadue given by the last term
in equation (3.9) is just a single number indicating the enterror in the friction and so
further information is required in order to determine wh#re contribution to this error
is the greatest. In the following example we base the lodalement on the magnitude
of (WH); x (Ra(ull))i locally, and refer to this as the correction component of sint
i [77]. Figure 5.6 shows the computed correction componesrtssa the domain after a
number of local refinements have been undertaken. In this tlas sliding-like friction
X has been set to a value of 20, with the |dadet to 50. Starting from the left it may
be seen that the contribution to the estimated frictionregradually increases until the
first region of local refinement is reached, whereupon it dreygddenly. The contribution
to the error then grows again until the next region of locéihement is reached, and so
on. The contribution to the error is always kept below an isgmbtolerance of 10 in
this particular example. The dark regions of the graph aeetduhe oscillating nature
of the residual. Figure 5.7 shows the overall effectiveradshis strategy compared to
the use of uniform mesh refinement. In this case the plot ifi@fetror in the friction
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absolute value of correction vector
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Figure 5.6: Plot showing the absolute value of the correctiector, and how it is dis-
tributed through local mesh refinement, for a model free blamy problem;L = 5,
X =200

(as compared against a friction value calculated on a deecéiruth mesh” containing
approximately 250 000 equally spaced points) versus tle¢ moimber of nodes present
in the mesh. Unsurprisingly the uniform refinement strateggverges most slowly, the
next curve shows the error in the friction on the locally refiadapted) mesh, whilst the
final curve shows the error in the corrected friction valuglomadapted mesh. Figure 5.8
again shows the computed correction components acrossothaid, but this time for
pure rolling friction (x = 0.0). A similar refinement pattern is shown, but the refinement
levels are more spread out through the domain, indicatiag #s expected, a different
refinement is required for a different functional.

5.4 Summary

Results have been presented which show that the adjointestionation approach may
be used effectively for a non-linear incompressible iscoiss hydrodynamic lubrication
model problem containing a free boundary due to the caeiatondition. The effectivity
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Figure 5.7: Plot showing error reduction for uniform and piakge grids for a model free
boundary probleml. =5, x = 20.0

Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv.
(9 Fric. (g) correction | Fric. (g) (9+1) Error Index
5 87.66173 | -4.56301 | 92.22474| 67.98769| 19.67404 | -4.311
6 68.65988 | 2.62800 | 66.03187| 66.36806| 2.29181 | 0.872
7 66.52502 | 0.30892 | 66.21611| 66.31220| 0.21282 | 0.688
8 66.35111 | 0.01462 | 66.33649| 66.34762| 0.00348 | 0.238
9 66.35734 | -0.00266 | 66.36000| 66.36111| -0.00377 | 1.417
10 66.36354 | -0.00127 | 66.36481| 66.36492| -0.00138 | 1.093
11 66.36553 | -0.00038 | 66.36591| 66.36592| -0.00039 | 1.035
12 66.36608 | -0.00010 | 66.36618| 66.36618| -0.00010 | 1.016

Table 5.6: Adjoint based inter-grid friction error on noni#iorm meshes, each with the
same refinement pattern, for a model free boundary problem5, x = 20.0
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Figure 5.8: Plot showing the absolute value of the correctiector, and how it is dis-

tributed through local mesh refinement, for a model free blamy problem;L = 5,
x =00
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of this estimate on uniformly refined meshes may be used tagea reliable stopping
criterion without the need to solve on the finest mesh. Moeeavis demonstrated that
adjoint variables corresponding ¥@ andHg are required to ensure quantitative accuracy
of the error estimate. Furthermore, the components of theection term are shown to
provide an appropriate basis for determining where to rdéinally. The resulting meshes
can yield solutions of a considerably greater accuracyeiims of friction, for example)
than obtained on correspondingly sized uniform grids. Tokmowledge this is the first
time that a free boundary problem has been solved adaptinelyis manner, and the
results have been published in [34] and [35]. Although threselts are promising, it is
also clear that more sophisticated refinement proceduids asithose presented in [79]
and [3], may pay dividends. However, the main focus of thieagch is on applying
adjoint techniques to full EHL cases. Thus, although autammefinement is introduced
to the full EHL problem in Chapter 7, the attention in the dleap that follow is largely
on extending the model. In the next chapter, the applicatidhe adjoint error estimation
will be extended to a full hydrodynamic lubrication testeas



Chapter 6

Hydrodynamic Lubrication

In this chapter, a compressible piezo-viscous hydrodyodubirication problem is intro-
duced. This is an industrially relevant problem that wilhaeas an intermediate step
between the model problem of the previous chapter and th&HIL problem described
in the following chapter. An analysis of the formulation dktresidual equations, and
hence the Jacobian, will facilitate an understanding o&itljeint error estimation proce-
dure when applied to complex systems of equations, and héatesed for EHL. Two
different approaches will be explored: one based upon a pamth Jacobian; the other
an ‘expanded’ Jacobian. This is because the variables $oosity and density can be
considered either as functions of P or as independent vasabtheir own right.

Hydrodynamic lubrication is a physical phenomenon founcmehthe contact area
is sufficiently large, or the load is light enough, such thatodmation of the contacting
components does not occur or is negligible. Pressure iggttkto separate the surfaces
through motion of the lubricant (hence the name dynamic)s $tudy of hydrodynamic
lubrication, whilst not the main goal of this work, will prewseful in that it augments
the previous model problem with both non-linear viscosityl @aensity, thus taking it a
step towards the full EHL regime. However, since the surfg@emetry is considered to
be fixed, there is no global deformation calculation whichaneethat the Jacobian of the
discretised system of equations is still sparse.

67
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6.1 Forward problem

To begin this section, the mathematical model underlyindrbglynamic lubrication is
defined, followed by the discretised equations. Followimg,ta brief description of the
solution method is given, indicating the main differencesf that given for the earlier
models. Sample forward solutions are also given.

6.1.1 Mathematical model

The non-dimensionalised mathematical problem is definetheyfollowing equations:
The Reynolds equation

0 (pH30P\ d(pH)
a—x(ﬁa—x)‘ ox 0 ©.1)
and the film thickness )
H:Ho+x?. (6.2)

The viscosity is defined using the Barus equation [2],
n=em, (6.3)

whilst the density is given by [17],

0.59x 10° + 1.34Pp,

0= A4
P="0B9x100+Pp, (6.4)

As before, force balance is specified according to
/ P dX = 7—2T . (6.5)

As stated, the Barus viscosity model is used for viscositthis chapter. The Roelands
model [62] has been shown to fit the empirical data bettergit liads, but this adds little
extra to the analysis at this stage, other than unnecessarplication.

6.1.2 Numerical model

By discretising the above equations on a regular mesh ubiadinite difference sten-
cils defined earlier, the following set of discrete equadican be found. The Reynolds
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equation becomes:

(Pii—-PR)e 1 —(R-R-1)g_ 4 PiHi—pi_1Hi1
( (Ax)z ) o ( AX : ) =0, (6.6)

3_ . . 2 . -
'}'—ﬁpi', £ir1 = (& + &+1)/2 andH; is given byH; = Ho + x|7 The viscosity

equation is simply

whereg =

ﬁi = eﬁF’,, (67)
and the density equation becomes:

_ 059x10°+1.34Rp;

o 6.8
! 0.59x 10°+ PR pn (©-8)
Finally, a discrete force balance equation is required
n—2
R+Pi1 m
AX = —, (6.9)
i;) 2 2
along with the boundary conditions:
3P1— 4P 2+ Py
R=P1=0, Rg=-—nt-2n2ths (6.10)

20X

Before going on to talk about the residual equations in metaitj and the corresponding
adjoint problem, the solution process is briefly outlined.

6.1.3 Solution process

The solution to the forward problem is obtained in a similamer to that proposed in
Chapter 5, with a small number of minor differences. The nigidrodynamic solver
solves the equations (6.6)-(6.9) so that, as well as oloigisolutions for the main vari-
ablesP, T andp, the force balance equation is satisfied. This uses mutigriefficiency
and solves by setting the pressure after the cavitatior poime zero.

There is no deformation term in the film thickness equatianthe film thickness
values are only updated whéiy changes. This leaves only the free boundary equa-
tion, (6.10) to be satisfied. The procedure used in the pusvabapter is repeated here,
I.e. moving the computational mesh according to a bisecobreme until a value of; is
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found which satisfies equation (6.14) to within some toleearOne slight complication
with this occurs after the first solve, when the cavitatiomp@s not at the right-hand

boundary. This means the cavitation pressure gradient ateddrom the last non-zero
pressure points can not be relied upon to move the compo#tdomain in the correct
direction. This is easily remedied though, since whendweichvitation point is found at
a mesh point to the left of the right-hand boundary, the riggndd boundary is moved to
the location of the cavitation position for the next solvéhaugh in the next chapter a
more reliable method is introduced to find the cavitationifims). By using a continua-

tion strategy to provide initial guesses into the black-bolver, the solution can be found
increasingly quickly with subsequent solves [29]. This Bb® been found to counter-
act the occasional stalling of the numerical convergendechvappears to result from
incorrect boundary positions, which can sometimes imersolution procedure.

6.2 Adjoint problem

As in the earlier chapters, the steps used to calculate theatimn in a computed quantity
of interest are as follows:

e Solve for the forward solution;

Solve for the adjoint solution;

Interpolate both solutions from the coarse grid to the find;gr

Calculate the fine grid residuals using the interpolatedsmogrid solution;

Multiply the adjoint by the residuals to obtain an estimatethe correction term.

This hydrodynamic problem provides a useful test as to h@wvekidual equations should
be defined and used. Firstly, two different ways that thedresiequations can be formu-
lated are introduced. Following this, the derivation oflbabrresponding Jacobians is
included. In order to aid comparison of the two methods, f@gl6.1 and 6.2 show the
sparsity patterns of the Jacobians in each case.
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6.2.1 Residual equations

The residual equations can be formulated in at least two wayss is because we can
treat the variables representing viscosity and densitythsréprimary” or “secondary”
dependent variables. For this problem, clearly the inddpetivariable is<. Similarly, it

is clear thaP is a dependent variable. However, it is not immediatelyroldzetherp and

1 should be considered as in the same clads.ds is definitely the case that as part of
the solution procedurég andn are calculated, and at the end, values are known for these
important quantities. One approach therefore is that theylsl have residual equations
and hence corresponding adjoint variables to indicate ¢émsisvity of the quantity of
interest to them. Alternatively, one could use equation3)(&nd (6.4) to eliminatp and

1 by writing them explicitly as functions d?. In this case, there are no residual equations
and hence no corresponding variables in the adjoint system.

In the following subsections, these two different appre&scare explained.

6.2.1.1 Expanded equations

This approach treats (6.3) and (6.4) as equations to bedwlik all of the other residual
equations. As always, the Reynolds residual is given by

PiHi — P (Hi1 (Pii—-PR)e 1 —(R-R-1)g_ 4
R = AX(( Ax1 )_< (AX)2

o (Rr1—PR)g, 1 —(R—R-1)§_1
= (PiHi—Pi_1Hi1) - ( ZAX z (6.11)
o g 1Pi— (g1 +& 1)R+&_1R 1
= (piHi—p;_1Hi-1) —( 2 : A% 2 2 (6.12)
whereg; = '}Lﬁﬁl' £l = (& + &+1)/2 andH; is given byH; = Hp + x'; Equations (6.11)

and (6.12) are simply two equivalent ways of grouping thentgerwhich will both be
useful for the derivation of the Jacobian later on. Again fitiee balance residual is
given by

m "PR+Pi

AP

AX, (6.13)
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and the cavitation pressure derivative corresponding ¢oftbe boundary condition is

given as
3Pn—1 - 4Pn—2 + I:’n—3

20X
In this expanded equation model the equations for the vilgcaisd density residuals are
also included. The viscosity residuals are

(6.14)

Ry, = —

Ry = X (eﬁF" . m) : (6.15)

and the density residuals are

059x10°+1.34Rpy  _

Rpi:AX( 059 10 1 P pi). (6.16)

6.2.1.2 Compact equations

The alternative approach considered here is to peandn] as given functions oP. In

this sense, the viscosity and density are not really soleedtt rather eliminated, to be
replaced by expressions fBr For this reason we make a distinction between “primary”
and “secondary” dependent variables: primary dependeighlas @, Ho, X;) are those
which are solved for, and so are independent of each otherask secondary dependent
variables {7, p) are merely used to aid the solution process, and are depeadesome
other variable (in this case). There are two consequences of this. The first is that only
equations (6.12) to (6.14) need be considered when formgl#te discrete system. The
second is that the resulting Jacobian becomes more congaitaderive, ag andp are
quite complex expressions (in termsk)t

In terms of efficiency of solution, clearly the compact smintis likely to win out,
as the expanded version is almost three times as big (fordaagm mesh points, the
compact Jacobian will ben@t-2) x (n+ 2), while the expanded will have 13+ 2) x
(3n+ 2) entries). This larger system is likely to take signifi¢aridnger to solve, and
while in this work efficiency is not the main concern, a fadtwos large is an important
consideration.
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Figure 6.1: Expanded Jacobian sparsity pattern for theddyaramic line contact prob-
lem

6.3 Jacobian sparsity for the expanded system

In Figure 6.1, the sparsity pattern of the Jacobian is shdwars is block tri-diagonal with
two additional lines on the outer rows (for the free boundamy force balance equation)
and outer columns (for the cavitation boundary positigg, and separation parameter

Ho).

6.3.1 Expanded Jacobian derivation

In order to derive the values of the non-zero entries shoviigrs.1, we begin by deriving
some dependencies of various term uppm; andp;. SinceP, 177, andp are considered

2
primary dependent variables (as defined earlier), éhly- X'7 needs to be considered as
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a secondary dependent variable. Hence

OH; OH; OH;

= — = — :O,
o] — om; ~ dp;
however IH H
i oHi _ o
d—Ho_l’ and % X.

This final equality follows from the fact thag is defined ag: — D +i x AX (whereD is
the domain size), and 5% = 1. Also, giveng; defined above, when= | it follows that:

0&
-0
0P ’
98 _ PP
ony  AmY
ds _ W
ap; AT
Whenj # i these terms are zero, with
s _ 3piH?
0H0 N /\ﬁl ’
5& . 3)<iﬁiHi2
OXc AT

Hence, we see that

dgii% d <Eiil+8i) _0

oPR, oR, 2
and similarly,
ars __1pH? 08} _ 1P, (6.17)
on, 2 A2’ oNit1 2 Mty
05&% 1 H3 ‘95&% 1 HYq (6.18)
ap;,  2AW;’ OPit1  2AMiza’ '
0€ .1 5H2  3p;.H?
i+2 :i 3p_,H, n pEl E= (6.19)
oHo 22\ T Ni+1
55&% 1 3XiﬁiHi2+3XiilﬁiﬂHi2i1 (6.20)
0X:  2A n; Mit1
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These expressions are now used in the evaluation of the idacdtdelf.

6.3.2 Differentiating the R; residual equations

Using (6.12),

R (G TE& g R (&4} R (&}
or AX " 0Py ING AT NGA

Other\leed—R' = 0. Also, using (6.11) and (6.17),

B () (2 () (2)
on; BX 20777 AX AT
ﬁiHig) <P|+1 — 2R+ Pl—l)
= 6.21
(2 AR, (6.21)
oR PipaH (P|+1— P.)
oMiy1 2AMfia ax -
R [Pio 1H|31 (R—R—l)

oni_1 21 axX )

Other\leegTR' =0. Using (6.11) and (6.18),

B () () - () ()

_ H? Py1—2R+R_1

- (o) () 622
oOR _ ( HY (P.H—P.)

9P 1 2A i1 AX )’

0Ri - _ Hi3,1 I:)|_F)|71
opi-1 TRt <2Aﬁi1 AX )

Otherwis e% 0. Finally, using (6.11) and (6.19),

R
oH, ~ PiTPi-1)
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1 (P|+1—P|) 3HP; n 3HZ 1Pi 11
2A AX ni Nit1

R - P|1) 3H?2p; 3Hi2_1ﬁi71
— — , 6.23
( AX < ’7| '7i71 ( )

and, using (6.11) and (6.20),

R

ax, = XiPi—Xaby )
1 [(Pu1-R) (3%H?p, 3Xi+1Hi2+15i+1
2) AX i Nis1
P _p,_l) 3XH?p; 3Xi71Hi271ﬁi—1
B 1" _ 6.24
( AX ( n; Ni-1 (624

6.3.3 Differentiating the Rg. equations

The derivatives of (6.15) are straight forward to evaluate:
dRﬁi — 0P, dRﬁi s
d—P._AX<ae ), d—Pj_O(lgéj),

dRﬁi _
o

6.3.4 Differentiating the R5 equations

Similarly, the derivatives of (6.16) are relatively straitprward:

R, ax (059 10°+ Rpn)1.34pn — (0.59x 10° + 1.34R pn) pn
P (0.59x 109+ P pn)2

(0.59x 107 x 1.34pp) + (1.34p2R) — (0.59x 10°pn) — (1.34p2R)
(0.59x 10°+ R pp)2
B AX< (1.34— 10059><109ph)

(0.59 % 109+Pph)
0.34x 0.59x 109ph)

= X
(0.59%x 10°+ P p,)2
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dRﬁi_O. .
o"—Pj_ (i#1i),
R
Py
on;
— =—-AX, —=0(i )
35, b, (i#])
0Ho oXe

6.3.5 Differentiating the Ry, and Ry, equations

The final two equations in the system are also easy to diffeten For the force balance
residual:

ORy, .
o"'—Pj__AX’ for j=1,....n—2, (6.25)
and
ORy, _ ORH, _ ORH, _ ORy, _0
on; op; JHo 0Xc '
For the free boundary residual:
ORx, 1 ORx, 2
0P,z  2AX’ 0P_» AX’ (6.26)
ORx, :
0—Pj_0(j<n—3), (6.27)

and
ORx, ORx, ORx, ORx, 0

on; dp; dHo X

6.3.6 The right-hand side of the adjoint system

Recall from the previous chapter that the right-hand sidiefdiscrete adjoint system is
the derivative of the quantity of interest with respect te tependent variables. In this
example, dimensional friction is considered, whereandm, are the dimensionalising
parameters multiplying the non-dimensional variables.
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Letmy = z_tF)ex andnp = ”f’bRX. The friction is then given by:

X _
F_ ( oPH 1]

. mlﬁermzH(ub—ua)) dX.

In discrete form, this quantity may be expressed as

n-2 — —
_ ~(Rs1—R\ (Hipi+Hi Mit1tNi B
=g, () () e (R o o

Hence it is possible to differentiate with respect to eackhefprimary dependent vari-
ables:

d_F_m Hj 1+ Hj _Hj+Hj_1
P, 4 4 ’
oF Up — Ug Up — Ug )
— =Ny + AX,
0!’]]- (Hj+1+Hj Hj+Hj_1
oF
ﬁﬁj

=0,

oF & Ra-R

- T M2 2

_ 2m22j< Misa+ 1 )(ub—ua)AX, (6.28)

H|+1+H

and

JF n? i i

0Xc
B Nig1+1Mi) X|+1+Xi)) B
mg§ < (a1 H)2 (Up — Ug)AX.

The adjoint system of equations consists of the transpo#eeafacobian matrix with the
above terms forming the right-hand side vector.

6.4 Jacobian sparsity for the compact system

We continue to consider a mesh withnode points, however we now eliminageand
p by expressing them explicitly in terms & Figure 6.2 shows the sparsity pattern for
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n-3 n-2

R, | X X XX
R, | X X X X X
R, | X XX X X
R, X X X X X

X e, ..

n-2

Hy ><><><><'
x X X

c —

X
n-3 ><
X

A 0 A0 XD

Figure 6.2: Compact Jacobian sparsity pattern for the hdydramic line contact problem

the resulting Jacobian of this compact system. It has thesgqzattern for theR; x P
block as in Figure 6.1, however this block is augmented wigh jwo additional rows and
columns. The non-zero entries for the main tri-diagonatklare more complicated to
evaluate than before so we begin by writing the residualsrofut|.

The Reynolds residuals, foe=1...n— 2, are given by

piHi—P; Hi 1 (Rr1—-R)g, 1 —(R-R1)g_
R = Ax(( Ax1 >_< (AX)2 ))
((F’.H—P) 1~ (R=P_1)g 2)

(6.29)

- (ﬁiHi _ﬁi—lHi—l) B AX

&, 1R1—(§, 1+& 1)R+g 1R 1
- (ﬁwn—ﬁpim_o——<'+2 2, (6:30)
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35.
whereg; = '}i—ﬁpi' andeii% = (&§+&+1)/2. Also,H;, 17;, andp; are given respectively by

~ 059x10°+1.34Rpy,

T
Hi=Hot >, M=%  P=45ex101Rp,

The boundary conditions are imposed by requififag= R,_1 = 0. The force balance and
free boundary residuals are as before:

n—-2
R4PR
RHO:7_T_ %%AX, (6.31)
i=

and
o 3Ph1—4P 2+Ph 3

Rx. 21X

(6.32)

6.4.1 Compact Jacobian derivation

In order to simplify the Jacobian calculation, we first diéfetiate the secondary depen-
dent variables dependent variablés i7; andp; with respect to the primary dependent
variablesPj, Hop andX.. Whenj =i,

OH; OH; OH;

0—Pj =0, 0—H0 =1, R =X
oni 0 ap_ ~ap on; IJn; .
op _om. 0TI R T e T
dp,  (0.59x 10°+ P pn)1.34p,— (0.59x 10°+ 1.34R pp,) pn
op (0.59% 10°+ P pp)?

(0.59x 107 x 1.34pp) + (1.34p7R) — (0.59 x 10°py,) — (1.34p?R))
(0.59% 10°+ P pp)2
_ [(1.34-1.0)0.59x 10°px
B ( (0.59% 10°+ P pp)2 )
[ 0.34x0.59% 10°py,
B ((0.59>< 10° + P|ph>2) ’

o _op

AHo 0% =0
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Whenj #1,
oHi _omi _9pi _ g
opP; 0P} 0P ‘

Next, we consider differentiating with respect to the independent variables. Wiheni,

d& _ 0 (pH’

1 (HEdp, piOHD 50 (1
- A(m or T, or TPRaR \ 7

1 (H? /0.34x0.59x 10°py _ 30
- _(ﬁ_i((0.59>< 109+F>.|0h)2>+O+piHi W—.)

>

~ H® /0.34x0.59x 10°py ae (6.33)
= a7, \(059% 10°+ P pn)2 "’ '
otherwise
%5
0P -
Following on from this, we considellri%:
0.1 9 (&+5 0 s\ 10s
2 Y | i+1 _ Y <i _ +0&
oP, _0F’.( 2 ) ap.(z) 20R’ (6-34)
and similarly
dgii% B 10€+1 (6.35)

OPi1 20Piq

The final expressions that are useful to us at this stage aa@el from (6.29). Consid-
ering differentiating the first part of (6.29) with respect:

7 _ op;
35 (PHi =Py 1H2) =H 50 (6.36)
and P P
- — Pi-1
P, (PiHi —Pi_1Hi-1) = —Hi1 0P.I71' (6.37)
Considering differentiating the second part of (6.29):
g (T o) 629
oR AX

_ (Ao TEN L (Rua-RY %6 (R-R) %6
AX AX oPR AX oPR
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B r1— R 10 P—R_1) 109¢
- (M) () zm () 2w
10
20P

& 1+5 1 Pi1—2PR+P_
. 3 ve 1+1 | -1\ .
B < AX ) oP, ( AX ) (6-39)
whereas
Ri1—PR)g 1_(P Pl—l)gi,% 6.40
5H+1 AX (6.40)
< (w0 (" )d‘“
0P 11
_ €itl n |+1— 10¢i41
AX 26P.+1
&1\ 10g R
145 1+1 1+1— .
= 41
(% )+zap.+1( ) ©41)
and similarly
|+1— (P Pl—l)gi 6.42

B 3 10& 1 (R-Ra
- <AX T 20P4 AX ‘ (6-43)

These expressions will now be used in the evaluation of tbehian itself.

6.4.2 Evaluation of§§
J

Using (6.30), (6.36), (6.37), (6.39), (6.41) and (6.43),

ﬁ = H'@— — % _}_}@ PFi1—-2R+R1
oR ~ '0R AX 20R AX

0.34x 0.59x 10%py, §ii & 4
= H 4+ ———2
(0.59% 10°+ P pp)2 AX
1/ H’ (034x059x1Fph) _ \ (Ru1—2R+R
AT; \ (0.59% 109+ P pp)2 ' AX ‘
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Similarly,
R _ €l +1-05i+1 Pi1—R
oP.1 AX ) T20R4 \ AX
_ €1
AX
1 H%; [ 034x059x 10%p, e P,1—PR
2\ ATl 1 \(0.59x 109+ P, 1pn)2 ' AX )
and
R _ Ty opiy ((&-3\ 1d&.1(R-R
oP_1 1op AX ) 20R_1\ AX

h 0.34x059x10py \ (&}
T\ (059x 10°+ P_1pn)2 AX

1( H3; / 0.34x0.59% 10%py _ PR-P_;
+= — 5 | —a&i-1 .
2\ 271 \(0.59x 10°+PR_1pn) AX

6.4.3 Evaluation of%
0

Recalling that; = Ho + X2, it is trivial to show that

OH;
11
JHp
Hence,
dg 9 (Hp\ 3HZp;
dHo OdHo \ AT, ) AT
and

dHy 2

oHo T 9Ho

€1 1(0"& asiﬂ)

Hence, from (6.29),
R g (BB T (AR %6
oRe — TP DX ) 9Hg AX ) 9Ho

= (Pi—Pi-1)

B Ri1—R\1 ﬁ+05i+1 _(R—-Ra\1 ﬁ+58i—1
AX 2 \ dHp JHop AX 2 \ dHp JHop
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g - L (RazR) (3R, 3P
ST T2 DX i M1

R—PR.1) (3Hp; 3Hi2—1bi71
. 6.44
( AX ) < i M1 ( )

6.4.4 Evaluation ofm

Recalling that; = X — D +i x AX andH; = Hg+ $X2, it is clear that

JH; Y
e
Hence,
ds 0 (HF@) ~ 3XHp;
0Xe OXc \ AT AT,
and

€1 _1/0s  d&n
OXe 2\ 90X OX )’
Thus, from (6.29),

OR o Rri—R\ %3 (R-R1) %}
X (lei_xi—lpil)_<( AX )ch —( AX )0Xc (6.45)

(< )3 (%)
53 (5 %)

- pl 1
( |+1— <3X|H20. 3Xi+1Hi2+1ﬁi+1>

ni ﬁi+1

) 3X5Hi2p| 3Xi- 1H ~1Pi1
n; M1

/—\ §3‘H ‘ol/—\
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6.4.5 Differentiating the Ry, and Ry, equations

The remaining contributions to the Jacobian for this probéege all relatively straightfor-
ward to evaluate:

ORy, AX, .
o"'—P,-__AX’ (—Tforj_o,j_n—l),
ORi _ 5 Ry _ .
oHo 0 oXe o
and,
ORx, 1 ORx, 2 ORx, ORx,
0P3 20X’ P2  AX oHo 0 oXe 0 (6.46)

6.4.6 The right-hand side of the adjoint system

As with the expanded discretisation, if the discrete adjapproach is to be used to ap-
proximate the error in a quantity of interest then the deneeof this quantity must feature

on the right-hand side of the adjoint system. As in the pnevisection, the dimensional
friction is used as the quantity of interest:

X OPH 71
y (—ml—— + mzﬂ(ub— ua)) dX.

F= X 2 H

In discrete form this quantity may be expressed as

n—2 . .
Ri1—R Hi+1+Hi) (’7i+1+'7i) )

k= -m 2 L) (up—Up) | AX
Z)( 1< AX ) ( 4 T B H (Up =) ) AX,

hence differentiation with respect B, Hp andX. yields:

JoF Hi.i+H; Hj+Hi_ _ Up—Uu Up,—Uu
—m1< jritH) Hj '1)+mzal7j< b—VUa U a)AX’

P, 4 4 Hiti+Hj  Hj+Hj 1
oF & ha-R & M1
o m -2 1Ty (U — ug)AX
dHo 1;) 2 mzi;)((Hi+1+Hi)2)(b )
and
e (B 5 (BTN
0Xe i;) " 4 i;) (Hiy1+Hi)2
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6.5 Adjoint solution method and results

Having defined the adjoint equation system for both the “cactipand “expanded” Ja-
cobians in the previous section, attention is turned ta #aution. Since both of the Ja-
cobians are still sparse, the same numerical package isassedChapter 5, SPARSKIT.
Again, the specific method used is GMRES.

In the rest of this section it is demonstrated, via numereamples, that the im-
plementations of both the “compact” and “expanded” Jacuhiased within the adjoint
system, give excellent error estimates for the given qtyanfiinterest. Since this hy-
drodynamic problem is only intended as a step toward theEdIL problem, local mesh
refinement is not considered here: it is sufficient to denratsthe quality of the results
on a sequence of uniform refinements. Local mesh refinemdiriiewtonsidered again in
the following chapter.

All of the numerical results presented in this chapter areafdnydrodynamic case
with loadL = 1309. Two different sets of different surface speeds arsidened, namely
Ua = Up = 0.5 anduy = 0.1, up = 0.9. These corresponds to a case with pure rolling, and
one with a slide-roll ratio of @B, respectively.

6.5.1 Expanded Jacobian

The first thing to notice about a hydrodynamic pressure soius how much less com-
plicated the pressure profile is than for the EHL problem sTdan be seen by comparing
Figures 4.1 and 6.3. Looking at Figures 6.3 and 6.4, theisolsifor viscosity and den-
sity are very similar in shape to the pressure solution. Im@st to this, Figure 6.5 shows
how different the three computed adjoint solutions (relgtio P, 7 andp) are from each
other. Looking at Figure 6.5, apart from being fairly inflahin broadly the same re-
gion (around the contact region), it is clear that they aadlyequite different. This is
shown more clearly in Figure 6.6 which uses a different eattscale for the density ad-
joint. From this observation alone, one might be temptedaactude that the adjoint
equations are all important and as such all adjoint vargabte equally important in the
adjoint method. However, a look at the residuals for eaclhethree variabled 7 and
p) shows that this is not the case. Figure 6.7 shows that oelyptbssure residuals are
actually non-negligible. This is because the residual ggus for viscosity and density
(equations (6.15) and (6.16)) are only trivial pointwisécoations. As a result of this,
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mesh points which are coincident between the coarse and &stes have identically
zero residuals, and the very small residual at the non-ab@mt¢ points is due primarily
to interpolation error. This means that the adjoint soluidor viscosity and density do
not make any significant contribution to the correction akdted for the quantity of in-
terest. These vectors can be seen in Figure 6.8. It is petbhdyesexpected therefore that
the compact approximation, using jukas a primary variable, will provide equally good
results.

The most persuasive evidence of this is shown next wheraties showing conver-
gence of the adjoint error estimates are presented.

6.5.2 Tables

Tables 6.1 to 6.4 show how accurately the adjoint error edton predicts the inter-grid
friction error in all four cases. Those case are sliding amiting friction for both the
compact and expanded Jacobians introduced earlier. Asthéthables in Chapter 5,
the grid shows the effectivity index converging tdwith increased mesh resolution.
Column 2 shows the friction as calculated on the fine meshgugittues interpolated
from the coarse mesh solution, while column 3 shows the cbomre as calculated using
the adjoint error estimation. Column 4 combines these twoesto get the corrected
friction, which can then be directly compared to the actugdtibn as solved for and
calculated on the fine grid, shown in column 5. The measunex, ajiven in column 6,
is calculated as the difference between columns 2 and 5. &ftweaf the actual measured
error to that predicted is known as the effectivity indexg @agiven in column 7.

As mentioned above, it can be seen that in all four cases fhetigfty index gets
closer to 10 with increasing mesh resolution. This shows that the atj@iror estima-
tion is extremely effective at predicting the inter-gridarfor hydrodynamic lubrication.
More importantly in this instance, though, is the fact thattbthe expanded and the
compact Jacobians have been demonstrated to be accuratg aStpe adjoint solution
process. This is an important conclusion going forwardst sisows that when applying
adjoint error estimation to elastohydrodynamic lubricatin the following chapter, only
a compact Jacobian need be considered, allowing for theased efficiency described
earlier. In a wider context, it sheds light on how complexteyss of equations can be
solved, in particular problems of real engineering intevelsich use iterative techniques
to solve them.
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Figure 6.3: Pressure and viscosity solutions for the hygnadchic problem = 1309
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Figure 6.4: Pressure and density solutions for the hydradya problemL = 1309
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Figure 6.5: Adjoint solutions for the hydrodynamic probtem= 1309, slide-roll ra-
tio = 0.0 (pure rolling)
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Figure 6.6: Adjoint solutions for the hydrodynamic probtem= 1309, slide-roll ra-
tio = 0.0 (pure rolling)
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Figure 6.7: Comparison of solution residuals Ry, andp for the hydrodynamic prob-
lem; L = 1309, slide-roll ratio = 0.0 (pure rolling)
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Figure 6.8: Comparison of correction contributions 7, andp for the hydrodynamic
problem with the expanded Jacobian system; 1309, slide-roll ratio = 0.0 (pure rolling)
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Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv.
(9) Fric. (9) correction | Fric. (9) (9+1) Error Index
5 -8.52510 0.11986 | -8.64496 | -8.64753| 0.12242 | 1.02139
6 -8.64751 0.05886 | -8.70637 | -8.70663| 0.05912 | 1.00442
7 -8.70663 0.02876 | -8.73539 | -8.73545| 0.02882 | 1.00195
8 -8.73545 0.01417 | -8.74962 | -8.74964| 0.01419 | 1.00098
9 -8.74964 | 0.00703 | -8.75667 | -8.75667| 0.00703 | 1.00035
10 -8.75667 0.00350 | -8.76017 | -8.76017| 0.00350 | 0.99997
11 -8.76017 0.00175 | -8.76192 | -8.76192| 0.00175 | 0.99986

Table 6.1: Adjoint based inter-grid friction error on unifio meshes using compact Jaco-

bian;L = 1309, slide-roll ratio = 0.0 (pure rolling)

Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv.
(9 Fric. (g) correction | Fric. (g) (9+1) Error Index
5 -8.52510 0.11986 | -8.64496 | -8.64753| 0.12242 | 1.02140
6 -8.64751 0.05883 | -8.70634 | -8.70663| 0.05912 | 1.00491
7 -8.70663 0.02875 | -8.73538 | -8.73545| 0.02882 | 1.00250
8 -8.73545 0.01417 | -8.74962 | -8.74964| 0.01419 | 1.00154
9 -8.74964 | 0.00703 | -8.75666 | -8.75667| 0.00703 | 1.00091
10 -8.75667 0.00350 | -8.76017 | -8.76017| 0.00350 | 1.00055
11 -8.76017 0.00175 | -8.76192 | -8.76192| 0.00175 | 1.00044

Table 6.2: Adjoint based inter-grid friction error on unifo meshes using expanded Ja-

cobian;L = 1309, slide-roll ratio = 0.0 (pure rolling)

Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv.
(9) Fric. (@) correction | Fric. (g) (9+1) Error Index
5 -18.22851 | 0.27258 | -18.50109| -18.51682| 0.28831 | 1.05770
6 -18.52599 | 0.15056 | -18.67656| -18.68449| 0.15850 | 1.05270
7 -18.68689 | 0.07824 | -18.76513| -18.76743| 0.08054 | 1.02942
8 -18.76804 | 0.03973 | -18.80777| -18.80834| 0.04030 | 1.01438
9 -18.80850 | 0.02003 | -18.82853| -18.82870| 0.02020 | 1.00876
10 | -18.82874 | 0.01001 | -18.83875| -18.83882| 0.01007 | 1.00664
11 | -18.83883 | 0.00500 | -18.84382| -18.84384| 0.00502 | 1.00462

Table 6.3: Adjoint based inter-grid friction error on unifio meshes using compact Jaco-

bian;L = 1309 slide-roll ratio = 0.8 (sliding)
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Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv.
(9) Fric. (@) correction | Fric. (9) (9+1) Error Index
5 -18.22852 | 0.27322 | -18.50173| -18.51682| 0.28831 | 1.05523
6 -18.52599 | 0.15074 | -18.67673| -18.68449| 0.15850 | 1.05148
7 -18.68689 | 0.07833 | -18.76522| -18.76743| 0.08054 | 1.02823
8 -18.76804 | 0.03977 | -18.80782| -18.80834| 0.04030 | 1.01316
9 -18.80850 | 0.02005 | -18.82855| -18.82870| 0.02020 | 1.00751
10 | -18.82874 | 0.01002 | -18.83876| -18.83882| 0.01007 | 1.00537
11 | -18.83883 | 0.00500 | -18.84383| -18.84384| 0.00502 | 1.00333

Table 6.4: Adjoint based inter-grid friction error on unifio meshes using expanded Ja-
cobian;L = 1309 slide-roll ratio = 0.8 (sliding)

6.6 Summary

Adjoint error estimation has been applied to a compresgitdzo-viscous hydrodynamic
lubrication problem. The additional non-linearities oduced by the viscosity and den-
sity equations have been shown to cause no difficulty to ti@racerror estimation pro-
cedure, which still gives accurate predictions of the wged error in the friction, as
demonstrated by Tables 6.1 to 6.4. This shows that the d@daior estimation proce-
dure can be carried out using either the compact or exparasabians, which will be
useful going forward. In the next chapter, the applicatibthe adjoint error estimation
will be further extended to a full steady-state elastohggiramic lubrication problem, by
introducing the deformation calculation within the film¢kness equation.
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EHL Line Contact Problems

In the previous chapter, adjoint error estimation was ss&ftdly applied to a hydrody-
namic problem. This was achieved for the residual equaposed in two different ways
and it was shown that both were equally accurate when attegiuat predict the inter-grid
functional error. In this chapter, adjoint error estimatis used on an elastohydrodynamic
problem. It will be shown that, again, adjoint error estiroatprovides good predictions
of the inter-grid functional error.

Having highlighted the efficacy of this approach on uniforresines, spatial mesh
adaptation will be introduced. The exact nature of the fodyaoblem will be discussed,
including the suitability of performing a global mesh cdation on an adaptive multi-
grid problem. Following a short discussion on the correctii@f the Jacobian for this
problem, and the approximation used, results of spatiahradaptation carried out using
the size of the correction components will be presented. ithatehl functionals will be
introduced to further illustrate adjoint error estimatias applied to EHL, as well as to
highlight some apparent limitations of this approach.

93
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7.1 Uniform mesh EHL

In this section, the full EHL system is defined by including #lastic deformation term
into the film thickness equation. There is also a change teigoesity model used, in that
the Barus equation (2.6), used for all of the previous wods, been replaced by the more
accurate Roelands equation (2.5). Not only is the latterghotre physically realistic
but it also has computational advantages since the expahgrdwth of viscosity is not
unbounded, as in the Barus case.

7.2 Forward problem

7.2.1 Continuous mathematical model

In Section 2.2, the equations and parameters for the noe+tiianal EHL model were
defined. The following set of equations in the unknownsi, 17, p, andX; are repeated
below.

The Reynolds equation for the full line contact is given by

9 ( 9P\ d(pH)
a_x(ga_x)_ o =0 (7.1)

with the film thickness equation, now including the deforimaterm, written as
X2 1 * / / /
H:Ho+?+7—T/ In|X — X'|P(X")dX". (7.2)

The viscosity model is now provided by Roelands [62],

() () s

with justification for this change explained in Section 7The density, as before, is given

by [17],
_ 059x10°+1.34Pp,

0.59x 10°+Pm
Note that the cavitation boundary positioX,, must be found such that the boundary

(7.4)
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conditions
P(X_w) =P(X) =P'(X) =0 (7.5)

are satisfied, andp must be found such that the sum of the pressure is equal tptied
load. This is shown here as

/ P dX = ’—ZT (7.6)

7.2.2 Residual equations

Once discretised, equations (7.1) to (7.6) can be writtereaislual equations. As in
previous chapters, these residual equations will be us#tkiderivation of the Jacobian
matrix for the calculation of the adjoint solution. For a famm mesh withn nodes,
labelled 0 ton— 1, we have the following. The residuals for the Reynolds &qog7.1)
for pointsi =1...n—2, are given by

pHi—piH 1\ ((Ru-R)&G-(R-R1)§ 4
R = AX(( Ax1 )_< (AX)2

(R+1—PR)g, 1 —(R—R-1)§_1
= (ﬁiHi—ﬁi_lHil)_< - +ZAX 2)

(8 1+£ 1)P+£ 1FI 1
AX , (7.8)

(7.7)

&, 1R —
= (ﬁiHi —ﬁi_lHifl) - ( s

and for the two end points are given by

Ro=0-P,
and
Rh-1=0—Ry1,
whereg; = Mp ndsii% = (& + &+1)/2. The discrete form ofl;, 77;, andp; are given
respectively by
X|2 1N= 1
Hi=Ho+—+ = %Kljpjv (7.9)

el (o) o

_ 059x10°+1.34Rpy, (7.11)
Pi= 0B9x1P+Ppy '
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Note that in (7.9) the termk;; result from the application of quadrature to (7.2), see
Section 2.3. The discrete cavitation position residualamed through a second order
upwind finite difference approximatior% = %. By evaluating this at the

boundary point = n— 1, and noting thal,_; = 0, this residual can be expressed as

4Pn72 - Pnf3

Re = —5ax

(7.12)
The final condition that must be satisfied in the forward s@wbe discrete force balance

equation, used to updalt®. The residual for this discrete equation is

(7.13)

7.2.3 Solution method: Newton-Raphson boundary solve

In order to solve the EHL problem, the Carmehl solver [71]aleped for Shell Global
Solutions is being used. This is being treated as a ‘blackibarder to provide a guar-
anteed level of accuracy and reliability from the solvere Bolver operates as described
in [26] and is summarised in Chapter 2, specifically Figutz Note that the multilevel
multi-integration (MLMI) capability within Carmehl is natsed in this work since it is
only applicable on uniform spatial discretisations and vw&whe work here to be appli-
cable on locally refined, as well as uniform, meshes. One @irputs to the solver is
the computational domain range. Note that as part of our redgifig grid” process to
satisfy the cavitation condition (7.12) (see Section 72 domain may be shifted by
up to half a grid cell. Moreover, since the EHL solver is refaly computationally ex-
pensive, a more efficient approach to finding the correct dagnposition is needed than
was previously employed in Chapter 5. Two new approaches haen implemented; a
secant-type method, and a Newton-Raphson-type method.dda similar increases in
performance and so it is the secant method that is used thootithis chapter.

7.3 Jacobian for adjoint solution

In this section the residual equations shown above arerdiftated with respect to each
of the degrees of freedom. As was shown in Chapter 6, thergdjaior estimation pro-
cedure is equally applicable for both the “expanded” andhs#8 Jacobian formulations.
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In this Chapter, the dense Jacobian is used throughout. iFhiscause a fully formed
expanded Jacobian would now have approximately four tira@sany rows as the equiv-
alent dense Jacobian, leading to longer solution timesddremefit. Although much of
the expanded Jacobian would be sparse (block tri-diagtmadg would still be a dense
block the size of the dense Jacobian eliminating the pdigibi a faster iterative solution
procedure.

7.3.1 Preliminaries

First, we consider differentiating the secondary depensganablesH;, i7; andp; with

respect to the primary dependent variadResHo andX;. These results will be used to
compute derivatives afwf These preliminary results will simplify the Jacobian ewval
ation in the next subsectlon. Where appropriate, the Krkeredelta will be used. This

discrete function is a special case of the generalised Kiaradelta symbol, and is de-

fined to be
1 i=]j
Gj = . J
0 i#]

Note that the distance through the domadn,given by
X = Xc+ (i—n)AX,

depends orX; which is one of the degrees of freedom. This is therefore raroton-
tributing complication into the discrete film thickness atjan (7.9). This film thickness
equation can be differentiated with respect torlpeessure values, the cavitation position
andHo, to give

oH 1 JH; JH;

— = =Kij, T VA

oP, m JHo 0Xc
The non-dimensional viscosity, given in equation (7.19Yifferentiated with respect to
the pressures as

Ao m{) )
- o (2R ] el () (o[ R
- o ([ ] Tenl () (e[ R o

= X;. (7.14)




Chapter 7 98 EHL Line Contact Problems

and with respect tblg andX; as

om _om _
OHo 0JX%c ’

The non-dimensional density, (7.11), similarly, gives

g 5 (0.59x 10° 4 P, pn)1.34pn — (0.59 x 10° + 1.34P py) pn
o, (0.59x 10°+ P pn)2

(0.59x 10” x 1.34pp) + (1.34pZR) — (0.59 x 10%py) — (1.34p2R))
(0.59x 10°+ P pn)2

( (1.34—1.0)0.59x 109ph)

= o (0.59x 10°+ P pp,)2
0.34x 0.59x 10°py,
= 4 (0.59% 10°+ R pp)2 ) (7.16)
and 95 D
9P _ 9P _
I = % 0. (7.17)

Next, differentiation ofe; with respect to the primary dependent variables is consid-

ered. This is defined above as 5
H°D;

AT
which means that differentiation with respectRjorequires use of the chain rule. Hence

& =

d(&) d(&)oHi | d(&)dp; | d(&) In;

gP, ~ oM, o, ' ap, o am, o, (7.18)
1, 3H2p, 0.34x 0.59x 10°pp \ H3
= —Kij + gj D)
T AT (059><109+P|ph) AT
pn]* "\ Hp;
01 | e {HI—] = 7.19
J (ph Po L DYGAE (7.19)
~ Kij3s . (034x059x10°p & Ppn]®
T HI dJ ((059X109+P|ph)2ﬁ| phas& |1+ 0o . (7.20)
Similarly,
dHo AW,  H (7.21)
and
d(&) _ 3XHp; _ 3X& 722)

oX.  Am, Hi
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Following on from this,«:&% IS considered:

08,1 d [&+¢
3 i i+l
= — 7.23
0P 0P < 2 ) ( )
10 10¢&41
_ 1loa 1 7.24
20P 2 0P, (7.24)

1 Kij 3¢ }Kiil,j 3&+1

2mH 2 m Hgq

1. (034x059x10Pp & _ [, Rpy]*?
29 ((0.59>< 1P+ Rpn)2p; {Hﬁ]
1
2

0.34x059x 1% €41 Paapn]® !
= . —as 1 7.25
a0 <(0-59>< 10°+PR11pn)? Pisq Iil{ " 0 } (7:25)

where for this problenz = zy, and hence/z, = 1.

7.3.2 Residual equation differentiation

Having obtained some helpful preliminary expressionsi¢nms of the Jacobian are now
derived. In certain places, superfluous use ofdhetation will be used to make depen-
dencies more immediately obvious.

First, the discrete Reynolds residual, equation (7.7gssated,

Rii—R)g 1 —(R-R1)g 1
AX

o (
R = (piHi —Pi_1Hi-1) — ( (7.26)

Considering the first part of the equation abo{gH; — p;_;1Hi—1),

J _ OH; op;
a—F’j((piHi_pileifl)) = Pié.—P;+dj <Hid—PjI)
_ dH-_l dﬁ,
pi—lTl:,j_é—l,j (Hi—l dllz’jl) (7.27)

o ((Pi1-R)g,1-(R-R-1)g_1
Now, considering the second part of the above equa(on, 2 2 ) ,

5 (BB (R-Rs
0P
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iy teig
= AT

8 1 %+%
+-1j (AX ) + 11, (AX )

Chapter 7

(ml— )08 P <P.—P.1) %64 (7.28)
AX P AX P,
Combining these two results, it is possible to obtain
g—: = ﬁlgpl 3j < gg ) —ﬁi_l%—dl,j <Hild§g1)
- [ — 4 <‘£I+%AJ;<£ l) o] <1>f) + ) <1§<%)
(B d;;z_(a ) i;,f ]

) 5) o3
_ (F"+A1; ) a;';jl + (P' ;)'jl) a;;j%_ (7.30)

Note that this expression, whilst still quite complex, isplified by the use of the sub-
expressions derived in the previous subsection. Simjldifferentiating equation (7.26)

with respect tdHo, gives
5&_1

oR P.1-R\ % +3 R—R_1 ]

and, with respect te,
08 1

oR Rr1—R\ %3 (R—R-1) %}
ax. = (PX—Pi1Xi1) - [( A )axc ( i~ )axc]‘ (7.32)

Having finished deriving the terms of the Jacobian relatatédRreynolds residual equa-
tions, attention is turned to equation (7.13) the force hegaresidual, given again here

as
nf
|+1

T
o__i__E%

AX.
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It is straightforward to see that for eaBpfor j =1ton—-2

ORH,

3P, = —AX.
With no dependence dd or X, clearly
ORuy _ ORuy _
JdHp 0Xc '

Finally, given the discrete residual equation for the ctidn boundary condition (7.12)
as

Ry — 4Pn72 - Pnf3
Xe M
it follows that
ORx, B 1 ORx, i
0P,_3  2AX’ oP_» AX

and that
5Rxc B 5Rxc 0

oHo  9X%c

Having obtained expressions for all of the terms which appethe dense form of
the Jacobian matrix associated with the full EHL problem,ame now in a position to
consider generalisation of our adjoint techniques to thidjem.

7.4 Choice of viscosity model

In this section, the reason for the change of viscosity mtal®oelands from Barus is
outlined. Initially, work was completed to make adjointarestimation work for an
expanded Jacobian for the full EHL, as well as for a compamtidan. This was largely
successful, although the best accuracy that could be ghingee adjoint error estimation
had around a 6% error in it, and the effectivity index reliatdnverged to a value of about
1.06. The move to Roelands viscosity has eliminated this mmaoy, and the effectivity
index now converges taQ again. There are two possible reasons that have beerfidénti
as to why the previous model may not have been completelyessfid.

The first refers to the shape of the pressure spike. The sHaipe ressure spike
generated with the Barus viscosity is “sharp”, i.e. thera idistinct singularity in the
pressure gradient at that point. The reason that this miglat problem is to do with the
interpolation of these values and the consistency betweedifferent mesh levels. When
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interpolating the pressure solution to move it to the fine gtinis sharp spike becomes
rounded by the cubic spline interpolation. This is not anés®r the Roelands viscosity,
as the spike is smooth to begin with. A summary of the argunsesd follows:

e The coarse grid Jacobian uses the coarse grid “sharp” peesslution

The fine grid interpolation of the pressure has a smooth, anded spike

The residuals calculated on the fine mesh use the smooth spike

The adjoint solved on the coarse grid as an approximationddihe grid uses the
sharp spike

Now there is an inconsistency between the Jacobian andgltiieds calculated on
the fine grid.

Itis this inconsistency which is likely to be responsiblettre slight discrepancy between
the solutions.

There are two potential methods that could be explored ierotal avoid this. The
first is to try to calculate the adjoint solution on the fine mesing the interpolated
pressure values, so that the residuals and Jacobian aristeoms The other is to use
an interpolation method which preserves the shape of the spiowever, since we are
interested in more realistic rheological models such add®oks, resolving this issue is
not of paramount importance.

The second potential reason that has been identified is toitthothe behaviour of
the pressure spike with increased mesh resolution. UsiadgRibelands viscosity, the
pressure spike of the resultant solution can be resolvatlitamonverges with increasing
mesh points [4, 31]. Using the Barus viscosity, this is n@& tase, and adding more
points merely adds to the size and sharpness of the pregsikee sThe adjoint error
estimation method has at its core the idea that, given seffichesh resolution, the first
order approximation from the Jacobian will be sufficientd @imat the higher order terms
will be negligible. This may not be true for a solution thasteclear singularity which
appears not to converge.
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7.5 Uniform mesh results

We begin our assessment of the adjoint-based error esthyatssessing its performance
on a sequence of uniformly refined grids. The following sawdi will then discuss the
application with adaptivity and results on non-uniforméfined meshes.

7.5.1 Forward-solution profiles

In this section, results are presented for the adjoint exstimation procedure as applied
to the full EHL problem on a series of uniform meshes. Resaésshown for five dif-
ferent loadings on each of a purely rolling case and a slidasge. The non-dimensional
solution profiles for pressure, film thickness, and visgoare shown in Figures 7.1-7.3
respectively. These results were calculated using a unifokesh of 257 points. The
five solutions go through the range from being almost entitgtdrodynamic for the
most lightly loaded case, though to a relatively highly leddEHL case for the largest
load. Figure 7.1 clearly illustrates the pressure spike ingp¥owards the outlet with
increasing load, with the main pressure bump becoming asingly rounded. The non-
dimensional film thickness, shown in Figure 7.2, is reducestall with increased load,
but also becomes thinner in the contact area, which is itgeler. Figure 7.3 shows the
non-dimensional viscosity which increases dramaticalifhwoad. To understand this,
consider for simplicity the non-dimensional Barus vistpsiquation (2.16),

n=e", (7.33)

as an example, whei is the non-dimensional pressure, amd= apy. As shown in

Figure 7.1, although the solution profile changes shapadhedimensionaliseB values

are broadly similar with increasing load. However, becamssontains the dimensional
quantity p,, (the maximum Hertzian pressure), the viscosity, whilst-danensional, is
not scaled to a range with maximum value around unity. A simrgument can be
applied for the Roelands viscosity shown in Figure 7.3.

Next, results are presented for a rolling EHL case, followga case with sliding.
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Figure 7.1: EHL pressure profiles for a series of loadings: 20000, 40000, 60000,
80000 and 100000
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Figure 7.2: EHL film thickness profiles for a series of loadifig= 20000, 40000, 60000,
80000 and 100000
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Figure 7.3: EHL viscosity profiles for a series of loadings= 20000, 40000, 60000,
80000 and 100000

7.5.2 Pure rolling

The dimensional friction, derived from that shown in Chaplgs given by

e OPH 7
= _/m (—m1ﬁ§+mzﬁ(ub—ua)) dx, (7.34)

where the re-dimensionalising factarg = % andmp = ”OTRX. Pure rolling is the case

where the two surface speeds,andu,, are moving at the same speed in the same di-
rection, and hence the second term of the friction is zero tlf@case where the surface
speeds are, = up = 0.5, results for five different non-dimensional loads are pnésd.
With no relative motion of the surfaces, the resistance ttianas purely that generated
by trying to squeeze the fluid into the contact against thegquee gradient. The adjoint
for each of the five solutions is shown in Figure 7.4. The sofuprofile of each of
these adjoints is remarkably smooth, with little influeneers from the pressure spike.
Tables 7.1 to 7.5 show the usual measures of success, ingltitg effectivity index, for
these typically loaded cases. This is the ratio of the meaiseiror to the predicted error.
In addition, there is an extra column. This, the last columthe table, shows the differ-
ence between the effectivity index and unity. Clearly, &sdffectivity index approaches a
value of 10 with increasing mesh refinement, the difference shouldimecincreasingly
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Figure 7.4: Adjoint solutions for pure rolling EHL cases;= 20000, 40000, 60000,
80000 and 10000@,; = u, = 0.5

small. Itis clear to see that all of the tables exhibit e>a@convergence of the effectivity
index. In other words, the adjoint error estimation can piithe inter-grid friction error,
in cases of pure rolling, extremely accurately for EHL. lRerimore, this estimate appears

to be equally effective over the range of loads.

Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv. | | 1.0 -
(9) Fric. (g) correction | Fric. (g) (9+1) Error Index | effct. |
5 -15.72099 | 0.02302 | -15.74401| -15.73426| 0.01327 | 0.57623| 0.42377
6 -15.73444 | 0.01190 | -15.74634| -15.74391| 0.00947 | 0.79602| 0.20398
7 -15.74395 | 0.00596 | -15.74991| -15.74931| 0.00535 | 0.89922| 0.10078
8 -15.74932 | 0.00297 | -15.75230| -15.75215| 0.00283 | 0.95001| 0.04999
9 -15.75215 | 0.00149 | -15.75364| -15.75360| 0.00145 | 0.97512| 0.02488
10 | -15.75360 | 0.00074 | -15.75434| -15.75433| 0.00073 | 0.98772| 0.01228
11 | -15.75433 | 0.00037 | -15.75471| -15.75470| 0.00037 | 0.99347| 0.00653
12 | -15.75470 | 0.00019 | -15.75489| -15.75489| 0.00019 | 0.99720| 0.00280

Table 7.1: Adjoint based inter-grid friction error on unifio meshes|. = 20000,u, =

up = 0.5, slide-roll ratio = 0.0 (pure rolling)
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Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv. | | 1.0 -
(9) Fric. (@) correction | Fric. () (9+1) Error Index | effct. |
5 -23.46751 | -0.24336 | -23.22415| -23.20372| -0.26379 | 1.08397| 0.08397
6 -23.20388 | -0.10870 | -23.09518| -23.08984| -0.11404 | 1.04908| 0.04908
7 -23.08988 | -0.05025 | -23.03964| -23.03834| -0.05154 | 1.02578| 0.02578
8 -23.03835 | -0.02372 | -23.01463| -23.01435| -0.02401 | 1.01194| 0.01194
9 -23.01435 | -0.01141 | -23.00294| -23.00288| -0.01147 | 1.00510| 0.00510
10 | -23.00288 | -0.00557 | -22.99731| -22.99730| -0.00558 | 1.00216| 0.00216
11 | -22.99730 | -0.00275 | -22.99455| -22.99455| -0.00275 | 1.00092| 0.00092
12 | -22.99455 | -0.00136 | -22.99319| -22.99319| -0.00136 | 1.00071| 0.00071

Table 7.2: Adjoint based inter-grid friction error on unifio meshes]. = 40000,u; =

up = 0.5, slide-roll ratio = 0.0 (pure rolling)

Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv. | | 1.0 -
(9) Fric. (@) correction | Fric. () (9+1) Error Index | effct. |
5 -27.55984 | -0.52940 | -27.03044| -26.99802| -0.56182 | 1.06125| 0.06125
6 -26.99814 | -0.23267 | -26.76547| -26.75316| -0.24498 | 1.05291| 0.05291
7 -26.75319 | -0.10732 | -26.64588| -26.64236| -0.11083 | 1.03278| 0.03278
8 -26.64237 | -0.05046 | -26.59191| -26.59097| -0.05140 | 1.01866| 0.01866
9 -26.59097 | -0.02410 | -26.56687| -26.56665| -0.02432 | 1.00911| 0.00911
10 | -26.56665 | -0.01166 | -26.55500| -26.55495| -0.01170 | 1.00375| 0.00375
11 | -26.55495 | -0.00571 | -26.54925| -26.54924| -0.00571 | 1.00137| 0.00137
12 | -26.54924 | -0.00282 | -26.54642| -26.54642| -0.00282 | 1.00043| 0.00043

Table 7.3: Adjoint based inter-grid friction error on unifio meshes|. = 60000,u, =

up = 0.5, slide-roll ratio = 0.0 (pure rolling)

Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv. | | 1.0 -
(9) Fric. (g) correction | Fric. (g) (9+1) Error Index | effct. |
5 -30.19587 | -0.81428 | -29.38159| -29.32429| -0.87158 | 1.07037| 0.07037
6 -29.32437 | -0.35367 | -28.97070| -28.95105| -0.37332 | 1.05556| 0.05556
7 -28.95108 | -0.16250 | -28.78858| -28.78296| -0.16812 | 1.03454 | 0.03454
8 -28.78297 | -0.07577 | -28.70720| -28.70528| -0.07769 | 1.02545| 0.02545
9 -28.70528 | -0.03599 | -28.66929| -28.66871| -0.03657 | 1.01608| 0.01608
10 | -28.66871 | -0.01734 | -28.65138| -28.65123| -0.01748 | 1.00817| 0.00817
11 | -28.65123 | -0.00844 | -28.64280| -28.64277| -0.00847 | 1.00348| 0.00348
12 | -28.64277 | -0.00414 | -28.63862| -28.63862| -0.00415 | 1.00125| 0.00125

Table 7.4: Adjoint based inter-grid friction error on unifio meshesf. = 80000,u, =

up = 0.5, slide-roll ratio = 0.0 (pure rolling)
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Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv. | | 1.0 -
(9) Fric. (@) correction | Fric. () (9+1) Error Index | effct. |
5 -32.11875 | -1.11456 | -31.00419| -30.92962| -1.18913 | 1.06690| 0.06690
6 -30.92962 | -0.47488 | -30.45474| -30.43133| -0.49829 | 1.04930| 0.04930
7 -30.43135 | -0.21507 | -30.21628| -30.20711| -0.22424 | 1.04262| 0.04262
8 -30.20712 | -0.09973 | -30.10739| -30.10431| -0.10281 | 1.03087| 0.03087
9 -30.10431 | -0.04722 | -30.05709| -30.05607| -0.04824 | 1.02162| 0.02162
10 | -30.05607 | -0.02268 | -30.03340| -30.03309| -0.02298 | 1.01349| 0.01349
11 | -30.03309 | -0.01101 | -30.02208| -30.02201| -0.01108 | 1.00691| 0.00691
12 | -30.02201 | -0.00538 | -30.01662| -30.01661| -0.00540 | 1.00279| 0.00279

Table 7.5: Adjoint based inter-grid friction error on unifio meshesl. = 100000,u; =
up = 0.5, slide-roll ratio = 0.0 (pure rolling)

7.5.3 Sliding

Using the same five non-dimensional loads used for the gptlase, results are presented
here for the case where the non-dimensional surface speedg & 0.1, up = 0.9. In
addition to the friction generated by having to force fluichengt the pressure gradient,
there is now an extra source of friction. Since the surfacesarat different speeds,
there is shear in the fluid between them. With viscosity behmey resistance to fluid
shear, the friction is then the product of the two. This tesnyipically dominant, as
evidenced by the fact that the friction value for the mostvilgdoaded rolling case is
still an order of magnitude smaller than the most lightlyded case with both sliding and
rolling. Figure 7.5 shows the adjoint solutions for the figadis. In contrast to the adjoint
solutions for the rolling case in Figure 7.4, there is siguaifit activity in and around the
pressure spike region. Tables 7.6 to 7.10 show the effécivilex for this problem. For
the two lightest loads, the method again shows its effectige at predicting the inter-grid
friction error where the effectivity index is close to unly grid 6 (129 points), and gets
increasingly close with further refinement. The middle |laddhe five starts off with an
error estimate on grid 5 (65 points) which is nearly 80% wromigh the estimate on grid 6
just under 50% out. However, after that the error in the esténfalls to an acceptable
level. The two most heavily loaded cases provide ratherdesarate predictions for the
coarse grids, but even here, once the mesh becomes suffigiefmed, the inter-grid
error estimates are again very good. There is clearly a todmebrsening accuracy with
increasing load, which is likely due to the large increasethe viscosity. Nevertheless,
convergence of the estimate to the true error is observelll tases.
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Figure 7.5: Adjoint solutions for EHL cases with sliding;= 20000, 40000, 60000,

non-dimensional distance through the contact

80000 and 10000@y = 0.1, u, = 0.9

Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv. | | 1.0 -
(9) Fric. (Q) correction | Fric. (9) (9+1) Error Index | effct. |
5 381.16185 | -13.24747| 394.40933| 395.29655| -14.13469| 1.06697 | 0.06697
6 395.26199 | -7.77855 | 403.04054| 403.33739| -8.07540 | 1.03816| 0.03816
7 403.32754 | -4.25516 | 407.58269| 407.67011| -4.34258 | 1.02054 | 0.02054
8 407.66746 | -2.23175 | 409.89921| 409.92306| -2.25560 | 1.01069| 0.01069
9 409.92237 | -1.14377 | 411.06615| 411.07239| -1.15001 | 1.00545| 0.00545
10 | 411.07221| -0.57911 | 411.65133| 411.65292 -0.58071 | 1.00275| 0.00275
11 | 411.65288 | -0.29140 | 411.94428| 411.94467| -0.29180 | 1.00136| 0.00136
12 | 411.94466 | -0.14617 | 412.09083| 412.09093| -0.14627 | 1.00067 | 0.00067

Table 7.6: Adjoint based inter-grid friction error on unifio meshest. = 20000,u; = 0.1,
up = 0.9, slide-roll ratio = 0.8 (sliding)
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Grid | Interpolated| Calculated| Corrected Friction Measured | Effectiv. | | 1.0 -
(9) Fric. (Q) correction |  Fric. (Q) (9+1) Error Index | effct. |
5 | 3345.49389| -80.14426| 3425.63815| 3451.10255| -105.60866| 1.31773| 0.31773
6 | 3448.33170| -83.26708| 3531.59878| 3542.09648 -93.76478 | 1.12607| 0.12607
7 | 3541.39335| -61.49194| 3602.88529| 3610.58244| -69.18908 | 1.12517| 0.12517
8 | 3610.39035| -40.27333| 3650.66369| 3653.83995| -43.44960 | 1.07887| 0.07887
9 | 3653.78827| -23.57142| 3677.35969| 3678.37504| -24.58677 | 1.04308| 0.04308
10 | 3678.36143| -12.81609| 3691.17752| 3691.46376| -13.10233 | 1.02233| 0.02233
11 | 3691.46025| -6.68934 | 3698.14959| 3698.22543 -6.76519 | 1.01134| 0.01134
12 | 3698.22456| -3.41806 | 3701.64262| 3701.66221| -3.43765 | 1.00573| 0.00573

Table 7.7: Adjoint based inter-grid friction error on unifio meshest. = 40000,u; = 0.1,
up = 0.9, slide-roll ratio = 0.8 (sliding)

Grid | Interpolated | Calculated| Corrected Friction Measured | Effectiv. | | 1.0 -
(9 Fric. (g) correction Fric. () (9+1) Error Index | effct. |
5 | 12205.96611| -375.30052| 12581.26663 12278.18194 -72.21583 | 0.19242| 0.80758
6 | 12255.02955 -144.91328| 12399.94283 12469.84738 -214.81783| 1.48239| 0.48239
7 | 12462.70119 -188.24168| 12650.94287| 12700.28466 -237.58347| 1.26212| 0.26212
8 | 12698.50913 -162.15862| 12860.66775 12892.64558 -194.13645| 1.19720| 0.19720
9 | 12892.20697| -116.43783| 13008.64481 13022.62082 -130.41385| 1.12003| 0.12003
10 | 13022.50895 -72.05889 | 13094.56784 13099.34594 -76.83699 | 1.06631| 0.06631
11 | 13099.31731 -40.41668 | 13139.73399 13141.12181 -41.80450 | 1.03434| 0.03434
12 | 13141.11457| -21.42438 | 13162.53895 13162.90936 -21.79478 | 1.01729| 0.01729

Table 7.8: Adjoint based inter-grid friction error on unifio meshest. = 60000,u; = 0.1,

up = 0.9, slide-roll ratio = 0.8 (sliding)

Grid | Interpolated | Calculated| Corrected Friction Measured | Effectiv. | | 1.0 -
(9) Fric. (@) correction Fric. (9) (9+1) Error Index | effct. |
5 | 32847.90292 717.87994| 32130.02299 32667.90099 180.00194| 0.25074| 0.74926
6 | 32582.36697| -518.46131| 33100.82828 32846.97578 -264.60881| 0.51037| 0.48963
7 | 32824.63259 -559.14829| 33383.78088 33305.84795 -481.21536| 0.86062| 0.13938
8 | 33301.04221 -383.39286| 33684.43507| 33784.93053 -483.88832| 1.26212| 0.26212
9 | 33782.59231| -305.36009| 34087.95240 34151.60976 -369.01745| 1.20847| 0.20847
10 | 34151.05130 -216.58757| 34367.63887| 34393.64885 -242.59756| 1.12009| 0.12009
11 | 34393.51454| -132.54454| 34526.05908 34534.96140 -141.44687| 1.06716| 0.06716
12 | 34534.92943 -73.90874 | 34608.83817| 34611.39598 -76.46655 | 1.03461| 0.03461

Table 7.9: Adjoint based inter-grid friction error on unifio meshest. = 80000,u; = 0.1,
up = 0.9, slide-roll ratio = 0.8 (sliding)
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Grid | Interpolated | Calculated | Corrected Friction Measured | Effectiv. | | 1.0 -
(9) Fric. (@) correction Fric. (Q) (9+1) Error Index | effct. |
5 | 75942.44786/ 1514.05197| 74428.39590 74961.63818 980.80968| 0.64780| 0.35220
6 | 74829.35179 -1429.76015| 76259.11195 75076.18903 -246.83723| 0.17264| 0.82736
7 | 75062.32454 -447.54805 | 75509.87259 76036.19337| -973.86883| 2.17601| 1.17601
8 | 76004.98630 -884.18078 | 76889.16708 76898.72841 -893.74211| 1.01081| 0.01081
9 | 76888.36623 -662.51809 | 77550.88431| 77645.73835 -757.37213| 1.14317| 0.14317
10 | 77643.20345 -468.41145| 78111.61490 78188.36713 -545.16368| 1.16386| 0.16386
11 | 78187.85170 -309.36932 | 78497.22102 78529.37180 -341.52011| 1.10392| 0.10392
12 | 78529.25738 -182.68070 | 78711.93808 78722.30232 -193.04495| 1.05673| 0.05673

Table 7.10: Adjoint based inter-grid friction error on umniin meshesl. = 100000,u; =
0.1, u, = 0.9, slide-roll ratio = 0.8 (sliding)

7.6 Adaptive EHL

In the previous section it has been seen how the adjointisnlaén be used to predict the
error in a given functional for elastohydrodynamic lubtioa cases. The aim is now to
establish how this solution can be used to guide adaptiveeraient of the domain. The
aim is, as explained in Chapter 3, to give the value of thetfanal, rather than the full
solution profile, as accurately as possible.

In this section, the adaptation method used in the induisioide is explained. This
uses multigrid patches for the non-uniform mesh discretisaas mentioned in Sec-
tion 2.4.3. Then in Section 7.6.2, the overall adjoint mesimement algorithm is de-
tailed. The rest of the section is devoted to discussing heveolution from the multigrid
patches for the EHL cases is not as consistent as is normaidgcesd.

7.6.1 Adaptive solution process

The following algorithm provides an overview of the adaptsolution process that is
used in this chapter.

1. Solve forward problem on the current non-uniform mesk (barse mesh).
2. Solve adjoint problem on the same mesh.

3. Interpolate the above solutions onto a uniformly refinecsion of the coarse mesh
(the fine mesh).
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4.

(o]

Evaluate the residuals on the fine mesh.

Calculate the error correction value (i.e. the scaladpaob of the residuals and the
interpolated adjoint solution).

Define an error correction vector to be a vector of the doutions to the above
scalar producty = ri.a;, wherer; is the residual an@y is the adjoint solution at
mesh point).

Use the error correction vector to identify where the entrcoarse mesh needs
refining (i.e. around those nodes with the greatest cortabuo this vector).

. Write out the new refined mesh and use the interpolatedisolas continuation

input to next iteration.

Repeat the above process until a satisfactory solutiobtaned: return to step 1.

7.6.2 Mesh refinement

The above algorithm provides a means of identifying whictt pthe current solution is
contributing the most to the error in the functional of ist. The specific details of the
refinement are described according to the following altaontt

1.

Identify the grid points where the error correction comeot associated with that
point is above a prescribed toleranceT(§).

Add a “safety layer” either side of all such points.

Sweep over the grid and identify areas not marked for refer@ which are too
small, and mark these for refinement too.

If the coarse mesh is already non-uniform, take care arthm interfaces between
different mesh levels. This means that if further refinemsmequired at these
points, the current level of adaptivity should be extendetivards into the coarse
region.

7.6.3 Film thickness

There is a slight complication with how the film thicknessa$ved for on a non-uniform
mesh. As previously described in Chapter 2, the forwardes@dvobtained by solving
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using multigrid with adaptive patches [26, 70]. One testde # the residual equations
which have been defined for use in the adjoint error procedugeconsistent with the
solutions obtained from the forward solve is to check thatrdsiduals produced using
these solutions are small. In other words, there should begiesnon-uniform grid on
which the solutiorP is equivalent to the multi-level solution. Clearly tRevalue to be
used at any given point can just be obtained from the finest leesh, since any points
which were solved on coarser meshes have already beenafdtag to the fine level so
that the film thickness can be calculated. Equally, the \&@gg@nd density are calculated
from these pointwise values so there is no confusion as tedhues to use. However, any
film thickness value is calculated from tRevalues at all of the other mesh points. This is
why the finest mesh must be fine everywhere even though laajiese may not be used
in the actual solution of the Reynolds equation.

This however leads to a dilemma. Shotddvalues in coarse regions be calculated
using the interpolate® values (on the uniformly fine mesh), or should tHesalue cal-
culated during the solution on the coarse level be used? &$isnswer is that the coarse
values should be used since it was those that were used whamgsior the P values at
those points. However, this is not perfect, since at leasesof the pressure values would
have been calculated with the FAS right-hand side beingzsasa- The main problem
comes from the interface points. When the adaptive patcéfisad, the ends are taken
to be Dirichlet points using the values from the coarser m&sththeH values used in
the residual equation for either of those points should heebarséd values. However,
the point inside of the fine region is solved for using fine dfidalues. Since the resid-
ual for any point uses values from either side, the pointseeiside should have fing
values too. However, it has already been said that the agenpoint should have coarse
H values. So in order for thel value at the interface to be consistent with the residuals
used to calculate thie values around it, two values are required at the same poime. T
same is also true for the first point inside the interface @fithe mesh side. This means
that there are two points, the interface and the first poisid® on the fine side, which
need two film thickness values at the same point to satisfeduations as solved in the
multi-level solution.

This clearly casts some doubt over the exact formulatioh@fulti-level solution as
it stands. However, in practice, as demonstrated by thdtsaaithe next section, this has
little or no discernible effect on the solution or the adjamor estimation method.

We conclude this section by noting that the evaluation odt#bian is made slightly
more complex by the inclusion of a non-uniform spatial meésénce these modifications
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must not be overlooked when moving from a uniform to a norfarm grid.

7.7 Non-uniform mesh results

In order to illustrate adjoint error estimation and spatnsh adaptivity, an EHL case is
presented with a load of 120000. In this section, attensdiecused on a typical highly

loaded example, similar to those presented in the previeason. The main difference

here is that rather than the usual dimensional rollingisicused for the majority of the

work presented, a new “friction-like” functional is intraded. This is basically the same
as the rolling term from friction from the standard frictiequation (7.34):

_ Xe
F, :/ HoP ax. (7.35)
)(Cf

This can be discretised in the usual manner to give

_ "z Ri1—R
Fi1= _%0-5(Hi+1+Hi)_7__(xi+1—Xi)- (7.36)
& Xiv1—X

It is harder to assess the quality of our error approximatiomon-uniform meshes than
on uniform meshes since the effectivity index is not likedytend to unity in this case
(the grid is only refined where the contributions to the egstimate are large not where
the error in the estimate itself is large!). Furthermoreaddition to the need for a reli-
able error estimate the proposed adaptation procedureedsires that the regions that
contribute most to this error estimate are the most suitaiéss in which to perform local
mesh refinement. Fortunately, the results in Figure 7.6 ssigbat the error estimate and
the adaptive strategy are both robust for the purposes dfabng local adaptivity.

Figure 7.6 shows the estimated error based upon a comparfs@rious computed
solutions against a “numerical truth solution” that is cdéted using an excessively re-
fined uniform mesh (level 14, 32769 points). Clearly the miesirable area of this
figure is in the bottom left-hand corner, where there is gneatcuracy for fewer points!
However, there is a trade-off between the desirable quafmitreased accuracy) and that
which it costs to achieve (increased mesh points). Thiseigrlt shown by all three lines,
which illustrate the error in the solutions when compared ttruth solution”. The top
line on the graph shows the error in the friction for a seriesroform grid solutions. This
is the benchmark against which a comparison of the adaptiaih be made. The second
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line shows the resulting error using local adaptivity baspdn the adjoint correction
procedure applied to the coarse grid solution. This is whteeecoarse grid solution has
been refined based on the components of the error correcticior(as described earlier).
Once the solution has been obtained on this coarse gridnieigpolated onto a uniformly
refined version, where an estimate of the friction can beutaled as if it had been on that
fine grid. The value shown on this second graph is that of thesafentioned estimate
as corrected by the adjoint method. The third graph showdritieon calculated from
solutions obtained directly once on the uniformly refinedid/e mesh.

Initially, the error is reduced in line with the uniform salens. This is simply because
only global refinement has taken place at this stage, i.ecdhgonents of the error cor-
rection vector are all sufficiently large to warrant refingrhéhis may not quite be true
to the extent that it is the buffer regions introduced arocochponents which are larger
than the tolerance which mean that all of the mesh pointsrhecefined). As previously
seen, where the adjoint error estimation is applied to thes®rm solutions, the error
is reduced to that of a uniformly refined version, but with thajority of the calculation
performed only on the original coarse mesh. As the mesh ikdurefined, the contribu-
tion to the error is primarily found to be in certain regioktere Figure 7.6 clearly shows
the value of the local versus the global mesh refinement.

In Figure 7.7 the meshes used on each multigrid level are ishdhis shows, as
stated above, that the first few levels (up to the blue lin&ehanly global refinement.
At this stage the gradient of both of the adaptive error lislearpens, indicating that the
adaptive meshing is actually working. In other words, byniefy the regions where the
components of the error vector are large the error in thaidmccan be reduced by an
amount roughly comparable to that achieved by uniform refieat, but with far fewer
grid points. This trend continues with further local refirmmh By noting in Figure 7.6
that the adaptive solution on the fine grid stays to the lefthefuniform line, it is clear that
adaptivity is effective at reducing the number of grid psineeded to calculate friction
to a specific accuracy. Further, by correcting this valueoediog to the adjoint error
estimate, the line can be moved further left, clearly dertrating the efficacy of this
method.

We conclude this section by presenting the results in theegabular form as used for
demonstrating the accuracy of the error estimate on unifoieshes. Table 7.11 shows
the data corresponding to the calculations in Figures 7d67ai. As already predicted,
the effectivity index is no longer tending to unity, howetie estimate always remains
within about 20% of the true error and its variation is veryahun line with that of the
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Grid | No. | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv.
(9) | Points| Fric. (9) correction | Fric. @) | (9+1) Error Index

5 65 0.11423 0.00359 | 0.11064 | 0.11036| 0.00387 | 1.07787
6 129 0.11036 0.00148 | 0.10888 | 0.10876| 0.00160 | 1.07955
7 257 0.10876 0.00066 | 0.10809 | 0.10806| 0.00070 | 1.05185
8 423 0.10800 0.00024 | 0.10775 | 0.10774| 0.00026 | 1.04994
9 692 0.10788 0.00031 | 0.10757 | 0.10760| 0.00028 | 0.90484
10 964 0.10761 0.00004 | 0.10757 | 0.10758| 0.00003 | 0.68463
11 | 1152 0.10771 0.00019 | 0.10751 | 0.10756| 0.00015 | 0.76009
12 | 1327 0.10775 0.00029 | 0.10746 | 0.10752| 0.00023 | 0.79639

Table 7.11: Adjoint based inter-grid friction error on atige non-uniform mesheg; =
120000, slide-roll ratio = 0.0 (pure rolling)

true error.

7.8 Summary

In this chapter, adjoint error estimation procedures haentsuccessfully applied to full
elastohydrodynamic lubrication problems. First, sevelifferently loaded cases were
considered on uniform meshes. Adjoint error estimation sfasvn to give excellent pre-
dictions of the inter-grid error estimate in the case of purelling friction, and also for
moderately loaded sliding friction. For high loads, veryodgoredictions for the slid-
ing friction error estimate were also achieved after swgfitigrid resolution had been
achieved. Finally, adjoint error estimation for EHL hasietown to be useful for driv-
ing spatial mesh adaptation. By adaptively refining the gricegions where the contri-
bution to the adjoint error estimation was large, and thamnecting the friction with the
error estimate, significant savings in the number of poisisduin the calculation were
made over the uniform grids. However, it is clear that theee lanitations to this ap-
proach as implemented for this work. Two areas which may fitfrn@m further attention
are now discussed.

As mentioned above, the accuracy of the adjoint error esiim@arocedure described
above worsens for highly loaded EHL cases where the friatimmains a sliding com-
ponent. Preliminary investigations suggest that this s tuthe exponential term within
the viscosity equation, which is a multiplier in the secoaht of equation (7.34). These
investigations centred around choosing the functionahtdrest to be each of the terms
from the friction calculation in turn to see the accuracy a€le. The precise mechanism
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which causes the degradation in accuracy compared to prokityg friction is as yet
unclear. One possibility is that the linear approximatiossd in the derivation of the
method are only valid for meshes with medium to high levelseihement when dealing
with exponential values. In this sense, the asymptoticeasdurther away with increas-
ing load, and it may be possible to derive some empirical wiagegiding the coarsest
level possible. It is also the case that since the derivatian exponential is another ex-
ponential, the right hand side of the adjoint system to beesbWill contain exponential
terms. It may be possible to mitigate the effect of theseclasgues by using a different
non-dimensionalisation for the viscosity equation whiskestr to reduce the maximum
value of the viscosity to approximately unity.

The adaptive mesh refinement here is straight-forward tdampnt. A mesh point is
marked for refinement wherever the contribution to the ecarection for that point is
above some prescribed tolerance. After a fresh solutioal@itated on the refined mesh,
the process is repeated until the inter-grid friction eligobelow some other prescribed
tolerance. There are therefore two tolerances which nebd 8pecified, the first is used
to decided where to refine, and the second to decide whenisaoffizccuracy has been
obtained. While the second of the two can be chosen with thkeajohe overall accuracy
in mind, the first tolerance requires an arbitrary choiceeblasn previous experience
to determine a suitable value. A more sophisticated metiddch would avoid this
problem, would involve identifying the points with the lag error, and then refining
those. This means that only the second of the two tolerarlcesyaeed be supplied, and
as before this process can continue until the inter-gradiém error is below the prescribed
value.



Chapter 8

Discussion

This final chapter of the thesis provides a brief overviewls tesearch that has been
undertaken and then presents a short discussion of some ofidin extensions of this
work that should be undertaken.

8.1 Overview

In this thesis, adjoint error estimation techniques hawnl@pplied to complex EHL prob-
lems. A functional has been introduced, the friction, arstification has been provided
as to why this quantity, and hence its accuracy, is impartAnt iterative approach has
been taken to understanding the mechanisms at work, gtavith a model problem, and
culminating with the full EHL line contact problem.

In Chapter 4, friction has been introduced as a quantity t&frést. Here it has been
demonstrated that resolution of the pressure spike is kagéearately capturing the fric-
tion through the contact. A model free-boundary problenemasling EHL in certain key
features has been formulated in Chapter 5. With this, a neaglof solving for the free
boundary allowing for the exact capture of the cavitatiosipon has been shown, and
a new functional introduced analogous to the friction in @ea4. Non-uniform grids
have been introduced, with the adjoint error estimate usetha basis for refinement,

119



Chapter 8 120 Discussion

again showing the prediction of the estimate to be accuiidte.successful application of
adjoint error estimation to this free-boundary problem hasn published in [34, 35]. In
Chapter 6, hydrodynamic lubrication was introduced viadddition of non-linear vis-
cosity and density models. The formulation of the adjoirgtsyn of equations for this
more complicated engineering problem has been considefiddiwo possible alterna-
tives explored. The “expanded” and “dense” Jacobians haea lshown to be similar,
with both predicting the inter-grid friction error accuelt. This informed the choice
of system for the following chapter, Chapter 7. The final pdrthis work is presented
in Chapter 7, where adjoint error estimation theory has lzg®lied to the complicated
real-world engineering problem of elastohydrodynamicricdtion. Results have been
presented showing this to give reliable estimates of therigtid friction error. Non-
uniform meshes have been used with adaptivity driven autioally by the size of the
components of the adjoint correction, and this has been sihowramatically reduce the
number of points needed in order to achieve a given accurticon.

8.2 Future Work

In this section, a number of areas of work are discussed wijand to extending the
current research.

8.2.1 Overall speed and efficiency

The work in this thesis is very much a proof of concept for thplecation of adjoint error
estimation to EHL, and in that sense it has been shown to bete#. However, in order
for the method to become more attractive from a user’s pets@e MLMI must be in-
corporated into the forward solve. This would mean invedtigy efficient techniques for
MLMI implementation on non-uniform meshes (a topic that heeived little attention
in the literature [9, 10]), as well as considering the imations for the formulation of the
adjoint system.

In addition to this, faster ways of solving the adjoint systewust be found. In the
work of Chapter 7, a direct solver is used to get a solutiorh®ddjoint system as the
Jacobian is almost entirely dense due to the film thickndsslegion. The solution of this
takesO(n?) operations, so quickly becomes prohibitively expensivewen a moderately
refined mesh. There is potential for some kind of multigrigeyapproach to be applied
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to the adjoint error estimation process, since the resiguals in the FAS right-hand side
for the forward problem are not dissimilar to the interpethtesiduals in the adjoint error
estimation approach. In this work the full system Jacobias wsed in formulating the
adjoint system. It may be that sufficient accuracy can beeghirsing an approximate
Jacobian, such as that used in the Newton iteration whiaghdgrart of the smoothing
process in the multigrid solve. Finally, by realising thaie@lence of the expanded and
dense Jacobians shown in Chapter 6, it would be possiblerteed®mething between
the two, whereP, Hy andX; were primary dependent variables, but atéoThe sparsity
pattern for this Jacobian would then have four main block#) ane of them dense, due
to the film thickness kerné{. If this could be solved in a de-coupled way, MLMI may
become applicable which could potentially speed up thetisoiyprocess enormously.

8.2.2 2D point contact EHL

The most obvious extension to the work carried out in thisihe/ould be the extension
to the 2D point contact problem, introduced briefly in Chaf@eas equation (2.1). As
this problem is now 2D, the work involved in solving on a umifdy refined grid jumps
by at least a factor of four (and by a larger factor if a noniopl solver is employed).
This should clearly indicate the potential benefit for sefytwo systems on a coarse grid
rather than one system on a fine grid. In a similar fashion-um@form meshes have
greater potential for saving in 2D than in 1D. Consider, fcarmple, a 1D mesh which is
refined by one extra level over half of the domain. In this capproximately a quarter of
the total points of the fine mesh are saved by only refining einecessary. If the same
were true in 2D, and half of the domain in each direction wéised by one extra level
(so a quarter of the domain), three eighths of the equivéileatmesh could be saved.

The main obstacle to the immediate application of the wodsented here to a 2D
case is the treatment of the cavitation condition. In thiskywthe 1D solver was aug-
mented by an outer-iteration which solved for the cavitatondition though the use of a
sliding grid. This allowed; to be a continuous variable, facilitating the direct impém
tation of the adjoint error estimation. However, it shoukl dear that this is no longer
an option in 2D for a sliding rectangular grid. Rather thae @avitation point, there is
now a cavitation line, represented by a set of cavitatiomygoione for each row of mesh
points parallel to thex-axis. Satisfaction of the cavitation condition at one pawuld
almost certainly guarantee that the cavitation conditionh not hold at most of the rest
of the points. If each row of mesh points parallel to thaxis were allowed to slide,
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the cavitation condition could be satisfied at all of the p&ibut this would come at the
expense of the rectangular grid, and would make finite diffees, and multigrid with the
MLAT scheme, a significant challenge to implement. This dqérhaps be overcome by
mapping to a rectangular reference grid to perform the smiut

One obvious alternative to using finite differences woulddo@ove to a finite element
solution. Since finite elements can be used on non-regulaadts far more naturally,
exact capture of the cavitation condition with a moving meskthod may be possible.
However, any move away from regular grids comes at the prigeobusing multilevel
multi-integration.

One method for dealing with the cavitation region not coased in this work, is the
penalty method [47,90]. As mentioned in Chapter 2, rathantéxplicitly finding the
cavitation region, in this method all negative pressuredanrced to be zero (or negligibly
small) by a penalty term in the residual equations. Sinceeit@et boundary no longer
needs including in the formulation, there would be no neefthtbX; and hence no need
to include it as a free and continuous variable. This methsd laas the advantage that
it can be applied to both finite difference and finite elemesthuds. It is not yet clear
however exactly how the adjoint system would be formulatetthis case.

The final suggestion for overcoming the cavitation boundarydition in 2D is to treat
eachX; as a continuous variable on a fixed grid, but then only alloswtho move to the
discrete grid points. In this way, the adjoint system cotildl lse formed, including any
sensitivities to the cavitation condition, and a residaétclated. However, the correction
may not be as reliable as a sliding grid, since the changecitoin due to a change in the
mesh position predicted by a cavitation residual may natespond to the actual change
on the fine grid if the position predicted does not fall on oryveear a grid point. This
method may still be sufficiently accurate for practical s purposes, and would also
remove the need for resolving the solution every time thelmmegves.

8.2.3 Advanced constitutive models

Two potential augmentations to the model used here are #i&Hil, and non-Newtonian
fluid behaviour. Thermal EHL arises due to the temperatupeddence of the lubricant
viscosity. When sliding is present, the heat generatedenuthricant through the contact
region can no longer be ignored, as it has a significant thmeiffect on the lubricant.
A model for this is presented in [22]. Any behaviour of a fluitheve the shear-rate is
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not proportional to the applied strain is deemed non-NewtonTwo such fluid models
are the Ree-Eyring fluid model [60] and the more complicatddt®/Metzner model [65,

86]. The second of these is visco-elastic, and hence theMis@dsity is time-dependent.
Either of these would increase the number of adjoint vaegbd be solved for, potentially
making the solution with even moderately refined grids @rajing.

8.2.4 Transient EHL

Adjoint sensitivity analysis for time-dependent PDEs i ®latively poorly understood [69].
However spatial mesh refinement could take place in ordezdoge the growth of errors

in the friction over time. Also, with transient EHL, surfasmighness becomes a possibil-
ity, with refinement only around those areas which would askig affect the friction. In
order to capture the roughness profile accurately, very fieghes are likely to be needed.
While this may be achievable for 1D line contact cases, in aEltel solutions on the
grid become a necessity [32].
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In this appendix are copies of the previously published mapethe candidate.
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