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ABSTRACT

Solutions to Partial Differential Equations (PDEs) are often computed by dis-

cretizing the domain into a collection of computational elements referred to as a mesh.

This solution is an approximation with an error that decreases as the mesh spacing

decreases. However, decreasing the mesh spacing also increases the computational

requirements. Adaptive mesh refinement (AMR) attempts to reduce the error while

limiting the increase in computational requirements by refining the mesh locally in

regions of the domain that have large error while maintaining a coarse mesh in other

portions of the domain. This approach often provides a solution that is as accurate

as that obtained from a much larger fixed mesh simulation, thus saving on both

computational time and memory. However, historically, these AMR operations often

limit the overall scalability of the application.

Adapting the mesh at runtime necessitates scalable regridding and load balancing

algorithms. This dissertation analyzes the performance bottlenecks for a widely used

regridding algorithm and presents two new algorithms which exhibit ideal scalability.

In addition, a scalable space-filling curve generation algorithm for dynamic load

balancing is also presented. The performance of these algorithms is analyzed by de-

termining their theoretical complexity, deriving performance models, and comparing

the observed performance to those performance models. The models are then used to

predict performance on larger numbers of processors. This analysis demonstrates the

necessity of these algorithms at larger numbers of processors. This dissertation also

investigates methods to more accurately predict workloads based on measurements

taken at runtime. While the methods used are not new, the application of these

methods to the load balancing process is. These methods are shown to be highly

accurate and able to predict the workload within 3% error. By improving the accuracy

of these estimations, the load imbalance of the simulation can be reduced, thereby

increasing the overall performance.



Finally, the scalability of AMR simulations as a whole using these algorithms is

tested within the Uintah computational framework. Scalability tests are performed

using up to 98,304 processors and nearly ideal scalability is demonstrated.
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CHAPTER 1

INTRODUCTION

On August 10, 2005, a truck carrying 38,000 pounds of explosives through Spanish

Fork Canyon in Utah jack-knifed and caught fire. Within a few minutes, the truck

exploded violently, leaving a crater that was 30 feet deep and 70 feet wide. For

unknown reasons, the force of the explosion was much more violent than anyone

expected, leading to the questions “What caused the explosion to be so violent?” and

“Can anything be done to help prevent such explosions in the future?” Understanding

what led to the violent explosion is a challenging problem. Due to the size of this

explosion, it is difficult to construct experiments to determine the possible causes of

the violence. Simulation science can provide insight into the physical mechanics of

the explosion without the need to physically recreate it.

The Center for Simulation of Accidental Fires and Explosions (C-SAFE) [40, 47,

89, 90] is a research program that utilizes simulation science to better understand

explosions and fires. The center began in 1998 as a DOE-funded research project

at the University of Utah. One of the target simulations of C-SAFE is a small steel

container filled with a solid explosive (PBX-9501) that is suspended above a pool of

fire. As the pool fire burns the container and explosive increase in temperature until a

critical temperature is reached. At this point, the explosive ignites and begins to burn,

converting the solid into a high temperature gas which in turn causes the container to

pressurize. As the pressure increases, the container expands and eventually ruptures

violently. Results from this simulation can be seen in Figure 1.1.

More recently, C-SAFE has begun research into arrays of explosives similar to the

Spanish Fork accident. The hope of this work is to utilize simulations to determine

what caused the violent explosion. It is suspected that the explosives underwent

a deflagration to detonation transition (DDT) [101, 102, 107] due to the packing
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(a) (b) (c)

Figure 1.1. Images of C-SAFE’s target simulation (a). In this simulation, a container
of explosive is suspended over a pool fire (b). The heat flux from the fire heats the
container until it ignites and explodes violently (c).

arrangement of the explosives. Detonations are an order of magnitude more violent

than deflagrations and a DDT would explain the violence of the Spanish Fork accident.

Through simulation, the C-SAFE group is currently investigating models for DDT

and the effect of packing arrangements for sympathetic explosions.

The simulation of such problems requires expertise from a variety of disciplines,

including fire dynamics, fluid dynamics, material dynamics, and computer science.

This broad requirement has necessitated a framework which facilitates the cooperation

between experts from different domains. This has been accomplished through the

Uintah computational framework [40, 47, 89, 90], which was developed by C-SAFE.

1.1 Uintah

The Uintah computational framework is a set of parallel software components and

libraries built upon the DOE Common Component Architecture (CCA) that facilitate

the solution of partial differential equations (PDEs) on structured grids. Uintah is a

sophisticated framework that can integrate multiple simulation components, analyze

the dependencies and communication patterns between them, and efficiently execute

the resulting multiphysics simulation.

One of the primary strengths of Uintah is that application designers can develop

large-scale parallel simulations with little understanding of the underlying parallelism.
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To do this, the designers must specify their algorithm as a series of serial tasks that

run on a hexahedral mesh patch. Each task specifies the serial computation for a

single time step and the related variable dependencies. Variable dependencies state

what data the task requires for the computation (along with the stencil width) and

what data the task modifies or computes. Using these dependencies, Uintah creates

a directed acyclic task graph that defines the communication requirements for the

simulation along with the task execution order. This design eliminates the need for

developers to design parallel algorithms, allowing them to focus on work within their

domain. In addition, this design allows simulations to utilize advanced communication

techniques including asynchronous communication and message coalescing, leading to

greater parallel performance. Uintah will be discussed in more detail in Chapter 3.

1.2 Parallelism

The need for larger and faster simulations has necessitated the use of parallelism.

Parallel applications utilize concurrent threads of execution on multiple processing

cores to solve both larger problems and/or solve problems faster. To gain parallelism,

these applications must be mapped efficiently onto the parallel architecture.

Parallel architectures contain a hierarchy of communication levels. The highest

level contains nodes which are connected together via a network interconnect such

as InfiniBand [72] and Remote Direct Memory Access over the Converged Enhanced

Ethernet [26]. A node contains one or more sockets (CPUs) that are connected

together via the system bus. Each CPU may also contain one or more processing

cores. This system hierarchy leads to nonuniform memory access times between

cores. For example, processing cores may share a cache, allowing for fast access of

data between cores within the same CPU. However, cores on different CPUs within

the same node do not share a cache and thus must communicate over the system bus

but may still utilize shared memory. Communication between cores on different nodes

must occur along the system interconnect through network protocols which generally

do not allow for shared memory accesses. Throughout this dissertation, the terms

processor and core will refer to a single processing unit which may be a single-core

CPU or a single core of a multicore CPU.
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Applications must take into account the system hierarchy. Parallelism on shared

memory systems can be exploited with multithreading. This is traditionally ac-

complished explicitly through the use of threading libraries such as pthreads [71] or

implicitly through libraries such as OpenMP [17]. OpenMP is a threading library that

automatically parallelizes portions of an application. The advantage of the OpenMP

approach is that parallelism can be exploited with little effort though the performance

may not be as efficient as an explicit approach. Inter-node communication is generally

accomplished through message passing across the communication network. The

Message Passing Interface(MPI) is an API which defines a communication interface

that explicitly communicates using sends and receives [98]. The MPI standard is

the most commonly used method for achieving parallelism, which has led to the

development of libraries including OpenMPI [38], MPICH [42], MVAPICH [53], along

with many others.

Traditionally, applications have utilized an all-MPI or all-threaded approach to

parallelism, depending on the system architecture. To better utilize internode com-

munication, most MPI implementations optimize internode communication through

shared memory, though the MPI specification does not require such features. How-

ever, more recently applications, like Carpet [87], have begun using hybrid threaded-

MPI approaches where MPI is utilized between nodes and threading is utilized within

a node.

Simulating C-SAFE’s target problem takes hundreds of hours on a few thousand

processors. Such a problem could not be currently simulated in serial. By using

more processors, the solution can be computed faster and/or larger problems can be

simulated. The need for both larger problems and faster times to solution has led to

two commonly used methods for testing scalability.

The first method is commonly referred to as strong scalability. This method

measures the change in execution time for a fixed-size problem as the number of

processors vary. This method can be defined as follows:

Let T (N,P ) be the time to solve a problem of size n on p processors. Then, ideal

strong scaling occurs when the problem is solved p times faster than in serial which

is described by
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T (N,P ) =
T (N, 1)

P
,

Parallelism is also often expressed in terms of efficiency which is defined as

SE(N,P, P0) =
T (N,P0)P0

T (N,P )P
.

where P0 is the reference point for which the efficiency at P is computed.

When T(N,P) for N fixed is plotted on a log-log graph, ideal strong scaling

appears as a straight line with a slope of -1. This corresponds to an efficiency of 1.

Increasing the number of processors should decrease the time to solution. However,

in some cases, adding more processors may increase the time to solution and thus

be counterproductive. These metrics help to determine where ideal strong scalability

breaks down.

Speedup is another commonly used metric of strong scaling which is defined as

SU(N,P ) =
T (N, 1)

T (N,P )
.

This metric is useful because it precisely describes how much faster the problem was

solved on P processors.

The second method of testing scalability is commonly referred to as weak scalabil-

ity. This method measures the change in execution time as the number of processors

and problem size vary proportionally to each other. Ideally, the execution time would

remain the same as the problem size and the number of processors double. Ideal weak

scaling occurs when a problem that is c times larger is solved on c times as many

processors in the same time which is described by the following equation:

T (N,P ) = T (cN, cP ).

The corresponding weak efficiency is defined as
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WE(N0, P0, P ) =
T (N0P0, P0)

T (N0P, P )
,

where N0 is the problem size per processor at P0 processors.

Ideally, a log-log plot of T (N,P ) for a fixed N
P

appears as a horizontal line which

also corresponds to an efficiency of 1. However, often increasing both the problem

size and number of processors proportionally also results in an increase in execution

time or a line with a positive slope.

The weak scaling metric is important because it more accurately represents how

large parallel machines are used. As simulations move onto larger machines, it is

often the case that the size of the simulation is increased. Algorithms that weak scale

poorly experience diminishing returns on processors and thus solving larger problems

may not be feasible.

A metric that combines the weak and strong efficiency metrics is presented in [13].

This metric measures the efficiency of computing a workload of size N1 with P1

processors relative to the time to compute a workload of size N0 with P0 processors

and can be written as

SWE(N0, N, P0, P ) =
T (N0, P0)

T (N,P )

P0

P

N

N0

,

where (N0, P0) is the reference point to which the efficiency for the point (N,P ) is

computed. This metric has the advantage of providing a measure of total scalability

given any two data points.

Achieving either type of ideal scalability is a challenging task and neither type of

scalability implies the other. Each type of scalability poses its own unique challenges

and it should not be assumed that achieving one type of scaling is easier than the

other.

The following illustrates the difference between weak and strong scaling for com-

monly found functions of T (N,P ). The left image in Figure 1.2 shows the strong

scaling for these functions. N
P

, N logN
P

, both show ideal strong scaling, while a constant

C and logP show no scalability. The C is important because every program has some
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fixed overhead or serial portion that will eventually prevent ideal strong scaling, as

captured by Amdahl’s law [2].

The right image in Figure 1.2 shows the weak scaling for these same functions.

N logN
P

and logP do not exhibit ideal weak scalability. In fact, N logN
P

and logP

are equivalent within a constant when weak scaling. N
P

and C exhibit ideal weak

scalability. The constant C illustrates the counter to Amdahl’s law presented by

Gustafson’s in [45]. This paper fundamentally changed the way people thought about

parallelism by illustrating that parallelism could still be achieved by increasing the

size of the problem with the number of processors.

The terms that prevent ideal strong scaling are different than the terms that

prevent weak scaling. For an algorithm to exhibit both ideal weak and strong

scalability, T (N,P ) must be completely linear [81]. Thus, one of the challenges

addressed in this dissertation will be to identify some of the functions that compose

T (N,P ) for various algorithms used within Uintah and where possible, modify the

algorithms so that they are as close to a linear cost as possible. By identifying these

functions, we will be able to better understand the parallel performance of Uintah

as a whole by predicting and verifying the performance of the main components.

This analysis will then be used to predict what changes are needed to increase the

scalability further.
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Figure 1.2. The scalability of common functions.
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Simulating an explosion similar to the one at Spanish Fork canyon will require

simulating an array of thousands of tightly packed explosives. Such a problem will

require orders of magnitude more parallelism than the single container simulation.

Petascale machines with over 100,000 processors have begun to arrive within the

last two years. These machines are suitable platforms to simulate small arrays of

explosives. However, in order to utilize these machines and future machines with many

more processing cores, the scalability of Uintah will need to be improved substantially.

1.3 Adaptive Mesh Refinement

Solutions to Partial Differential Equations (PDEs) are often computed using

standard finite difference techniques [15, 103], finite element methods [16, 39], or

finite volume techniques [54, 113]. These methods approximate the solutions by

discretizing the domain into a collection of computational elements referred to as a

mesh. This mesh is often composed of a structured mesh (or grid) or by a collection

of unstructured elements.

The error in the solution is dependent on the element size (or mesh spacing).

One way to reduce this error is to refine the mesh which reduces the size of the ele-

ments. This, however, increases the number of elements which thereby also increases

computational requirements. One way to decrease this error while limiting the total

number of elements used is to refine the mesh locally in regions of the domain that

have large error. By refining locally, the error across the domain can be reduced while

only increasing the computational requirement in the regions that are refined. This

provides a large reduction in computational and memory requirements over all-fine

fixed-mesh solution with similar error. The two primary benefits of these reductions

are that 1) larger problems can be solved and 2) the time to solution can be decreased.

Adaptive mesh refinement (AMR) describes a collection of mesh refinement al-

gorithms that allow the refinement to change throughout the simulation. This is

accomplished by estimating the error in the solution across the domain and dynam-

ically adding or deleting refinement to the mesh as necessary. AMR algorithms are

generally either unstructured (UAMR) or structured (SAMR). UAMR algorithms use

a collection of finite elements which are split or combined as necessary. Alternatively
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structured AMR (SAMR) utilizes multiple structured grids. There has been much

work on both methods, and each has advantages and disadvantages, as discussed in

[33]. This dissertation will focus on methods for block-structured AMR (BSAMR),

as described below.

A ground-breaking method for block-structured AMR (BSAMR) was originally

presented by Berger and Oliger in [8] and then by Berger and Colella in [10]. BSAMR

uses error detection algorithms to flag portions of the domain that require more

refinement. The algorithm then adds refinement to those portions of the domain

through a process commonly referred to as remeshing or regridding. The process is

repeated until a desired resolution is reached producing a dynamic multilevel grid, as

defined below [10]:

An AMR grid G is a sequence of grids at successively finer levels 1, . . . , lmax such

that

G = ∪lGl,

where Gl is a collection of a hexahedral mesh patches with the same mesh spacing

such that

Gl = ∪kGl,k.

In addition, the grid levels must be properly nested such that

1. a patch begins and ends at the corner of the coarser grid cell.

2. all fine cells exist within the interior of the coarser level.

Figure 1.3 shows such a multilevel grid comprised of three levels. It is not necessary

that a patch be contained entirely within a coarser patch, as long as all grid points

within that patch are contained within a coarser patch, as illustrated by patch G3,1.

Octree-structured AMR (OSAMR) is an alternative to BSAMR that builds the

mesh using an octree. This method combines elements of UAMR with SAMR and has
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G1,1

G2,1

G3,1

G2,2

Figure 1.3. A multilevel grid of nested levels used within BSAMR

shown promising scalability results using up to 224,000 cores [20, 21, 22]. The meshes

used in this method are fundamentally different than those used within BSAMR as

the grid is not nested and each portion of the domain only exists on a single level.

The challenge considered here is to analyze and extend the BSAMR algorithms to

levels of scalability similar to that of OSAMR.

To adapt the grid in response to a solution evolving in time, a number of steps

must occur that would not occur in a fixed mesh calculation. These steps generally

include the creation of the new grid (regridding), the assignment of the new grid to

cores (load balancing), and updating the computation and communication algorithms

(scheduling). In many adaptive simulations, these changes can occur as often as every

few time steps. This necessitates that these algorithms run efficiently in parallel. Poor

performance within any of these algorithms has led to performance problems at large

scales [77, 121, 122].

Achieving large scale parallelism, especially for AMR applications, is a challenging

task. This has led to the development BSAMR frameworks like Uintah [77, 90],

Enzo [85, 86], SAMRAI [121], Chombo [108], and AMROC [24] along with OSAMR

frameworks like Paramesh [79], Flash [37], and ALPS [19].
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These frameworks simplify the development of large-scale adaptive simulations

by compartmentalizing the AMR algorithms, allowing them to be developed and

optimized separately [89, 90] and also allow for code reuse. Scalability on today’s

largest machines has been shown for ALPS using up to 224,000 processors [20] and

Uintah on 98,304 processors [13, 74].

1.3.1 Regridding

During the AMR process, refinement is often added or removed to regions of the

domain. This is achieved through a process known as regridding or remeshing. One

commonly used regridding algorithm is known as the Berger-Rigoutsos algorithm [11].

This algorithm uses edge detection algorithms from image processing to generate a

tight fitting axis-aligned patch-set with relatively few patches. This algorithm was

later parallelized in [9] and [122] but both relied substantially on global communica-

tion which limited scalability on large numbers of cores [44]. Improvements to this

algorithm which focused on reducing the amount of global communication were later

presented in [44] and showed scalability to 16K cores. Chapter 4 analyzes the parallel

performance of commonly used regridding algorithms and presents two new methods

for regridding which exhibit much better scaling properties than the original method.

1.3.2 Load Balancing

A load imbalance occurs when one or more cores are assigned more work than

other cores. A large load imbalance will cause cores to wait for other cores to finish

their computation, leading to poor utilization of system resources.

The variety of available simulation components within Uintah necessitates a so-

phisticated load balancer that is flexible enough to handle all of Uintah simulations.

Dynamic load balancing can be described as the minimization of three competing

costs: the cost of load imbalance, the cost of communication, and the cost to generate

the load distribution.

In addition, too much communication can also cause performance issues. Com-

munication across the network is slow relative to the time for computation and can

easily dominate the time to reach a solution. In many simulations, communication
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is predominantly local, meaning that only a small area around each patch must

be communicated from physically neighboring patches. By clustering neighboring

patches together, the framework can greatly reduce the necessary communication

and significantly affect the overall runtime.

Finally, with AMR methods, the workload changes as the mesh changes. In

addition, with particle methods, the workload can change on each time step as

particles move throughout the domain. This can necessitate that load balancing

occurs often, making it important that the time to generate the patch distribution is

small relative to the overall computation. If a slow load balancing algorithm is used

and load balancing occurs often, the time to load balance can dominate the overall

runtime. In this case, it may be preferable to use a faster load balancing algorithm

at the cost of more load imbalance [12].

The need for fast and effective load balancing techniques has led to the de-

velopment of widely used load balancing applications like Metis [60], Jostle [115],

and Zoltan [14, 31]. Uintah has recently been modified to support the Zoltan load

balancing package, providing easy access to a number of algorithms. In addition,

Uintah can use its own highly parallel load balancing algorithm [76] that utilizes

space-filling curves, which has been shown to be comparable and in many cases better

than Zoltan’s space-filling curve load balancer within Uintah [82]. Chapter 5 will

discuss the load balancing algorithms used within Uintah, including a fast parallel

space-filling curve algorithm and self-tuning cost estimation algorithms.

1.4 Thesis Statement

To simulate a large array of explosives, many more processors will be required.

Previous results have shown scalability problems associated with the changing mesh [77,

78, 121, 122]. Operations such as regridding and load balancing have tended to scale

poorly and prevented the overall scalability of the entire application. This dissertation

uses analysis driven enhancements to improve the parallel performance of

AMR to a hundred thousand processors within the context of Uintah.

Proper analysis of the regridding and load balancing algorithms will provide a

deeper understanding of the performance and scalability of AMR, which will then be
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used to improve Uintah’s performance to scale hundreds of thousands of processors.

Analysis of the performance will help identify bottlenecks in either the algorithms or

their implementations which can then be eliminated through new algorithms or code

optimizations.

1.4.1 Unique Contributions

This dissertation’s unique contributions are the following:

1. A comprehensive description of the Uintah framework and the algo-

rithms it uses for AMR;

2. The development of the Local Berger-Rigoutsos and Tiled regridding

algorithms;

3. Analysis on the parallel complexity of the Global Berger-Rigoutsos,

Local Berger-Rigoutsos, and Tiled regridding algorithms;

4. A scalable algorithm for parallel space-filling curve generation through

sorting;

5. The application of existing filtering technology to automate the load

balancing process;

6. In depth analysis of the scalability of Uintah at 98,304 processors.

The analysis and improvements that were developed will be presented throughout

the remainder of this dissertation. The dissertation has been organized into the

following chapters: a review of related work is presented in Chapter 2, the Uintah

framework is discussed in Chapter 3, algorithms for regridding are discussed in

Chapter 4, algorithms for load balancing are discussed in Chapter 5, Uintah’s parallel

performance will be tested and analyzed in Chapter 6, and finally, Chapter 7 will

present a summary of the work performed and conclusions that can be drawn.
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RELATED WORK

Block-structured adaptive mesh refinement for non-axis-aligned grids was origi-

nally presented by Berger and Oliger in [8]. The method was further refined and

restricted to axis-aligned grids by Berger and Colella in [10].

The next major development by Berger and Rigoutsos was presented in [11].

This paper presented a method for grid creation that is now widely referred to as

the Berger-Rigoutsos algorithm. This algorithm was parallelized in [122] which was

based largely on the work in [9]. However, this parallelization suffered performance

problems, leading to the optimizations presented in [44]. While this parallelization

performed much better than the original, it still presented scalability challenges at

large scales. This led to the development of the local Berger-Rigoutsos and tiled

regridding algorithms in [75], which are presented within this dissertation. The tiled

algorithm is similar to a method used in [73] for nonhierarchical grids.

The effective assignment of work to processors is necessary for efficient parallel

simulations. Load balancing is not unique to AMR simulations and is a widely studied

problem. The primary goal of load balancing is to reduce the overall time to solution

by evenly assigning work to processors while also minimizing the communication.

However, the decision to load balance must also consider the time to compute the

partitions and redistribute the work as described in [12].

One commonly used method for load balancing is to partition the communication

graph directly [61, 92, 96, 97]. However, constructing and partitioning the communi-

cation graph can be a time consuming operation and thus has prohibited the use in

AMR applications which must load balance often.

This has led to the use of geometric bisection load balancing algorithms like

those found in [9, 96]. More recently, research into the use of Space-Filling Curves
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(SFC) [93] for load balancing has been undertaken in [88, 91] which has been shown

to produce high quality partitions quickly [88, 32, 95, 105]. A parallel algorithm for

SFC generation is presented in [76] and will also be presented in this dissertation.

Another commonly used method for load balancing involves diffusing work across

processors at runtime, as described in [28, 50, 51, 52]. These methods tend to execute

quickly and migrate small amounts of work often in order to achieve an effective load

balance.

The widespread need for a variety of load balancing algorithms has led to the

development of libraries such as Metis [60, 61], Jostle [115, 114, 116], and Zoltan [14,

31]. These libraries provide unified interfaces for common load balancing algorithms,

allowing applications to easily utilize these algorithms.

To load balance the computation effectively, there must be an accurate prediction

of workload. Recently algorithms for automated cost estimation were added to Uintah

in [74]. This work used widely used filtering methods [84, 58, 123] to produce accurate

workload estimations.

The need for parallel AMR simulations has led to the development of multiple

simulation frameworks, including ALPS [19], AMROC [24, 29], Carpet [87] which

was built upon Cactus [41], Chombo [108], Enzo [85, 86], Flash [37], Paramesh [79],

SAMRAI [49], and Uintah [40, 47, 89, 90]. The uniqueness of each of these frameworks

is in the simulations for which they were designed and the corresponding algorithms

that they utilize. For example, ALPS simulates mantle convection, Carpet simulates

astrophysics, and Uintah focuses on fires and explosions.

Achieving scalability within these frameworks has been a challenging task and

the ability of each of these frameworks to scale has been demonstrated at different

numbers of processors. SAMRAI illustrated the challenges in scaling BSAMR in [121,

122], where scalability up to 1024 processors was achieved. The scalability of BSAMR

algorithms has since been improved incrementally within Uintah in [78, 77] by scaling

to 4096 processors and the scalability was further improved in [74] up to 98,304

processors which will be presented within this dissertation. Similarly, the scalability

of OSAMR in ALPS was also demonstrated at 32,768 processors in [22] and 65,536
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processors in [21]. Subsequently, the scalability has been improved to over 224,000

processors in [20].



CHAPTER 3

UINTAH

3.1 Introduction

Uintah is a software framework originally designed by the members of C-SAFE to

facilitate research into multiphysics simulations [40, 47, 89, 90]. The focus of Uintah

was to provide a software infrastructure that aids in the rapid development of software

by multiple researchers within various domains by allowing researchers to focus on

work within their domain and not within another’s domain.

The fundamental design methodology in Uintah is that of software components

that are built on the DOE Common Component Architecture (CCA) component

model [3]. Components are implemented as C++ classes that follow a simple interface

to establish connections with other components in the system. The interfaces between

components are simplified because the components do not explicitly communicate

with one another. A component simply defines the steps in the algorithm that will

be performed later when the algorithm is executed, instead of explicitly performing

the computation tasks.

The primary advantage of a component-based approach is that it facilitates the

separate development of simulation algorithms, models, and infrastructure, such

that components of the simulation can evolve independently. A component-based

architecture allows pieces of the system to be implemented in a rudimentary form at

first and then evolve as the technologies mature. Most importantly, Uintah allows

the aspects of parallelism (scheduling, load-balancing, parallel input/output, and so

forth) to evolve independently of the simulation components. This approach allows

the computer science research team to focus on these problems without waiting for

the completion of the scientific applications or vice-versa.

Uintah uses a nontraditional approach to achieving high degrees of parallelism,
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employing an abstract task graph representation to describe computation and com-

munication that occur in the course of a single iteration of the simulation (typically a

timestep or nonlinear solver iteration) [40, 89, 90]. Parallel execution is obtained

through a global domain decomposition which is coupled with the scheduling of

computational tasks. Consequently, Uintah components delegate decisions about

parallelism to a scheduler component through a description of tasks and variable de-

pendencies that describe communication patterns, which are subsequently assembled

in a single task graph containing all of the computation for all components. This task

graph representation has a number of advantages, including efficient fine-grained cou-

pling of multiphysics components [89, 90], flexible load balancing mechanisms [74, 76],

and a separation of application concerns from parallelism concerns. However, the task

graph creates a challenge for scalability that was overcome by creating an implicit

definition of this graph and representing the details of the graph in a distributed

fashion [40, 89, 90].

This underlying architecture of the Uintah simulation is uniquely suited to taking

advantage of the complex topologies of modern HPC platforms. Multicore processors

in a shared multiprocessor configuration combined with one or more communication

networks are common petascale architectures, but applications that are not aware of

these disparate levels of communication may not be able to scale to the large CPU

counts for complex problems. The explicit task graph structure enables runtime

analysis of computations and communication patterns which can then be used to

adapt work assignments dynamically at runtime [83].

3.2 Simulation Components

Uintah contains four main simulation algorithms: 1) the Arches incompressible

fire simulation code [104], 2) the Implicit Continuous Eulerian (ICE) [66] compressible

fluid code (both explicit and semi-implicit versions), 3) the particle-based Material

Point Method (MPM) [109] for structural modeling, and 4) a fluid-structure inter-

action method achieved by the integration of the MPM and ICE components [43],

referred to locally as MPMICE. In addition to these primary algorithms, Uintah in-

tegrates numerous subcomponents, including equations of state, constitutive models,
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reaction models, radiation models, and so forth. The following subsections provide

a high-level overview of the approach to “full physics” simulations of fluid-structure

interactions involving large deformations and phase change. “Full physics” refers

to problems involving strong coupling between the fluid and solid phases with a

full Navier-Stokes representation of fluid phase materials and the transient, nonlinear

response of solid phase materials, which may include chemical or phase transformation

between the solid and fluid phases. Details of this approach, including the model

equations and a description of their solution can be found at [43].

3.2.1 ICE

The methodology upon which the ICE component is built is a full “multimaterial”

approach in which each material is given a continuum description and defined over

the computational domain. Although at any point in space the material composi-

tion is uniquely defined, the multimaterial approach adopts a statistical viewpoint

whereby the material (either fluid or solid) resides with some finite probability. To

determine the probability of finding a particular material at a specified point in space,

together with its current state (i.e., mass, momentum, energy), multimaterial model

equations are used. These are similar to the traditional single material Navier-Stokes

equations, with the addition of two intermaterial exchange terms. For example, the

momentum equation has, in addition to the usual terms that describe acceleration

due to a pressure gradient and divergence of stress, a term that governs the transfer

of momentum between materials. This term is typically modeled by a drag law, based

on the relative velocities of two materials at a point. Similarly, in the energy equation,

an exchange term governs the transfer of enthalpy between materials based on their

relative temperatures. For cases involving the transfer of mass between materials,

such as a solid explosive decomposing into product gas, a source/sink term is added

to the conservation of mass equation. In addition, as mass is converted from one

material to another, it carries with it its momentum and enthalpy, and these appear

as additional terms in the momentum and energy equations, respectively. Finally, two

additional equations are required due to the multimaterial nature of the equations.

The first is an equation for the evolution of the specific volume, which describes how



20

it changes as a result of physical process, primarily temperature, and pressure change.

The other is a multimaterial equation of state, which is a constraint equation that

requires that the volume fractions of all materials in a cell sum up to unity. This

constraint is satisfied by adjusting the pressure and specific volume in a cell in an

iterative manner. This approach follows the ideas previously presented by Kashiwa

and colleagues [62, 63, 64, 66].

These equations are solved using a cell-centered, finite volume version of the ICE

(for Implicit, Continuous-fluid, Eulerian) method [46], further developed by Kashiwa

and others at Los Alamos National Laboratory [65]. The implementation of the ICE

technique within Uintah invokes operator splitting in which the solution consists of

a separate Lagrangian phase where the physics of the conservation laws, including

intermaterial exchange, is computed, and an Eulerian phase, where the material

state is transported via advection to the surrounding cells. The method is fully

compressible, allowing wide generality in the types of scenarios that can be simulated.

3.2.1.1 Governing Equations

The governing multimaterial equations are stated and described but not developed

here. Their development can be found in [62]. The intent here is to identify the

quantities of interest, of which there are 8, as well as those equations (or closure

models) which govern their behavior. Consider a collection of N materials, and let

the subscript r signify one of the materials, such that r = 1, 2, 3, . . . , N . In an

arbitrary volume of space V (x, t), the averaged thermodynamic state of a material is

given by the vector [Mr,ur, er, Tr, vr, θr, p], the elements of which are the r-material

mass, velocity, internal energy, temperature, specific volume, volume fraction, and

the equilibration pressure. The r-material averaged density is ρr = Mr

V
. The rate of

change of the state in a volume moving with the velocity of r-material is:
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1

V

DrMr

Dt
= 0, (3.1)

1

V

Dr(Mrur)

Dt
= θr∇ · p+

∑N
s=1frs, (3.2)

1

V

Dr(Mrer)

Dt
= −ρrpDrvr

Dt
+

∑N
s=1qrs, (3.3)

where Dr

Dt
is the material or substantial derivative. Equations (3.1-3.3) are the

averaged model equations for mass, momentum, and internal energy of r-material.

The effects of turbulence and diffusion processes have been explicitly omitted from

these equations.

In Equation (3.2), the term
∑N

s=1 frs signifies a model for the momentum exchange

among materials. This term is typically modeled as a function of the relative velocity

between materials at a point. (For a two material problem, this term might look

like f12 = K12θ1θ2(u1 − u2) where the coefficient K12 determines the rate at which

momentum is transferred between materials). Likewise, in Equation (3.3),
∑N

s=1 qrs

represents an exchange of heat energy among materials. For a two material problem,

q12 = H12θ1θ2(T2− T1) where Tr is the r-material temperature and the coefficient Hrs

is analogous to a convective heat transfer rate coefficient.

The temperature Tr, specific volume vr, volume fraction θr, and hydrodynamic

pressure p are related to the r-material mass density, ρr, and specific internal energy,

er, by way of equations of state. The four relations for the four quantities (Tr, vr, θr, p)

are:

er = er(vr, Tr) (3.4)

vr = vr(p, Tr) (3.5)

θr = ρrvr (3.6)

0 = 1−∑N
s=1ρsvs. (3.7)
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Equations (3.4) and (3.5) are, respectively, the caloric and thermal equations of

state. Equation (3.6) defines the volume fraction, θ, as the volume of r-material

per total material volume, and with that definition, Equation (3.7), referred to

as the multimaterial equation of state follows. It defines the unique value of the

hydrodynamic pressure p that allows arbitrary masses of the multiple materials to

identically fill the volume V . This pressure is called the “equilibration” pressure [66].

Equations (3.1-3.7) form a set of seven equations for the seven-element state vector

[Mr,ur, er, Tr, vr, θr, p], for any arbitrary volume of space V moving with the r-material

velocity. The approach described here uses the reference frame most suitable for a

particular material type. As such, there is no guarantee that arbitrary volumes will

remain coincident for materials described in different reference frames. This problem

is addressed by treating the specific volume as a dynamic variable of the material

state which is integrated forward in time from initial conditions. In so doing, at any

time, the total volume associated with all of the materials is given by:

Vt =
∑N

r=1Mrvr, (3.8)

so that the volume fraction is θr = Mrvr/Vt (which sums to one by definition). An

evolution equation for the r-material specific volume, derived from the time variation

of Equations (3.4-3.7), has been developed in [62]. It is stated here as:

1

V

Dr(Mrvr)

Dt
= f θr ∇ · u +

[
θrβr

DrTr
Dt
− f θr

∑N
s=1θsβs

DsTs
Dt

]
, (3.9)

where f θr = θrκr∑N
s=1θsκs

, β is the constant pressure thermal expansivity, and κr is the

r-material bulk compressibility.

The evaluation of the multimaterial equation of state (Equation (3.7)) is still

required to determine an equilibrium pressure that results in a common value for the

pressure, as well as specific volumes that fill the total volume identically.
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3.2.2 MPM

Uintah contains a component for solid mechanics simulations known as the Ma-

terial Point Method (MPM) [109]. MPM is a particle-based method that uses a

(typically) Cartesian mesh as a computational scratch-pad upon which gradients

and spatial integrals are computed. MPM is an attractive computational method in

that the use of particles simplifies initial discretization of geometries and eliminates

problems of mesh entanglement at large deformations [18], while the use of a Cartesian

grid allows the method to be quite scalable by eliminating the need for directly

computing particle-particle interactions. A graphical description of MPM is shown in

Figure 3.1. There, a small region of solid material is represented by four particles and

overlayed by a portion of grid, as shown in panel (a). The particles, or material points,

carry minimally, mass, volume, velocity, temperature, and state of deformation. Panel

(b) reflects that this particle information is projected to the nodes of the overlying

grid, or scratch-pad. Based on the nodal velocity, a velocity gradient is computed

at the particles, and is used to update the state of deformation of the particle,

and the particle stress. Based on the internal force (divergence of the stress) and

external forces, as well as the mass, acceleration is computed at the nodes, as is an

updated velocity. This is shown in panel (c), where the computational nodes have

been deformed based on the new velocity and the current timestep size. Note that

the deformation of the grid is never explicitly performed. Panel (d) reflects that

the changes to the field quantities, specifically velocity and position in the case, are

interpolated back to the particles. Once the particle state has been updated, the grid

is reset in preparation for the next timestep (Panel (e)).

Figure 3.1. Graphical depiction of the steps in the MPM algorithm
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3.2.3 MPMICE

Fluid-structure interaction capability is achieved by incorporating the Material

Point Method within the multimaterial CFD formulation. In the multimaterial

formulation, no distinction is made between solid or fluid phases. Where distinctions

do arise is in the computation of the material stress and material transport or

advection. In the former, the use of a particle description for the solid provides a

convenient location upon which to store the material deformation and any relevant

history variables required for, say, a plasticity model. Regarding the latter, Eulerian

advection schemes may sometimes be quite diffusive, and would lead to an unac-

ceptable smearing of a fluid-solid interface. Thus, performing advection by moving

particles according to the local velocity field eliminates this concern.

At the beginning of each timestep, the particle state is projected first to the

computational nodes, and then to the cell centers. This colocates the solid and

fluid data, and allows the multimaterial CFD algorithm to proceed without being

aware of the presence of distinct phases. As stated above, the constitutive models

for the solid materials are evaluated at the particle locations, and the divergence of

the stress at the particles is computed at the cell centers. The Lagrangian phase of

the CFD calculation is then completed, including exchange of mass, momentum and

enthalpy. At this point, changes to the solid materials’ state are interpolated back to

the particles, and their state, including position, is updated. Fluid phase materials

are advected using a compatible advection scheme such as that described in [112].

Again, a full description can be found in [43].

3.3 Domain Decomposition

Uintah discretizes the problem domain into a structured grid of cells. The solution

is then computed on this grid. Parallelism is achieved by dividing the grid into

hexahedral regions of cells called patches which are then distributed onto processors.

Each processor is only responsible for calculations within its assigned patches. The

creation of the patch set is referred to as regridding and will be discussed briefly in

Section 3.6.3 and in more detail in Chapter 4. The process of assigning patches to

processors is referred to as load balancing and will be discussed briefly in Section 3.6.4
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and in more detail in Chapter 5.

Computations within Uintah occur on variables which can exist at the cell centers,

node centers, or face centers of each cell, as defined by the grid. In addition, Uintah

also supports particles which can exist anywhere within the grid. Figure 3.2 shows

where cells, nodes, and faces exist within a Uintah grid.

3.4 Task Graph

Uintah enables integration of multiple simulation algorithms by adopting an execu-

tion model based on coarse-grained “macro” dataflow. Each component decomposes

the steps of an algorithm and the data dependencies between those steps into tasks.

Each task defines a single step of the algorithm along with the necessary dependencies.

The dependencies describe both the inputs and outputs of each task. The inputs to

a task are referred to as “requires” and specify which variables (along with a stencil

width) the task needs to execute. The outputs of a task are referred to as “computes”

and specify which variables the task produces.

The tasks are combined into a directed acyclic graph structure (called a task

graph). As a result, the task graph represents the computation to be performed in

single timestep integration and the data dependencies between the various steps in

the algorithm. The task graph may specify numerous exchanges of data between

components (fine-grained coupling) or few (coarse-grained coupling), depending on

Figure 3.2. The location of cells, nodes, faces, and particles on a Uintah grid
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the requirements of the underlying algorithm. For example, MPMICE requires several

points of data exchange between the MPM and ICE components in a single timestep

to achieve the tight coupling between the fluid and solids. The task graph structure of

Uintah allows fine-grained interdependencies to be expressed in an efficient manner.

Figure 3.3 shows an example of part of the MPM task graph. In this figure, the

nodes represent tasks and the edges represent dependencies between those tasks that

may require communication.

A task graph representation by itself works well for coupling of multiple compu-

tational algorithms, but presents challenges for achieving scalability. A task graph

that represents all communication in the problem would require time and memory

proportional to the number of computational elements throughout the entire domain.

Creating this on a single processor, or on all processors, would eventually result in a

bottleneck.

Figure 3.3. An example Uintah task graph. The nodes represent tasks and the
edges represent dependencies that may require communication.
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Uintah addresses this problem by introducing the concept of a “tensor product task

graph.” Uintah components specify tasks for the algorithmic steps only, which are

independent of problem size or number of processors. This is illustrated in Figure 3.3

which does not include information on the number of processors or the domain layout.

Each task in the task graph is then implicitly repeated on a portion of patches

in the decomposed domain. The resulting graph, or tensor product task graph, is

created collectively where each processor contains only the tasks which it owns or

must communicate with. These tasks are defined as the processors neighborhood.

The graph exists only as a whole across all computational elements, resulting in a

scalable representation of the graph. Communication requirements between tasks are

also specified implicitly through a simple dependency algebra.

Each execution of a task graph integrates a single timestep, or a single nonlinear

iteration, or some other coarse algorithm step. Task graphs may also be assembled

recursively such that an individual task could be a task graph comprised of many

tasks.

Figure 3.4 shows the detailed task graph stored on a single processor for a two

patch and two processor ICE simulation. In this graph, nodes represent tasks and

edges represent dependencies. Dashed dependencies are already enforced through

a parent’s dependencies but may still require communication. The double black

edges represent the critical path through the task graph. This figure illustrates

the complexity of the tensor product task graph even at small numbers of patches.

Increasing the number of patches within a processors neighborhood quickly increases

the size and complexity of this graph. For comparison, Figure 3.5 shows the detailed

task graph stored on a single processor for a two patch and two processor MPMICE

simulation. This graph shows the increased complexity of MPMICE simulations over

ICE simulations.

The idea of the dataflow graph as an organizing structure for execution is well

known and can be traced back to Sarkar’s dissertation [94]. The SMARTS [111]

dataflow engine that underlies the POOMA [4] toolkit shares similar goals and phi-

losophy with Uintah. The SISAL language compilers [36] used dataflow concepts at a

much finer granularity to structure code generation and execution. Other frameworks
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Figure 3.4. The detailed task graph for ICE. In this graph, nodes represent tasks and
edges represent dependencies. Dashed dependencies are redundantly enforced through
a descendent’s dependencies but may still require communication. The double black
edge represents the critical path through the task graph.
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Figure 3.5. The Uintah task graph for MPMICE. In this graph, nodes represent tasks
and edges represent dependencies. Dashed dependencies are redundantly enforced
through a descendent’s dependencies but may still require communication. The
double black edge represents the critical path through the task graph.
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that have utilized a similar task-graph-based approach also include Charm++ [57],

TBLAS [23], Scioto [34], and Concurrent Collections [68].

Dataflow is a simple, natural, and efficient way of exposing parallelism and man-

aging computation, and is an intuitive way of reasoning about parallelism. What

distinguishes implementations of dataflow ideas is that each caters to a particular

higher-level representation. SMARTS caters to POOMA’s C++ implementation and

stylistic template-based presentation. Uintah’s implementation supports dataflow

(task) graphs of C++ and Fortran-based mixed particle/grid algorithms on a struc-

tured adaptive mesh.

3.4.1 Task Graph Execution

Once the task graph is compiled, it is executed repeatedly with each execution

typically corresponding to single timestep. The schedule component is responsible

for this execution process. In serial, the execution of this task graph is straight-

forward and is accomplished by executing the tasks in a topologically sorted order.

The ordering is determined by the variable dependencies such that all variables are

computed from some task before they are required by another task.

In parallel, the execution process is more complex. In addition to determining

the execution order, the scheduler must also communicate data as needed between

tasks on different processors. Communication is potentially required whenever a task

requires a variable with a nonzero stencil width. For such requirements, variables

from neighboring patches will need to be communicated.

Using the task graph, the scheduler can implicitly determine which communi-

cation is necessary and execute that communication appropriately. The scheduler

component implements this communication in an asynchronous manner. By using

nonblocking sends (MPI Isend) and receives (MPI Irecv), the scheduler can overlap

communication and computation by executing tasks while others are communicating.

This overlap greatly reduces the time for communication, leading to large performance

improvements of synchronous communication.

In a similar manner to the serial scheduler, the parallel scheduler can execute

tasks in a topologically sorted order or alternatively can execute tasks out-of-order
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depending on which tasks are ready to execute [83]. Allowing tasks to execute in

a dynamic order facilitates a better processor utilization by reducing the amount of

time the simulation stalls while waiting for data to arrive. This has been shown

to significantly reduce the MPI wait time by up to 80% [83]. In addition, current

work within Uintah is focusing on adding multithreaded capability, which will allow

tasks to be executed by different threads on the same MPI process. This work could

eliminate on-node communication, thereby reducing the execution time. In addition,

it is expected that this will also greatly reduce memory usage as global data structures

that exist for each MPI process will be shared across threads.

To accommodate software packages that were not written using the Uintah ex-

ecution model, tasks can be specially flagged as “OncePerProc.” These tasks are

“gang-scheduled” such that these tasks are associated with all patches on a processor

and are executed synchronously across processors. This allows third-party applica-

tions to be called in a synchronous manor. In this fashion, Uintah applications can

utilize external libraries, such as PETSc [5] and Hypre [35], for the solution of linear

equations.

3.5 Infrastructure Features

The task graph representation in Uintah enables compiler-like analysis of the

computation and communication steps that occur during a timestep. Since the

combination of tasks required to compute the algorithm may vary dramatically based

on problem parameters, this analysis is performed at runtime. Through analysis of

the task graph, Uintah can automatically create checkpoints, perform load balancing,

and eliminate redundant communication. This analysis phase, which is referred to

as “compiling” or “scheduling” of the task graph, is what distinguishes Uintah from

most other component-based multiphysics simulations. The task graph is recompiled

when the structure of the computation or communication has changed. This occurs

when the grid changes, when the nature of the algorithm changes, or when the patch

distribution is changed. Uintah also has the ability to modify the set of components in

use during the course of the simulation. This ability is used to transition between so-

lution algorithms, such as a fully explicit or semi-implicit formulation, when triggered
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by conditions in the simulation.

Using the task graph, Uintah also performs data lifetime analysis and determines

when a variable is no longer needed. At this point, the infrastructure can automati-

cally delete the variable, freeing up resources for other calculations.

Data output is scheduled by creating tasks in the task graph just like any other

component. In typical simulations, each processor writes data independently for

the portions of the data set which it owns. This requires no additional parallel

communication for output tasks. However, in some cases, this may not be ideal.

Uintah can also accommodate situations where disks are physically attached to only

a portion of the nodes, or a parallel filesystem where I/O is more efficient when

performed by only a fraction of the total nodes.

Checkpointing is also obtained by using this output process. At the end of a

timestep, the simulation may produce a checkpoint which contains all data required

to restart the simulation. Data lifetime analysis ensures that only the data required

by subsequent iterations is saved within these checkpoints. During a restart, the

components process the XML specification of the problem that was saved with the

data sets, and then Uintah creates input tasks which load data from the checkpoint

files. If necessary, data redistribution is performed automatically during the first

execution of the task graph. As a result, changing the number of processors when

restarting is possible.

3.6 Adaptive Mesh Refinement

Many multiphysics simulations require a broad span of space and time scales.

Uintah’s primary target simulation scenario includes a large scale fire (size of meters,

time of minutes) combined with an explosion (size of microns, time of microseconds).

To efficiently and accurately capture this wide range of time and length scales, the

Uintah architecture has been designed to support AMR in the style of Berger and

Colella [10]. Figure 3.6 shows an example of an AMR simulation within Uintah.

In this simulation, a blast wave is expanding and reflecting off of the left wall solid

boundary with an AMR mesh using the explicit ICE algorithm with refinement in

both space and time.
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Figure 3.6. A pressure blast wave reflecting off of a solid boundary

The construction of the Uintah AMR framework requires the use of multilevel grid

support and grid adaptivity. A multilevel grid consists of a coarse grid with a series of

finer levels. Each finer level is placed on top of the previous level with a spacing that

is equal to the coarse level spacing divided by the refinement ratio, which is specified

by the user. A finer level grid only exists in a subset of the domain of the coarser

level. The coarser level grid is then used to create boundary conditions for the finer

level.

The framework supports multilevel grids by controlling the interlevel communi-

cation and computation. Grid adaptivity is controlled through the use of refinement

flags. The simulation components generate a set of refinement flags which specify

the regions of the level that need more refinement. As the simulation evolves, the

refinement flags are used to create new grids with the necessary refinement.

Whenever the grid changes, a series of steps must be taken prior to continuing the

simulation. First, the patches must be distributed evenly across processors through

load balancing. Second, all patches must be populated with data either by copying

from the same region of the previous grid or by interpolating from a coarser region of

the previous grid. Finally, the task graph must be recompiled. These steps can take

a significant amount of runtime [78, 121] and affect the overall scalability at large

numbers of processors.
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3.6.1 Multilevel Execution Cycle

There are two styles of multilevel execution methods implemented in Uintah:

the Lockstep method (typically used for implicit or semi-implicit solvers) and the

W-cycle method (typically used for explicit formulations) time integration models.

The Lockstep model, as shown in Figure 3.7, advances all levels simultaneously.

After executing each timestep, the coarsening of data and interpolation of boundary

conditions are applied. The W-Cycle, as shown in Figure 3.8, uses larger timesteps

on the coarser levels than the finer levels. On the finer levels, there are at least n

subtimesteps on the finer level for every subtimestep on the coarser level, where

n is equal to the refinement ratio. This provides the benefit of performing less

computation on the coarser levels but also requires an extra step of interpolating

the boundary conditions after each subtimestep. In both cycles, at the end of each

coarse level timestep, the data on a finer level are interpolated to the coarser levels,

ensuring that the data on the coarser level reflects the accuracy of the finer level. In

addition, the boundary conditions for the finer level are defined by the coarser levels

by interpolating the data on a coarse level to the domain boundaries of the finer

level [10].

3.6.2 Refinement Flags

After the execution of a timestep, the simulation runs a task that marks cells that

need refinement. The criteria for setting these flags is determined by the simulation

component, and is typically determined by a gradient magnitude of a particular

quantity or other error metrics. These refinement flags are then used during the

regridding process.

3.6.3 Regridding

When using AMR, the areas of the domain that require refinement can change ev-

ery timestep, necessitating an adaptive grid. The regridding process occurs whenever

the simulation components produce refinement flags that are outside of the current

grid, at which time the regridder creates a new grid which encompasses all refinement

flags. During this process, refinement may be added or removed from portions of the
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domain.

Regridding is a necessary step in AMR codes. The grid must adapt to fully resolve

changing features. A regridder should produce patches that are sized appropriately.

If the regridder produces small patches, the number of patches within the domain will

be large which can cause significant overhead in other components leading to large

inefficiencies. However, it is also important that the regridder does not produce too

large of patches because large patches are more challenging to load balance effectively.

Thus, an ideal regridder should produce patches that are large enough to keep the

number of patches small but small enough to be effectively load balanced.

A common algorithm used in AMR codes for regridding is the Berger-Rigoutsos

algorithm [8]. The Berger-Rigoutsos algorithm uses edge detection methods on the

refinement flags to determine where to place patches. The patch sets produced by the

Berger-Rigoutsos algorithm contain a mixture of both large and small patches. Refine-

ment flags are covered by patches that are as large as possible and the boundaries of

the refinement flags are generally covered by smaller patches, producing tight covering
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of the refinement flags. The Berger-Rigoutsos algorithm has been implemented in

parallel [9, 44, 122]; however, its performance at large numbers of processors is not

ideal, as will be discussed in Chapter 4.

The current implementation of Uintah has two constraints on the types of patches

that can be produced that prevent direct usage of the Berger-Rigoutsos algorithm.

First, patch boundaries must be consistent; i.e., each face of the patch can contain

only coarse-fine boundaries or neighboring patches at the same refinement level, and

not a mixture of the two. Second, Uintah requires that all patches be at least four cells

in each dimension. One way around the neighbor constraint is to locate patches that

violate the neighboring constraint and split them into two patches, thus eliminating

the constraint violation. Figure 3.9 shows an example of fixing a constraint violation

via splitting. In this figure, the left patch set is invalid but can be split to create a

valid patch set, as seen in the right patch set.

Unfortunately, splitting patches can also produce patches that violate Uintah’s

size constraint, as shown in Figure 3.10. In this figure, the left patch set can be

split to eliminate the neighbor constraint. However, splitting the patch set produces

patches that violate the size constraint.

To make the Berger-Rigoutsos algorithm compatible with Uintah, a minimum

patch size of at least four cells in each dimension is specified. The minimum patch

size is used to coarsen the flag set by dividing every flag’s location by the minimum

patch size and rounding down which produces a coarse flag set. The Berger-Rigoutsos

Figure 3.9. Patches can be split to satisfy the neighbor constraint
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Figure 3.10. Splitting patches can violate the size constraint

algorithm is then run on the coarse flag set, producing a coarse patch set. Next, the

patch set is searched for neighbor constraint violations and patches are split until the

neighbor constraints are met. An additional step is then taken to help facilitate an

effective load balance. At this point, patches that are larger than some threshold are

split in half, which helps reduce the load imbalance. The threshold used is equal to

the average number of cells per processor multiplied by some percentage. We have

found through experimentation that a threshold of 6.25% works well. Finally, the

coarse patches are projected onto the fine grid by multiplying the location of patches

by the minimum patch size, producing a patch set that does not violate the neighbor

or the size constraints.

The Berger-Rigoutsos algorithm worked well at 2K processors [78]; however, at

98K processors, the algorithm does not scale well. The lack of scalability led to the

development of a tiled regridder within Uintah [75]. This regridder defines a lattice

across the domain that defines a set of tiles. When regridding, processors search a

subset of the tiles for refinement flags and each tile that contains a refinement flag

is added to the patch list. This creates a set of patches that are uniform and meet

Uintah’s alignment constraints. In addition, the generating the patch set can be done

quickly in parallel [75].

The performance characteristics of the Berger-Rigoutsos algorithm and tiled al-

gorithm are discussed in detail in Chapter 4.
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3.6.4 Load Balancing

A load balancer component is responsible for assigning each patch to processors. In

patch-based AMR codes, the load balance of the overall calculation can significantly

affect the performance. A load balancer component attempts to distribute work

evenly while minimizing communication by placing patches that communicate with

each other on the same processor.

The task graph described above provides a mechanism for analyzing the computa-

tion and communication within the simulation to distribute work appropriately. One

way to load balance effectively is by using this graph directly, where the nodes of the

graph are weighted by the amount of work a patch has and the edges are weighted

by the cost of the communication to other processors. Graph-based algorithms are

then used to determine an optimal patch distribution [61, 92, 96, 97]. These methods

do an effective job of distributing work evenly while also minimizing communication;

however, they may suffer performance problems at large numbers of patches and

processors.

Additional methods for load balancing involve diffusion of computational work be-

tween neighboring processors [28, 50, 51, 52]. These algorithms attempt to eliminate

load imbalance by migrating excess work to neighboring processors. These algorithms

operate in a decentralized fashion which allows migration to occur completely locally.

Other methods attempt to minimize communication by clustering work according

to the geometric position within the domain. These methods work well for simulations

where communication is predominately local and include methods such as recursive

coordinate bisection [9, 96] and space-filling curve partitioning [32, 95, 105]. One

advantage to geometric methods is that there is no need to explicitly form the

communication graph which may not always be available.

The use of space-filling curves has been shown to work well for many problems [32,

95, 105]. This method utilizes a space-filling curve to create a linear ordering of

patches. Locality is maintained within this ordering by the nature of the space-filling

curve. That is, patches that are close together on the curve are also close together in

space and are likely to communicate with each other. Once the patches are ordered

according to the space-filling curve, they are assigned a weight according to a cost
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model. The curve is then split into equally weighted segments and each segment is

uniquely assigned to a processor.

With AMR, space-filling curves are preferable to the graph-based and matrix-

based methods because the curve can be generated quickly in O(N logN), where N is

the number of patches. In addition, the curve generation can be easily parallelized us-

ing parallel sorting algorithms [76]. Techniques for effective load balancing effectively

are more thoroughly described in Chapter 5.

3.6.5 Data Migration

After a new grid is created and load balanced, the data must be migrated to the

assigned processors. The data are migrated by creating a task graph for the copying

data from the old grid to the new grid. If a region in the new grid is covering a region

that did not exist in the old grid, then a refinement task which interpolates data from

the coarser level to the finer level is scheduled. The next task is to copy data from

the old grid. Any regions within the old grid that overlap the new grid are copied to

the new grid. Thus, the infrastructure automatically handles relocating data between

processors whenever necessary.

3.6.6 Task Graph Compilation

As discussed earlier, the task graph is responsible for determining the order

of task execution and communication that needs to occur between them. This

information changes whenever the grid or patch assignments change, which requires

a recompilation of the task graph. Compiling the task graph can take a significant

amount time. In the case of the W-cycle, finer levels iterate multiple times during

a single coarse iteration. Each subtimestep has the same data dependencies as the

previous subtimestep and thus only needs to be compiled once. By re-using this

portion of the task graph, the compile time and memory requirements for the task

graph is greatly reduced for the W-cycle.

3.6.7 Grid Reuse

Changing the grid and the corresponding steps that follow can be expensive and

may not scale as well as the computation. Regridding often can greatly impact the
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overall scalability and performance. One way to reduce the overhead associated with

changing the grid is to generate grids that can be used for multiple timesteps. This

can be done by predicting where refinement will be needed and adding refinement

before it is necessary. In Uintah, this is done by dilating the refinement flags prior to

regridding. The dilation process modifies the refinement flags by applying a stencil

that expands the flags in all directions. The regridder then operates on the dilated

refinement flags, producing a grid that is slightly larger than is necessary but can

be reused for multiple timesteps. While executing the simulation at each timestep,

the undilated refinement flags are compared to the grid. If the refinement flags are

contained within the current grid, then regridding is not necessary.

Figure 3.11 shows an example of a grid with and without dilation. The dilated

grid is slightly larger but can be reused until the original refinement flags exist outside

of the dilated grid.

Dilation can have a large impact on performance when using large numbers of

processors. The time to execute the task graph scales better than the time for

changing the grid. As the number of processors is increased, the time to change

the grid can become the dominant component reducing scalability. Dilating the

refinement flags prior to regridding can significantly reduce the time spent associated

Refinement Flags

Dilated Flags

Figure 3.11. The effect of dilation on the refinement flags
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with changing the grid. This has been shown to greatly increase the performance for

problems with rapidly moving fronts [77].

3.7 Summary

Uintah is a highly flexible framework which helps facilitate research into many

different problems. Through the use of components, Uintah is able to encapsulate

and abstract portions of the algorithms so that developers can focus on work within

their domain. This allows multiple developers to improve Uintah in parallel.

One of the primary advantages of Uintah is that developers do not need to focus

on parallelism. Instead, developers develop their code in serial and it is implicitly

parallelized by the framework. The performance of Uintah at large scales will be

investigated further in Chapter 6. Uintah also provides mechanisms to output data

to disk for visualization and create checkpoints for restarting capabilities. In addition,

there is also support for regridding and load balancing for AMR applications.

These features allow developers to create highly scalable AMR simulations in a

fraction of the time it would take to develop a standalone application. In addition, as

improvements are added to the Uintah framework, all applications developed within

the framework will see immediate benefit from those improvements. This makes

Uintah a highly useful tool for simulation science applications.



CHAPTER 4

REGRIDDING

4.1 Introduction

One significant portion of AMR simulations involves dynamically adapting the

computational mesh at runtime. Dynamically refining the mesh allows the simulation

to reduce error in regions with significant error while maintaining a coarse mesh in

other regions. This is particularly important for simulations with moving features.

This allows AMR simulations to achieve results similar to a uniformly fixed-mesh

simulation while using significantly less computational time and memory. In turn,

this allows larger simulations to be undertaken.

A method for block-structured AMR (BSAMR), as outlined in Section 1.3 was

originally presented by Berger and Oliger in [8] and then by Berger and Colella in [10].

This algorithm uses various approaches, such as marking regions with large gradients,

to flag portions of the mesh that require further refinement. The algorithm then adds

patches of refinement that cover the area indicated by the refinement flags through

the process of remeshing or regridding. This process is repeated successively on each

finer mesh until a desired resolution is reached. This results in a dynamic multilevel

grid in which each finer level is nested within a coarser level, as shown in Figure 4.1.

The next advance was a commonly used regridding method which is known as the

Berger-Rigoutsos algorithm [11]. This algorithm used edge detection algorithms from

image processing to generate a tight-fitting axis-aligned patch-set with relatively few

patches. This algorithm was later parallelized in [9] and [122] but both parallel im-

plementations relied substantially on global communication which limited scalability

on large numbers of processors [44]. Improvements to this algorithm which focused

on reducing the amount of global communication were later presented in [44] and

showed scalability to 16K distributed memory processors.
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Figure 4.1. A multilevel grid of nested levels used within BSAMR

In many adaptive simulations in which the solution involves changing features,

such as a moving shock wave, the grid changes as often as every few timesteps. This

necessitates that the regridding algorithm run efficiently in parallel. Poor performance

within this process can lead to performance problems at large scales [77, 121, 122].

The first exascale machine is expected to arrive within the next decade and

it is estimated that it may contain on the order of 100M processors. Achieving

scalability on machines of this size will be a challenging task. As we move toward

exascale computers, the scalability of these frameworks and the algorithms they use

will need to be improved. This chapter analyzes the performance of two existing

parallelizations of the Berger-Rigoutsos algorithm, develops a new parallelization

of the Berger-Rigoutsos algorithm, and also develops a much simpler alternative

regridding algorithm that exhibits ideal scalability. The scalability characteristics

of this algorithm make it a candidate for exascale computers at some point in the

future.

The situation is summarized by Solomonik and Kale [100] in the context of quite

different algorithms but similar architectures: “However newer and much larger
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architectures have changed the problem statement further. Therefore traditional

approaches...require re-evaluation and improvement.” In undertaking an investigation

of this type, but for AMR, the regridding algorithms are described in Section 4.2, the

characteristics of patch-sets generated are analyzed in Section 4.3, this analysis along

with experimental results up to 98,304 processors are used to derive and validate

performance models in Section 4.4, and finally, Section 4.5 uses the models to predict

the performance of these regridding algorithms on 100M processors.

4.2 Regridding Algorithms

In this section, existing BSAMR algorithms are evaluated with regard to their par-

allel performance. The Berger-Rigoutsos regridding algorithm was originally designed

in serial and focused on generating a patch-set that minimized the total amount of

refinement while also minimizing the total number of patches [11].

This algorithm has worked well, leading to its widespread use throughout the

BSAMR community. Parallel versions of this algorithm were presented in [9] and

[122] and improved in [44]. These parallelizations computed parts of the algorithm in

parallel and combined the results across processors using all-reduces. An all-reduce is

a process whereby data on every processor are combined with data from every other

processor. For example, an all-reduction may compute the maximum value across pro-

cessors or the sum across processors. This version of the Berger-Rigoutsos algorithm

has been implemented within SAMRAI and Uintah and within these frameworks, it

has been observed that the reduction operations limited the parallel performance of

the algorithm at large scales [44, 78]. The original parallelization [9, 122] and the

improved parallelization [44] will be referred to as global Berger-Rigoutsos (GBRv1

and GBRv2, respectively). An alternative approach to GBRv1 and GBRv2 is to run

Berger-Rigoutsos locally on a subset of the domain. This approach is similar to the

approach taken in AMROC [29]. This algorithm will be referred to as LBR. Finally,

within Uintah, a Tiled algorithm has been implemented which initially has shown

good performance and will be presented throughout this chapter. This method is

similar to the method presented in [73] for nonhierarchical grids.

The remainder of this section will describe each of these algorithms in more detail
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and provide complexity analysis of their performance, where complexity is defined as

the number of operations that the algorithm must execute in order to complete. This

analysis will assume that the work per processor is load balanced well, making the

time for load imbalance insignificant and that all logarithms are of base two.

Within this section, the following symbols will be used:

C = Number of mesh cells in the domain,

F = Number of refinement flags in the domain,

B = Number of patches (blocks) in the domain,

P = Number of processors.

The Berger-Rigoutsos algorithm requires iterating over the refinement flags. In many

frameworks, the refinement flags are stored locally as a boolean per-cell variable,

where the boolean value specifies if the cell contains a flag. Iterating over the

refinement flags within this data structure would require O(C
P

) iterations. The cost

of iterating over flags can be reduced to O(F
P

) iterations by first iterating over the

per-cell variable and adding all refinement flags to a list and then using that list

within the Berger-Rigoutsos algorithm. The cost of generating this list in parallel is

O(C
P

).

It is worth noting that the GBRv2, LBR, and Tiled algorithms generate a local

patch-set, meaning that each processor only has knowledge of a subset of the patches.

Generally today’s frameworks, such as Uintah, SAMRAI [49], and Enzo [85], require

each processor to be aware of the global patch set. These frameworks would thus

require an all-gather on the local patch-sets to generate the global patch-set. An

all-gather is a process which combines local arrays on each processor into a global

array on each processor and it is commonly done through the MPI Allgather function.

The analysis below does not include the time for creating the list of flags or for

performing the all-gather which may be significant at large numbers of processors.

The issue of the time required for these operations will be revisited in Section 4.4.
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4.2.1 Serial Berger-Rigoutsos

The following presents a high level description of the serial Berger-Rigoutsos

algorithm (SBR). For brevity, a complete description of this algorithm has been

omitted but can be found in [11]. The Berger-Rigoutsos algorithm can be defined

recursively, as shown in Algorithm 1.

Algorithm 1 The Serial Berger Rigoutsos Algorithm

BRSplit(INPUT: flags, OUTPUT: patches)

//compute the bounding box of the flags

BB=computeBoundingBox(flags)

//check the termination condition

IF flags.size/BB.size > tolerance

patches.add(BB)

RETURN

END IF

//compute the refinement histogram for each dimension

histogram=computeHistogram(flags)

//split the domain into left and right halves

[left,right]=split(flags,histogram)

//recursively continue this process

BRSplit(left,patches)

BRSplit(right,patches)

The first step of the algorithm is to compute the bounding box of the refinement

flags list [O(F )]. The second step is to check the termination condition by comparing

the number of cells in the bounding box to the number of flags [O(1)]. The third

step is to compute a histogram of the spatial location for each refinement flag [O(F )].

A histogram is created for each dimension, yielding X,Y, and Z histograms. Next,

each histogram is used to determine the best location to split the domain [O( 3
√
F )].

Then, the flags are divided into left and right halves [O(F )]. Finally, the algorithm

recursively repeats on each half. The recursion implicitly defines a recursive tree in
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which parent nodes are split into two children nodes. In the best case, the recursive

tree is a complete tree in which every parent has two children except perhaps the

lowest level of the tree. In this case, the recursion would repeat O(logB) times. If

the tree were largely unbalanced, then in the worst case, the algorithm could repeat

up to O(B) times. In practice, the algorithm generally behaves similarly to the best

case, as shown in Equation 4.1.

O(SBR) = F logB. (4.1)

Figure 4.2 (a) shows an example of a patch-set generated by the SBR algorithm. The

patches fit the refinement flags fairly tightly and are irregular in size.

4.2.2 Parallel Global Berger-Rigoutsos Algorithm

The GBR algorithm is implemented in parallel by bounding the refinement flags

and generating the histograms in parallel [122, 44]. To do this, each processor

computes the bounds and the histogram on a subset of the refinement flags and then

combines the results with every other process through an all-reduce operation. In this

analysis, the time to perform the all-reduce will be referred to as the communication

time and the time for the rest of the algorithm will be referred to as the computation

time.

The time for the computation of GBR is equivalent to the serial algorithm per-

formed on a subset of the flags. Consequently, the complexity for the computational

portion of the GBR algorithm is O(F
P

logB).

The communication step in GBR involves performing two all-reduces at each node

and leaf of the recursive tree. The parallel complexity for an all-reduce operation is

not straightforward to define as it varies depending on the network topology and the

MPI library implementation. Within some MPI libraries, the algorithm used may

vary according to the size of the reduction and the number of processors. In most

cases, the time for an all-reduce is dominated by message latency and thus, the time

for an all-reduce is proportional to the number of pairwise communications required

to reduce the data, which requires a minimum of logP pairwise messages.
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(a) SBR

(b) LBR

(c) Tiled

Figure 4.2. Patch-sets generated by the SBR (a), LBR (b), and Tiled (c) algorithms;
the coarse level patches are represented by a dashed line and the fine level patches
are represented by a solid line. The SBR and LBR algorithms use less patches but
generate irregular patch sets. For the LBR algorithm, boundaries of the coarse level
also exist on the fine level. The Tiled algorithm generates regular patches.
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In the best case, the recursive tree of the Berger-Rigoutsos algorithm is completely

balanced and the number of nodes is equal to

logB∑
k=0

2k which is the sum of a geometric

series and is equal to 2B − 1, making the number of messages equal to

M(GBRv1) = (2B − 1) logP. (4.2)

The overall complexity for GBRv1 is then:

O(GBRv1) =
F

P
logB +B logP. (4.3)

The improvements to this algorithm presented in [44] involve reducing the number

of processors that contribute to the reductions at each level of the recursion. At

the first level, every processor contributes and at each successive level, the number

of contributing processors decreases until the algorithm terminates or only a single

processor is contributing to each reduction, at which point the algorithm completes

in serial. In the best case, the number of contributing processors at each node would

be half of the number of contributing processors of the parent node. This leads to a

total number of messages of

min(logB,logP−1)∑
k=0

(2k log
P

2k
). (4.4)

Refactoring the equation above yields

min(logB,logP−1)∑
k=0

2k logP −
min(logB,logP−1)∑

k=0

k2k. (4.5)

By substituting these summations with their known solutions found in [27] and

performing algebraic simplification, we set that the number of messages is equal to
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M(GBRv2) =


2P − logP − 2 : P < B

(2B − 1) logP − 2B logB

+2B − 2 : P >= B.

(4.6)

Figure 4.3 shows the number of messages generated for both GBR algorithms when

generating 1000 patches. This figure shows that GBRv2 has a significant improvement

over GBRv1 when the number of patches is less then the number of processors.

However, when this is not the case, the number of messages generated by the two

algorithms are similar.

Thus, GBRv2 has an overall complexity of

O(GBRv2) =

{
F
P

logB + P : P < B
F
P

logB +B logP : P >= B.
(4.7)
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Figure 4.3. The number of messages required to execute GBR
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From this, we can see that when P < B, the communication complexity is O(P );

however, when P ≥ B, the communication complexity is O(B logP ) which is the same

as GBRv1. The GBRv2 algorithm replaces the all-reduces in the GBRv1 algorithm

with pairwise asynchronous communication performed along the edges of a hypercube.

In addition, the algorithm is decomposed into tasks, where each task represents a

node of the recursive tree. The tasks are designed such that they are restartable.

When a task blocks for communication, it cedes control of the processor so that the

next scheduled tasks can execute. Once communication is completed, that task is

once again scheduled for execution and will restart where it left off. When there

are enough tasks, the communication can be overlapped with computation leading to

potentially further increases in performance. These optimizations within the GBRv2

algorithm are complex and can be difficult to implement correctly.

The analysis above did not consider the case where communication is overlapped

with computation in the GBRv2 algorithm and thus should be considered an upper

bound. Details of this algorithm can be found in [44].

4.2.3 Local Berger-Rigoutsos Algorithm

The LBR algorithm performs SBR locally on each coarse patch to generate finer

patches that are nested within the coarse patch. This provides an advantage over GBR

in that no communication is required to bound the refinement flags or generate the

histogram. However, since this algorithm is running locally on each patch, the patches

on the finer level cannot span across a coarse patch. This causes the boundary of the

coarse patches to be projected onto finer patches, thereby increasing the total number

of patches. This is similar to an algorithm implemented within AMROC [29]; however,

that algorithm runs SBR locally on the entire local patch set and then intersects the

resulting patch set with the original patches. This generates more patches than the

SBR algorithm but less patches than the LBR algorithm. In addition, this results

in patch sets that change as the number of processors changes, which may be an

undesirable property as the computational solution should generally be independent

of the number or processors.

The complexity for LBR (assuming that patches are fairly evenly sized) is defined
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as follows. Let Bc be the number of coarse patches. The flags per coarse patch is

then F
Bc

, the number of coarse patches per processor is then Bc

P
, and the number of

fine patches per coarse patch is then B
Bc

. Thus, the complexity for this operation is

O(LBR) =
Bc

P

F

Bc

log
B

Bc

(4.8)

= O(
F

P
log

B

Bc

). (4.9)

AMROC’s implementation of this algorithm has a similar complexity. Figure 4.2 (b)

shows a patch-set generated using the LBR algorithm. This figure shows the patch

set is similar to SBR and that the boundaries of the coarse patches exist on the finer

level.

4.2.4 Tiled Algorithm

The Tiled algorithm was developed within Uintah to eliminate the performance

problems associated with the GBR algorithms. This algorithm is defined in Algorithm

2.

Algorithm 2 The Tiled Regridding Algorithm
FOR each local tile

FOR each cell in tile

IF cell has refinement flag

patches.add(tile)

BREAK

END IF

END FOR

END FOR

This algorithm defines a set of tiles using a lattice where each lattice cell cor-

responds to a possible patch. To compute the patch-set, each processor searches a

subset of the tiles for refinement flags; when a refinement flag is found, the tile is

added to the patch-set and the next tile is searched for refinement flags. A possible



54

disadvantage of this approach is that it may result in more refinement or more patches

than the GBR and LBR algorithms; this is discussed in Section 4.3.

Similarly to the LBR algorithm, this algorithm requires no communication. In

addition, this algorithm is embarrassingly parallel and has a complexity of

O(Tiled) =
C

P
. (4.10)

Figure 4.2 (c) shows an example of a patch-set generated by the Tiled regridder.

In this case, the algorithm uses more patches than the Berger-Rigoutsos algorithms;

however, the patches generated are regular. If the algorithm is generating too many

patches, which are causing inefficiencies elsewhere in the code, then the tile size

could be increased, which would thereby decrease the number of patches. The grids

generated by the Tiled algorithm often look similar to the grids produced using

OSAMR; however, it is not the case that they are the same. For example, OSAMR

patches are constrained to a power of two in size whereas patches produced by the

Tiled algorithm are not.

4.3 Patch-Set Characteristics

The characteristics of the patch-sets generated by these algorithms is important.

The following will describe and analyze the differences between the patch sets gener-

ated by the SBR, LBR, and Tiled algorithms.

The original Berger-Rigoutsos algorithm generates patch-sets of varying sizes.

Using this method, it is not uncommon to have patches that span large portions of

the domain next to patches that only span a few cells which can complicate the load

balancing process. The irregularity of the patches necessitates a general framework.

Some frameworks, such as Uintah, restrict the types of patch-sets to simplify other

portions of the framework. These restrictions require a cleanup phase after regridding

to ensure the grid constraints are met [78].

The GBRv1 and GBRv2 algorithms generate patch-sets that are equivalent to

the SBR algorithm. Like the SBR algorithm, the LBR algorithm generates irregular

patches; however, it will also generate more patches than the SBR algorithm. Finally,
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the Tiled algorithm may generate more patches but the patches are regular. This

regularity can be exploited to provide further increases in performance. The following

will discuss the advantages and disadvantages of the number of patches, tightness of

fit, and regularity of the patch-sets.

Each of the regridders above were implemented as a stand-alone program as

described in their original papers and the patch sets generated by each regridder

were tested with a benchmarking problem. This problem defined a 3D domain in the

range of [0,1]. Within this domain, refinement flags were added in the region between

two concentric spheres centered at [0.5,0.5] with radii 0.3 and 0.4. The resolution of

the grid was increased and the patch sets generated were recorded. The coarse level

was split into square patches of 163 cells and the tile size was set to 163 for the Tiled

regridder. The Berger-Rigoutsos-based algorithms used a tolerance parameter of .85,

meaning that the recursion terminated when 85% of the patch contained refinement

flags. This problem was chosen as it closely resembles an expanding blastwave that

is commonly simulated within Uintah [77, 78]. Figure 4.2 shows the corner of a 2D

version of this test problem along with the meshes generated by the three regridding

algorithms.

4.3.1 Number of Patches

Increasing the number of patches also decreases the average size of a patch for a

fixed size mesh. Depending on the underlying framework, there may be a significant

overhead per patch. If the overhead is significant, then increasing the number of

patches may hinder performance, as shown in [13]. In addition, some data structures

may depend on the total number of patches. For example, Uintah and SAMRAI

utilize tree-based data structures for neighbor finding [122]. As the number of patches

increases, the size of these data structures and the time to query them will also

increase.

While increasing the number of patches may decrease performance, it can also

potentially increase parallel performance. Decreasing the average size of a patch often

decreases the load imbalance which leads to an increase in performance. In addition,

having more patches on each processor may allow the simulation to proceed in a more
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asynchronous manner, reducing the synchronization and thereby overall simulation

time [83]. Finally, decreasing the patch size may also improve cache performance.

Whether or not increasing the number of patches will increase or decrease performance

depends on the framework. Within Uintah, we have found that increasing the number

of patches often increases the overall performance. However, the performance begins

to decrease once patches become too small [83].

Figure 4.4 shows the number of patches generated by each regridder for the

benchmark problem. In this graph, the points are the recorded data and the lines

are linear least squares fits to the data for the curve Cm. The slope of these lines

correspond to rate at which the number of patches grows relative to the number of

cells. This graph shows that the number of patches using the Tiled algorithm is

directly proportional to the number of cells. The SBR algorithm grows at ≈ C .5 and
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Figure 4.4. The number of patches generated by the regridding algorithms. The
points are the recorded data and the lines are a linear least squares fit of that data
within a loglog plot.
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the LBR grows at ≈ C .7. The Tiled algorithm uses a factor of ten more patches at

the largest scales.

For scalability at large numbers of processors, it is desirable that the number

of patches scale proportionally to the number of cells. Since the SBR and LBR

algorithms do not exhibit this property, they will require an extra step for large

problems at large numbers of processors. This step will need to split the largest

patches until every processor has at least one patch. One efficient way to do this

would be to split every patch that was larger than some percent of the total volume

of the new grid. This would take O(logP ) time to compute the total volume using

an all-reduce and O(B
P

) time to split the patch set, leading to an overall complexity

of

O(Split) =
B

P
+ logP. (4.11)

The Tiled algorithm does not require this step. The time for this step is investigated

in Section 4.4.

4.3.2 Tightness of Fit

Having a tight fitting patch-set ensures a minimal amount of unnecessary refine-

ment, thereby reducing the overall runtime. However, in applications that regrid

often, a tight patch-set may actually hinder performance. For these applications, the

cost of regridding, load balancing, and scheduling can become significant. A loose

patch-set can reduce the frequency of these operations. Recognizing this, Uintah uses

dilation, as described in Section 3.6.7, to increase the area of the patch-set. This has

provided a large reduction in the time spent in AMR simulations involving rapidly

moving fronts [78].

Figure 4.5 shows the over-refinement as a percentage of the number of refinement

flags for the regridding algorithms, where the over-refinement, OR(F,C) is defined as

OR(F,C) = (
C

F
− 1)× 100. (4.12)
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This graph shows that for the SBR algorithm, over-refinement increases with the

problem size. This is due to large patches that cover a large number of refinement

flags but also cover a large number of cells without refinement flags. This can be seen

in the left image in Figure 4.2. This figure shows a large amount of over-refinement

within the large vertical patch. The increase in over-refinement should level off at or

below the tolerance parameter (15% in this case). The same increase was not seen

with the LBR regridder. This is because the sizes of the fine patches are limited by the

size of the coarse patches. The over-refinement of both the LBR and Tiled algorithms

decreases as the number of coarse cells increases. This reduction is due to a reduction

in the size of a patch relative to the size of the features being tracked. As this size

is decreased, the patches more tightly cover the tracked feature, thus reducing the

over-refinement. The SBR algorithm generates the most over-refinement at larger

problem sizes, followed by the Tiled algorithm, and then the LBR algorithms.

4.3.3 Regularity

Regularity of patch size within patch-sets is a desirable quality as irregular patches

can cause load imbalance. In particular, having a large variance in the size of the

patches is potentially problematic as load balancing regular sized patches is much

more straightforward. In addition, having long slender patches next to many small

patches produces load imbalance in the communication as the large patches must

communicate to many neighbors but the small patches only have to communicate

with a few neighbors.

In addition, if patches are completely regular, the regularity can be exploited to

simplify other portions of the algorithm. For example, neighbor finding on irregular

patch-sets generally utilizes a tree algorithm, like a Bounding Volume Hierarchy

(BVH) [67], which has an O(logB) query time. When the patches are regular, the

time for this query can be reduced to O(1) through the use of a hash table [27].

Table 4.1 shows statistics on the number of cells within patches generated by the

benchmark problem. This table shows that the SBR algorithm has the greatest

variance, followed closely by the LBR algorithm. The Tiled algorithm has no vari-

ance. The SBR algorithm produces the largest patches, followed closely by the LBR
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Table 4.1. Statistics on the number of cells per patch generated by the regridding
algorithms.

Mean Min Max Stdev
SBR 1.1 · 104 64 3.1 · 106 9.0 · 104

LBR 4.2 · 103 64 3.3 · 104 1.0 · 104

Tiled 512 512 512 0

algorithm. The SBR and LBR algorithms also produce the smallest patches.

4.3.4 Summary of Patch-Set Quality

Figures 4.4 and 4.5 along with Table 4.1 show that the SBR algorithm generates

the least number of patches; this, however, comes at the cost of some over-refinement

and irregular patch sizes. The LBR generates slightly more patches then the SBR but

has significantly less over-refinement. The Tiled regridder generates the most patches

by far and has less over-refinement then the SBR algorithm. The SBR and LBR

algorithms may not generate enough patches for large numbers of processors and will

thus require an extra step that splits large patches. The time for this operation may

become significant at large numbers of processors. The Tiled regridder will not have

this problem since the number of patches scales linearly with the size of the coarse

grid.

It is not clear if any type of patch-set is the best overall. Instead, it appears

that the best type of patch-set depends on the framework and the application. If the

framework has a low per-patch overhead and can exploit regularity, it would appear

that the patch-sets provided by the Tiled regridder would be best. However, if a

large patch overhead exists and load imbalance is not a problem, then the patch-sets

generated by the LBR algorithm may be the best.

4.4 Parallel Performance

This section evaluates the parallel performance of the regridding algorithms using

performance models derived from the analysis above and experiments on Kraken1

1Kraken is a NSF supercomputer located at the University of Tennessee with 99,072 processing
cores. More information is available at http://www.nics.tennessee.edu/computing-resources/
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with up to 98304 processors. The test problem was the same problem as described in

Section 4.3. For these results, each algorithm was tested 500 times and the average

time was reported. The GBR algorithms were each executed only 5 times due to

the amount of time required to run these algorithms and constraints on our machine

usage. Finally, the GBR algorithms were not run at the largest numbers of processors

due to this same constraint.

4.4.1 Performance Models

Using Equations (4.3), (4.7), (4.9), (4.10), (4.11), and the analysis in Section 4.2,

the following performance models are defined:

T (GBRv1) = c1
F

P
log(B) + c2M(GBRv1),

T (GBRv2) = c1
F

P
log(B) + c3M(GBRv2),

T (LBR) = c4
F

P
log(

B

Bc

),

T (Tiled) = c5
C

P
,

T (Split) = c6
B

P
+ c7 log(P ),

where c1 = 10−6, c2 = 2 · 10−4, c3 = 4 · 10−5, c4 = 2.5 · 10−8, c5 = 10−8, c6 = 4 · 10−8,

and c7 = 2 · 10−5 were chosen to match experimental data. In addition, the following

models for F and B were used:

B = Cm,

F = .154C,

where m is 0.56, 0.67, and 0.96 for the GBR, LBR, and Tiled algorithms, respectively,

as defined in Figure 4.4.

kraken.
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4.4.2 Parallel Scalability

Figure 4.6 shows the theoretical and experimental strong scalability for the various

regridding algorithms. For this graph, Bc = 131072 and C = 4096Bc. These

parameters correspond to having around one 163 coarse patch per processor at 98, 304

processors. These parameters were chosen because they closely resemble simulations

that have been and currently are being investigated [77, 78]. In this figure, the dashed

line is the theoretical performance and the points are the experimental data. This

graph shows that the models are a very good fit to the experimental results. The

GBRv2 model is not as accurate as the others because the model did not take into

account the possible overlap of communication and computation. Ideal strong scaling

is shown as a diagonal line with a slope of -1 which is shown by both the LBR

and Tiled algorithms. The GBRv1 algorithm scales poorly. The GBRv2 algorithm

strong scales well until the communication dominates the runtime, at which point the

algorithm fails to scale. The splitting algorithm scales but eventually stops scaling

due to the cost of the reduction. The time to split patches eventually exceeds the

time to execute the LBR algorithm and will eventually limit the total scalability of

the LBR algorithm.

The weak scalability for the regridding algorithms are shown in Figure 4.7. For

this graph, C = 16384P and BC = C
4096

, which corresponds to each processor having

four 163 coarse patches. In this graph, ideal weak scaling is shown as a horizontal

line. The models are a good match to the experimental results in all cases. This

graph shows GBRv1 and GBRv2 again scale poorly. The Tiled regridder shows ideal

weak scaling and the LBR regridder shows better than ideal weak scaling. This is

because the ratio Bc

B
in Equation (4.9) is decreasing as the problem size gets larger.

The splitting algorithm does not scale well and eventually takes longer than the LBR

algorithm.

To scale to petascale and eventually exascale machines, applications must exhibit

good weak scaling. This analysis has shown that both GBR algorithms do not perform

well at large numbers of processors and will limit the scalability of the application.

This is due to the cost of combining global data that is inherent in those algorithms.

Both the Tiled and LBR algorithms avoid this bottleneck by only operating on local
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data.

Figure 4.8 shows the experimental time for generating the flags list and performing

an all-gather on the patch sets. The experimental times for the Tiled algorithm have

also been included on this graph to provide a reference point. This graph shows

that the time to create the flags list scales well but is slightly slower than the Tiled

algorithm. In addition, the cost to all-gather the final patch set is substantially

higher than the cost of regridding. This shows that maintaining global metadata for

the patch sets will become a bottle neck at sufficiently large numbers of processors.

Thus, frameworks that currently utilize this global metadata will eventually need to

find ways to eliminate this requirement by moving to local algorithms.

4.5 Exascale Performance

It is expected that exascale computers will start appearing within the next decade.

It is uncertain what architecture the first exascale machines will utilize, though it

is not unreasonable to assume that such machines may include upwards of 100M

processors. Using the models presented earlier, we will now speculate what the

performance of these algorithms would be on a machine similar to Kraken with 100M

processors. The time to split the patches for the GBR and LBR algorithms has been

included in the projected times.

Figure 4.9 shows the theoretical strong scaling performance up to 100M processors.

In this graph, Bc = 1073741824, C = 4096Bc, and m = 0.7 which corresponds to

having around one 163 coarse patch per processor at 100,000,000 processors. This

graph shows that the LBR algorithm scales well but tails off as the number of patches

per processor becomes low due to the cost of splitting patches to ensure there is at least

one patch per processor. Since splitting does not scale ideally, it eventually becomes

a bottleneck, thereby limiting strong scaling. The Tiled algorithm continues to show

ideal strong scaling. The GBR algorithms scale well at smaller numbers of processors

but do not scale well at the largest numbers of processors. The GBR algorithms also

take significantly longer than the LBR and Tiled algorithms but create fewer patches.

Figure 4.10 shows the theoretical weak scaling performance out to 100M proces-

sors. For this graph, C = 16384P , BC = C
4096

, and m = 0.7, which corresponds to
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each processor having four 163 coarse patches. This graph shows both the LBR and

the Tiled algorithms weak scale well. In this case, LBR scales well because the log(P )

term in the splitting algorithm is fairly flat at large numbers of processors. The GBR

algorithms do not scale well at very large numbers of processors.

4.6 Summary and Conclusions

To use petascale machines effectively, the algorithms we use will have to exhibit

nearly ideal weak scaling. We have shown that algorithms that utilize global metadata

do not scale well in the strong or weak sense and are not feasible for large scale ma-

chines. We have presented two new local algorithms which both show promising weak
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and strong scalability up to 98,304 processors. In addition, we have presented analysis

of these algorithms which shows they should weak scale up to 100M processors.

It is commonly assumed having fewer less patches is better than having more.

However, when weak scaling, we have shown that if the number of patches does

not scale linearly with the volume of the domain, then a splitting algorithm will be

required to ensure there is at least one patch per processor. This is the case with the

Berger-Rigoutsos algorithms. This implies that the extra patches generated using the

LBR algorithm over the GBR algorithms should not be a problem. In addition, the

number of patches produced by the Tiled algorithm scales linearly with the size of

the domain and thus will not require the splitting algorithm.

The irregularity of the patch sets produced by the GBR and LBR algorithms may

be problematic, especially in terms of load imbalance. All of the algorithms generate

tight-fitting patch-sets, thereby limiting over-refinement. The Tiled algorithm gener-

ates a completely regular patch-set and that regularity could be exploited. We believe

that exploiting this regularity could provide significant simplifications to frameworks

along with large increases in performance and may be necessary to achieve good

performance on exascale machines.

As we move toward exascale machines, we will need to move away from inherently

global algorithms and toward more local algorithms. Algorithms that operate on

global metadata will eventually be limited by the cost to compute and communicate

the global metadata. We have shown that the grid creation for BSAMR can be done

completely locally; however, most frameworks still depend on the construction of

global metadata. These frameworks should focus on eliminating this dependency in

preparation for future petascale and exascale machines.



CHAPTER 5

LOAD BALANCING

This chapter will discuss algorithms used within Uintah for load balancing. Sec-

tion 5.2 will present algorithms for automatically estimating workloads for parallel

computations using least squares analysis and filters. While the use of least squares

and filters is not new, the application of them to the load balancing process is. Finally,

Section 5.3 will present a new algorithm for parallel space-filling curve generation.

5.1 Introduction

Dynamic load balancing can be described as the minimization of three competing

costs: The cost of load imbalance, the cost of communication, and the cost to generate

the load distribution. A load imbalance occurs when processors are assigned varying

amounts of work. A large load imbalance will cause processors with less work to wait

for other processors to finish their computation, leading to poor utilization of system

resources.

In addition, too much communication can also cause performance issues. Commu-

nication across the network is often slow relative to the time for computation and can

easily dominate the time to reach a solution. In many simulations, communication

is predominantly local, meaning that only a small area around each patch must

be communicated from physically neighboring patches. By clustering neighboring

patches together, the framework can greatly reduce the necessary communication

and significantly reduce the overall runtime.

Finally, with AMR methods, the workload changes as the mesh changes. In

addition, with particle methods, the workload can change on each time step as

particles move throughout the domain. This can necessitate that load balancing

occurs often, making it important that the time to generate the patch distribution is
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small relative to the overall computation. If a slow load balancing algorithm is used

and load balancing occurs often, the time to load balance can dominate the overall

runtime. In this case, it may be preferable to use a faster load balancing algorithm

at the cost of more load imbalance. In addition, the time to migrate data between

processors may also become significant when load balancing often [12].

There are many widely used methods for load balancing that attempt to minimize

these costs. One way to load balance effectively is by partitioning a weighted graph,

where the nodes of the graph are weighted by the amount of computation on a patch

and the edges are weighted by the amount of the communication on that patch.

Graph-based algorithms are then used to determine an optimal patch distribution [61,

92, 96, 97]. These methods do a good job of distributing work evenly while also

minimizing communication. However, the cost of partitioning with these methods

may be expensive in some cases due to the computational complexity of graph-based

algorithms.

Additional methods for load balancing involve diffusion of computational work be-

tween neighboring processors [28, 50, 51, 52]. These algorithms attempt to eliminate

load imbalance by migrating excess work to neighboring processors. These algorithms

allow migration to occur completely locally and can reduce the dependencies on global

metadata that is required with other load balancing algorithms.

Other methods attempt to minimize communication by clustering work according

to the geometric position within the domain. These methods work well for simulations

where communication is predominately local and include methods such as recursive

coordinate bisection [9, 96] and space-filling curve partitioning [32, 95, 105]. One

advantage to geometric methods is that there is no need to explicitly form the

communication graph which may not always be available.

The need for fast and effective load balancing techniques has led to the devel-

opment of widely used load balancing applications like Metis [60, 61], Jostle [114,

115, 116], and Zoltan [14, 30, 31]. Uintah has recently added support for the Zoltan

load balancing package, providing easy access to a number of algorithms. In addition,

Uintah can use its own highly parallel load balancing algorithm [76] that utilizes space-

filling curves, which has been shown to be better than Zoltan’s space-filling curve load
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balancer within Uintah [82]. The variety of available simulation components within

Uintah necessitates a sophisticated load balancer that is flexible enough to handle

all of Uintah’s different simulation components. This has been accomplished through

a new automated cost estimation algorithm that will be described in Section 5.2

and a new parallel space-filling curve generation algorithm that will be described in

Section 5.3.

5.2 Cost Estimation Algorithms

To load balance the computation effectively, load balancers require an accurate

estimate of the cost (execution time) of the computation. A poor estimate of this cost

could lead to significant load imbalances. Thus, it is important that this estimate

be accurate. Two methods for estimating this cost at runtime are algorithmic cost

models and forecasting cost models.

5.2.1 Algorithmic Cost Models

Algorithmic cost models (ACM) attempt to model the underlying algorithms. For

example, the ICE algorithm is a cell-based algorithm that performs a similar amount

of work on each cell and as such, the cost is proportional to the number of cells.

Equation (5.1) describes an accurate ACM for ICE

Ci = c1 + c2N
c
i , (5.1)

where Ci is the computational cost of a patch, N c
i is the number of cells in patch i,

c1 is a fixed overhead per patch, and c2 is the time for executing the ICE algorithm

for a single cell.

In addition to performing cell-based computations, MPMICE also has particle-

based computations in regions where solid materials exist. Equation 5.2 describes a

possible ACM for MPMICE:

Ci = c1 + c2N
c
i + c3N

p
i , (5.2)
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where Np
i is the number of particles within patch i and c3 is the constant execution

time for a particle.

This model is not as accurate as the ICE model because the work performed by

MPMICE is not constant per particle or cell. In MPMICE during the equilibration

pressure solve, the simulation performs a local iterative solve on a per-cell basis [43].

This solve may converge at different rates throughout the domain depending on the

underlying physics. In addition, particles may execute different material models which

have differing workloads. Capturing such behavior in an ACM is a challenging task.

In addition to developing accurate models, estimates for the constants must be

determined on a per-problem basis. The constants can vary greatly depending on

the underlying physical processes. To make matters worse, these constants can also

vary according to system architectures, compilers, and compiler optimization flags.

The difficulty in estimating these constants increases significantly with the number

of constants in the model. Maintaining an accurate list of these constants for each

possible problem, architecture, and compiler combination is not feasible, thus placing

the challenge of estimating these constants for each simulation on the user. An

alternative is to automatically estimate these constants at runtime.

5.2.1.1 Automated Model Fitting

Uintah can estimate model constants automatically at runtime by measuring the

execution time per patch. Given these measurements and the patch metadata (i.e.

number of cells, particles, etc.) least-squares analysis can be used to fit constants

to the execution model. The linear least-squares problem that must be solved to

determine the constants is


N c

0 Np
0 1

N c
1 Np

1 1
...

...
...

N c
n Np

n 1


c1c2
c3

 =


O0

O1
...
On

 , (5.3)

where Oi is the observed time on patch i.

This provides a mechanism to accurately fit the model parameters which can
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greatly increase the accuracy of the model. However, if the model does not accurately

represent the computation, the predicted weights could be highly inaccurate, leading

to a poor load balance. This method removes the burden of estimating the constants

from the user. However, the user must still develop and/or choose an appropriate

ACM for the simulation.

5.2.2 Forecasting Cost Models

Developing an accurate algorithmic cost model is challenging; because of this,

Uintah has an alternative approach which utilizes a forecasting cost model (FCM) to

predict the cost of each patch based on time series analysis. During task execution,

the time to complete each task on a region of the domain is recorded and used to

update a simple forecasting model. That model is then used to predict the execution

time on that region in the future. This provides a mechanism to accurately predict

the cost of each patch and eliminates the need to estimate constants for an ACM.

5.2.2.1 Fading Memory Filter

A straightforward forecasting model used within Uintah is Simple Exponential

Smoothing, which is also known as a Fading Memory Filter [84]. This model is as

follows:

Wr,t+1 = αOr,t + (1− α)Wr,t, (5.4)

where Wr,t is the predicted cost at time step t on region r, Or,t is the observed time

at time step t on region r, and α is a weighting factor in the range of [0,1], which rep-

resents the rate of decay on past data. This method can also be viewed as a weighted

moving average where the weight on past observations decreases exponentially [84].

A smaller value for α causes the algorithm to put more weight on recent observations,

causing the forecast to respond more quickly to changes in the actual value but also

causes the forecast to become more susceptible to noise. A larger value for α reduces

the noise but also causes the forecast to react more slowly to changes in the actual

value. α can be defined in terms of the size of a moving average window as
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α =
2.0

T + 1
, (5.5)

where T is the number of time steps that will contain 99.9% of the total weight in

the weighted average [84]. Uintah uses a default value of 10 for T.

5.2.2.2 Kalman Filter

An alternative approach for the Fading Memory Filter that has been implemented

within Uintah is the Kalman filter [58, 123] forecast model. The Kalman filter

improves upon the memory filter by accounting for uncertainty in both the mea-

surements and the model used. This filter is defined as follows:

Wr,t+1 = Wr,t +Kr,t(Or,t −Wr,t), (5.6)

Kr,t =
Mr,t

Mr,t + σ2
, (5.7)

Mr,t = Pr,t+1 + φ, (5.8)

Pr,t = (1−Kr,t)Mr,t, (5.9)

Pr,0 = ∞, (5.10)

where Kr,t is a gain factor, Mr,t is the a priori covariance, Pr,t is the a posteriori

covariance, σ2 represents the variance in the measurement, and φ represents an

uncertainty in the model. This filter is similar to the fading memory filter, as can been

seen in the update Equations (5.4) and (5.6). The difference between these filters is

that the gain factor which is static for the memory filter is computed dynamically

based upon uncertainty for the Kalman filter.

The effects of these parameters on the estimations are discussed in detail in [123].

5.2.2.3 Filter Initialization

On the first time step of the simulation, Wr,t is unavailable, requiring an estima-

tion of the initial value. For the initial time step, Uintah load balances using the

algorithmic cost models described above. The initial measurements are then used to
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set the initial value by setting Wr,0 = Or,0. Doing this causes the filter to rapidly

converge to the true value.

A different initialization approach is used when new regions of refinement are

created during the regridding process. During this process, refinement may be added

in regions where it previously did not exist. When these regions are created, Wr,t

must be estimated. Using an ACM would likely produce a poor estimate that could

be inaccurate by orders of magnitude. In order to limit this inaccuracy, we estimate

the cost to be proportional to other forecasted values. Uintah sets Wr,t for the new

regions equal to the average value of Wr,t for all regions. This ensures that the initial

value for the new region is at least proportional to the actual value which also ensures

that the estimation will be accurate within a few time steps and that load imbalance

caused by this estimation will be limited.

5.2.2.4 Implementation Details

To allow for changing patch sets, forecasting is performed on a per-region basis

instead of a per-patch basis. The difference between regions and patches is shown

in Figure 5.1. Regions are constant-sized portions of the domain that are contained

within a single patch. Patches, on the other hand, are variable-sized portions of the

domain that may contain many regions.

By forecasting on a per-region basis, the patch set can change without needing

to migrate forecasting data between the changing patch sets. This necessitates

Regions Patches

Figure 5.1. The difference between regions and patches. Patches are composed of
one or more fixed size blocks referred to as regions.
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mechanisms to interpolate the data between regions and patches. Since regions

are completely contained within patches, these mechanisms are straightforward to

describe and implement. The measured cost for each region is equal to the cost of the

patch, times the proportion of the patch that the region encompasses, as described

by Equation (5.11):

Or,t = Op,t
Vr
Vp
, (5.11)

where t is the current time step, Or,t is the measured computation time for region r,

Op,t is the measured execution time for patch p, Vp is the volume of patch p, and Vr is

the volume of region r. In addition, Wp,t+1 can be defined as the sum of the weights

of all regions contained in patch p, as shown in Equation (5.12):

Wp,t+1 =

r∈p∑
r

Wr,t+1. (5.12)

Uintah stores the forecasting data while minimizing both storage and communi-

cation. The forecasting data are stored locally on each processor. When a processor

executes a task on a patch, it adds the contribution to its local forecast data using

Equation (5.11). If a region was owned by a different processor in the past, then local

forecast data will exist on multiple processors but each processor will only update its

local data. At the end of each time step, the simulation finalizes the forecast data

by applying Equation (5.4). Updating the forecast data on each time step is a local

operation which does not require any communication. However, communication is

required when load balancing occurs. During load balancing, each processor must

know the cost of each patch. This is done by applying Equation (5.12) locally and

then performing a MPI Allreduce to get the global sum.

To keep the data structures for forecasting as small as possible, contributions are

stored in a Standard Template Library (STL) map, which is a sparse data structure.

This causes the storage per processor to be proportional to the number of patches per
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processor. In addition, when a processor has not updated a region in its map for over

T time steps, the contributing weight for that region is less than 0.1% of the total

weight, at this point, we consider the weight to be insignificant and delete it from the

map. This prevents the size of the maps from slowly increasing over time.

5.2.3 Forecasting Results

The effect of forecasting on Uintah’s runtime was tested using both ICE and

MPMICE. The ICE simulation used the w-cycle, as described in Section 3.6.1, with

explicit time stepping to simulate the transport of two fluids with a prescribed initial

velocity of Mach two. For this problem, the conservation of mass, momentum, and

energy equations were solved for two inviscid fluids. The fluids exchange momentum

and heat through the exchange terms in the governing equations, as described in

Section 3.2.1.1. This problem exercises all of the main features of ICE and amounts

to solving eight P.D.Es, along with two point-wise solves, and one iterative solve; for

more information see [43].

A simulation similar to the ICE benchmark was also used to test MPMICE. In this

simulation a solid explosive was transported through air at Mach two. The simulation

used an explicit formulation with the lock-step time stepping algorithm described in

Section 3.6.1. This simulation exercises many of the same components as the ICE

benchmark but also represents the explosive with MPM particles. This benchmark

also included a model for the deflagration of the explosive [117, 120] and the material

damage model ViscoSCRAM [7]. This problem closely resembles CSAFE’s exploding

container problem, as described in Chapter 1.

The computational cost of the ICE problem is predictable and developing an ac-

curate ACM is straightforward. In contrast, the computational cost of the MPMICE

problem is more challenging to predict. Three cost estimation algorithms were tested

on each of these problems. The estimation algorithms tested included the ACM with

least squares, the memory filter, and the Kalman filter.

Figure 5.2 shows the mean absolute percent error (MAPE) of the three algorithms

for the ICE problem. This figure shows that all three algorithms are highly accurate

and that the least squares model is the least accurate of the three. Both filters achieve
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a very high level of accuracy but occasionally have spikes in the error. These spikes

occur immediately after regridding because the computation significantly changes.

The spikes do not appear in algorithmic cost model results.

Figure 5.3 shows the mean absolute percent error of the three algorithms for the

MPMICE problem. The results for this problem are similar to the ICE problem with

the exception that the spikes are much more significant, causing the filters to perform

worse than the model immediately following a regrid. These spikes are significant

because load balancing will always occur immediately following a regrid. Thus, these

spikes will negatively effect performance. However, the impact of these spikes are

limited because the simulation is load balanced every few timesteps.

From these results, it appears that the filters are the most accurate estimation
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models. However, their accuracy may suffer if regridding is occurring often. The

algorithmic cost model does not suffer from the same spikes and thus can better

predict performance across regrids. It is likely that improved algorithmic cost models

could be developed which could make them a better choice.

5.3 Space-Filling Curve Generation

One commonly used method for quickly partitioning work is based on space-

filling curves [25, 32, 95, 105]. Space-filling curves are fractal curves that uniformly

fill multidimensional space. Space-filling curves are generated using a base shape,

which determines the order the curve visits subdivisions of space. As space is further

subdivided, the base shape is reapplied to the new subdivisions. The base shape may

be rotated and/or reflected before being applied to new subdivisions. As space is

subdivided, the curve fills more of the domain and in the limit of subdivisions, the

curve completely fills the domain.

Space-filling curves have many properties that make them a good basis for load

balancing. For example, the Hilbert curve (as shown in Figure 5.4), traverses space

while staying close to itself [93]. This creates an ordering that clusters points together

such that points that are close together on the curve are also close together in

the original domain; however, points that are close together in the domain are not

guaranteed to be close together on the curve. In addition the Hilbert curve prevents

jumps across the domain by always moving locally. Finally space-filling curves can be

created in O(N logN) time, where N is the number of work elements to be mapped

onto processors. Work elements can be mesh points, patches, particles, or any other

grouping of work that can be represented by a single point in space.

Space-filling curves can be used to load balance by ordering work according to the

curve and then splitting the curve into segments called partitions. The curve stays

close to itself, causing work units in the same partition to be close to each other in the

domain. In most applications, work units require information from neighboring work

units. Clustering neighboring work units onto the same processor greatly reduces

communication costs.

Space-filling curves can be generated quickly in serial by recursively subdividing
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Figure 5.4. The first four levels of the Hilbert curve
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the domain into octants and ordering those octants according to the space-filling curve

using a series of state diagrams [25]. The state diagrams are represented by two arrays:

an ordering array and an orientation array. The ordering array determines the order

that the curve visits nodes based on their parent’s orientation. The orientation array

determines the orientation of the children based on their parent’s orientation and the

order that the curve visited them. On low numbers of processors, serial generation

completes quickly. However, on large numbers of processors, the time for gathering

elements onto a single processor and generating the curve may become significant. In

addition, on some machines, gathering onto a single processor may not be possible

due to memory constraints.

Others have attempted to generate space-filling curves in parallel by defining

a comparison operator allowing for a parallel merge sort design [1, 118], without

considering the Hilbert curve. To address this case, we have developed a new method

that works for any space-filling curve. Our method creates the curve order index for

every point on the curve while generating a local curve on each processor. The index

generated is the index into the fully refined curve at the desired refinement level.

Each processor generates the curve at the same refinement level, allowing points on

the curves to be compared to each other by using the index. This allows a global

curve to be generated by merging the curves together.

Parallel merging is a well-understood problem. One method for merging in-

volves performing a series of pairwise merge and exchanges. Batcher’s merging

algorithm performs these merge-exchanges using the minimum number of required

merge-exchanges [6, 69]. It was shown that performing extra merge-exchanges prior

to Batcher’s algorithm might increase the overall performance [110, 119]. Recent

methods avoided merge-exchanges by moving data directly to the correct processor

using global histograms [70, 99]. The generation of the global histogram and per-

forming an all-to-all transpose of the data made it difficult to scale these methods to

large numbers of processors. As a result, newer methods addressed this problem by

keeping the histogram communication and data movement local [55, 56].

In this section, we explore generating space-filling curves in parallel using multiple

sorting methods on multiple architectures. In addition, we analyze the complexity of
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some of these methods in more depth to predict their performance up to hundreds of

thousands of processors.

For the remainder of this section, the following definitions will be used:

P = number of processors,

N = number of work elements to be ordered by the space-filling curve,

N

P
= number of work elements per processor.

5.3.1 Serial Sort

The sorting phase of the algorithm generates a space-filling curve in serial on a

subset of the data on each processor. Algorithm 3 sorts the data using the oct-tree

decomposition and state diagram method described in [25]. Space is divided into

octants and each work unit is placed into a list. The list that the work unit is placed

into depends on the octant it is contained in and the order the curve visits that octant

relative to sibling octants. The ordering can quickly be computed using the order and

orientation arrays described in [25]. The lists are then concatenated into a single list

and the process recursively repeats for each sublist. The recursion terminates when

the desired refinement level is reached. The refinement level can be determined a

priori if the size of the domain and the minimum distance between any two points

along each dimension is known. In Uintah, this information is known, but if it is not

known, it can either be computed or bounded easily. If too small a refinement level

is requested, then the algorithm generates an approximate space-filling curve which

may be advantageous in some applications.

In addition to sorting the data, Algorithm 3 also generates the curve index for

each work unit. At every refinement level, points are assigned a local curve order.

The local curve order is the order the curve visits a node relative to its siblings. Local

curve orders are concatenated together into a single integer such that the digits for

the curve orders at the coarser levels are left of the digits for the curve orders at the

finer levels. The concatenated curve orders form the fully refined curve index. The

curve order at each refinement level can be represented with d bits where d is the

number of dimensions of the domain. Consequently, the number of bits needed to
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store each curve index is equal to d × r where r is the number of refinement levels.

Using this information, our implementation dynamically chooses the data type for

the curve index at runtime, reducing the overall communication. Figure 5.5 shows

the curve orders that are used to form the curve indices for the first two levels of the

Hilbert curve. Curve indices can be compared using an integer comparison operator

to determine which point is earlier on the curve. This provides a method for merging

the curves together.

Figure 5.6 shows the indices that Algorithm 3 would assign to four points for two

refinement levels. At the first level, the points {a, b, c, d} would be reordered and

assigned the following indices: {b:1, a:2, c:2, d:3}. At the second level, they would

be reordered and assigned the following indices {b:12, c:20, a:22, d:33}.

5.3.2 Parallel Merging

Once work units are locally sorted and have their curve indices generated, the

curves can be merged. We studied two classes of merging methods. The first uses

pairwise merge-exchange operations between processors over a Batcher’s merging

network [6, 69]. We tested two methods within this class; they are the original

Batcher’s algorithm and Batcher’s algorithm with a premerging step [110, 119]. The

second class of methods avoids pairwise merge-exchanges by generating histograms

of the sorted data to determine where to relocate data. Within this class, we tested

3

01

2 0

1 0 3 0

1232

1

2 3 0 3

21

Figure 5.5. The Hilbert curve orders for the first two refinement levels.
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Algorithm 3 The SFC Serial Sort Algorithm
Inputs:

list: Pointer to the list of points to be sorted

N: The size of list

r: Number of refinement levels

o: The orientation of this octant

Outputs:

list: The sorted list of points and their curve index

function BinSort(list, N, r, orientation=0, Index=0)

//1: Save Index

if r==0 then

for i=0 to N

SaveIndex(list[i],Index)

end for

return

end if

//2: Bin each item in the list according to SFC

for i=0 to N

octant=GetOcatant(list[i])

b=OctantToOrder(orientation,octant)

bins[b].add(list[i])

end for

//3: Place bins back in original list

j=0

for b=0 to sizeof(bins)

for i=0 to sizeof(bins[b])

list[j]=bins[b][i]

j=j+1

end for

end for

//4: Call recursively on each sublist

i=0

for b=0 to sizeof(bins)

if sizeof(bins[b])>0 then

BinSort(&list[i],sizeof(bins[b]),r-1,

OrderToOriention(orientation,b),Concatenate(Index,b))

i=i+sizeof(bins[b])

end if

end for

end function
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Figure 5.6. An illustration of the SFC sort algorithm. The indices that Algorithm 3
would assign to four points for two refinement levels. At the first level, the points {a,
b, c, d} would be reordered and assigned the following indices: {b:1, a:2, c:2, d:3}. At
the second level, they would be reordered and assigned the following indices: {b:12,
c:20, a:22, d:33}.

two methods. The first method generates a global histogram across all processors and

then moves data directly to the correct processor [70, 99]. This method performed

poorly because of the cost of gathering the histogram onto every processor and then

performing an all-to-all transpose of the data. For brevity and clarity we have omitted

this method from the rest of the chapter. The second method within this class

generates local histograms within processor groups and communicates only within

those groups [55, 56].

5.3.2.1 Merge-Exchange Algorithm

In a merge-exchange operation, two processors communicate their lists to each

other. Each processor then independently merges the lists and one processor keeps

the lower half of the list while the other keeps the upper half of the list. One advantage

of using merge-exchanges is that communication is always pairwise. Pairwise com-

munication and merging is straightforward, allowing for a new design that overlaps

communication and computation [76].

A description of the merge-exchange operation follows. Processors first exchange

-, • 

~ • 
• • • • 
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their minimum and maximum elements. Both processors compare the ranges of the

data and if the data ranges do not overlap, the processors exchange all or none of

the list without merging. If the ranges overlap, then the merge-exchange operation

enters into a sample merge. By merging a small sample of the data, the processors

can determine an upper bound on the amount of data that needs to be communicated

in order for each processor to merge its data.

Next, the full merge-exchange operation begins. The processor keeping the lower

half of the data merges the two lists in ascending order while the other processor

merges the two lists in descending order. Each processor stops merging when it has

merged half of the list. In addition, processors do not communicate the entire curve at

once; instead, the curve is decomposed into segments referred to as blocks which are

communicated asynchronously to the appropriate processor. The processor keeping

the lower half of the data sends blocks in descending order and receives in ascending

order while the other processor does the opposite. Communicating in blocks allows

processors to potentially overlap communication and merging. If the time to send an

element is less than the time to merge an element and the block size is large enough

to overcome latency overhead, all communication except for the first block can be

overlapped within the merging of the previous block. Choosing a block size that is

too small will prevent some communication from being overlapped with every block,

while choosing a block size that is too large will add additional overhead on the first

block. Therefore, it is best to overestimate the block size rather than to underestimate

it.

As processors perform their merge-exchanges, elements become clustered together

on each processor, allowing for an optimization that reduces the number of compar-

isons. Instead of merging element by element, merging is first attempted in blocks.

The minimum and maximum of the front block of each list is compared, if there is no

overlap, then the block with the lower range is copied to the new list and the process

repeats with the next block. If there is overlap, then the blocks are merged element by

element until all elements from one of the blocks are merged. Then, blocked merging

is attempted on two new blocks.

The optimal size of communication blocks, merging blocks, and the sample size
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depends on factors like the communication network, the processor speed, the assigned

processors, current traffic on the machine network, competition on the machine from

other processes, and original data layout. Because of these dependencies, developing

a model to determine ideal parameters was not undertaken. Instead, we use a profiler

that runs on a dataset provided by the user. The profiler attempts to minimize the

execution time on that dataset. After a suitable set of parameters is determined, the

profiler uses those parameters for subsequent calls.

Batcher’s merging algorithm is defined in [6, 69]. It performs pair-wise merge-

exchanges between processors and log2 P+logP
2

merge exchanges are required per pro-

cessor to guarantee the list is fully merged. It has been shown that this is the minimum

number of merge-exchanges required to merge the lists [69].

Work in [110] and [119] showed that performing a premerging step before executing

Batcher’s algorithm can reduce overall execution time by reducing the number of

times elements are moved. The premerging algorithm we have used is referred to as

Algorithm 4. This algorithm executes a series of merge-exchange operations. When

the number of processors is a power of two, this algorithm reduces to executing

merge-exchanges on the edges of a hyper-cube. When the number of processors is not

a power of two, some processors will be idle in some of the merge-exchange operations.

Premerging reduces the number of times data is moved while increasing the number of

messages sent. This suggests that premerging would be most beneficial on machines

with low latency and low bandwidth.

The local histogram method is described in detail in [55, 56] and for brevity will

not be described in detail here; instead, only an overview will be presented. In this

algorithm, histograms are formed locally on each processor. Next, a series of merging

and exchanging steps are executed. At each step, processors exchange their histogram

with another processor within their merging group. The two histograms are combined

into a new histogram and the old and new histograms are used to redistribute and

merge elements within the group. After each step, each group is combined with

another group and the process is repeated until one group remains. This method

uses pairwise communication for the histogram at every step. Our implementation

does not include the logical processor“ids” described in [55, 56]. We believe that on
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Algorithm 4 The Premerging Algorithm
Inputs:

list: The list of points to be merged

numprocs: The number of processors

Outputs:

list: The merged list of points

function PreMerge(list, numprocs)

enqueue(0,numprocs)

while(queue is not empty)

dequeue(base,P)

if rank>=base && rank-base<P then

if(rank-base<P/2) then

Merge-Exchange list with rank+(P+1)/2

else

Merge-Exchange list with rank-(P+1)/2

end if

//create next stages

enqueue(b+P/2,(P+1)/2)

enqueue(b,P-(P+1)/2)

end if

end while

end function
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large numbers of processors, the cost of broadcasting the new ids will outweigh the

cost of migrating data.

5.3.3 Complexity Analysis

The following sections analyze the complexity for components of the sorting

algorithm.

5.3.3.1 Serial Sort

Algorithm 3 has been numbered with four distinct sections. Section 1 saves the

indices for each point. This occurs once per point and only on the last recursion,

making the complexity for this part O(N
P

). Section 2 places each point into the

correct bin. The time for determining which bin a point should be placed in is

constant, making the complexity of this section O(N
P

). Section 3 copies the bins back

to the original list and has complexity of O(N
P

). Finally, Section 4 is the recursive

call. The algorithm repeats r times where r is the number of refinement levels. Only

sections two and three are repeated during the recursion. This makes the complexity

O(2Nr
P

+ N
P

) = O(Nr
P

). For typical problems, r is proportional to logN , making the

complexity for typical problems O(N
P

logN).

5.3.3.2 Merge-Exchange

The dominant portions of the merge-exchange algorithm consist of exchanging

the data and merging the data. In the worst case, both processors will have to

send N
P

elements. In addition, the worst case merging requires N
P

comparisons and

assignments. In the best, case only an exchange of the minimum and maximum is

required. This makes the complexity of the Merge-Exchange operations O(N
P

) in the

worst case and O(1) in the best case.

5.3.3.3 Batcher’s Algorithm

Batcher’s merging network completes in log2 P+logP
2

merge-exchanges per processor.

If premerging is used, an additional logP merge-exchanges will occur. While it is

likely that some of the merge-exchanges will complete in O(1), the majority of merge-

exchanges will complete in O(N
P

). This makes the complexity of Batcher’s method
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O(N
P

log2 P+logP
2

) = O(N
P

log2 P ).

5.3.3.4 Local Histogram

The dominant costs in the local histogram algorithm come from the creation and

communication of the histogram and redistribution data. The cost of creating the

local histogram is O(N
P

). There are logP merging stages. In each of these steps,

the local histogram must be communicated and updated and then elements must be

redistributed and merged. The cost of communicating and updating the histogram is

O(B) where B is the number of bins in the histogram. To achieve a good load balance,

B must be at least proportional to P . Redistribution involves potentially moving N
P

elements to different processors. Since the elements are clustered on each processor,

to redistribute elements, processors will only have to communicate with a few other

processors. Merging also requires N
P

steps. This makes the complexity for one stage

of the local histogram merging O(P + N
P

) and the total complexity O((P + N
P

) logP ).

5.3.4 Performance Results

A mesh from Uintah was used to compare the algorithms. The mesh is from the

finest level of a multilevel simulation of two containers exploding. The mesh has 13365

patches. To produce larger meshes with similar properties, patches were subdivided

in half along each dimension. This produced patch sets that were eight times as large

as the original mesh. The centroid of each patch was used as its location. Patches

were initially distributed according to their order within Uintah and an initial load

balance was assumed. This assumption was made because within Uintah, all patches

are known to all processors, allowing for the trivial balancing of patches on processors.

However, if the patches are not initially load balanced, a prebalancing phase could

be added.

Timings of the benchmark problem were run on multiprocessor machines. To

simulate memory contention caused by multiple processes per node, the serial timings

were computed by running multiple serial sorts at the same time. The number of serial

sorts run was equal to the number of processors on a node. The reported times are

the median of 21 samples.
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The timings were taken on the Thunder, ALC, and Inferno supercomputers. These

results were originally presented in [76] and these machines have since been retired.

Thunder was a Linux cluster located at Lawrence Livermore National Labs with 1024

nodes, each with four 1.4 Ghz Intel Itanium2 single-core processors. Each node had

eight GB of 266DDR SDRAM. Nodes were connected with a QsNet Elan 4 network

with MPI latency < 4µs and MPI bandwidth of 900 MB/s. ALC was a Linux cluster

located at Lawrence Livermore National Labs with 960 nodes each with two 2.4 Ghz

Pentium 4 Prestonia single-core processors per node. Each node had four GB of

PC2100 DDR SDRAM. The nodes were connected with a QsNet Elan 3 network

with MPI latency < 5µs and MPI bandwidth of 400 MB/s. Inferno was a Linux

cluster located at the University of Utah with 128 nodes, each with two 2.4 Ghz

Intel Xeon single-core processors. Each node had two GB of PC2100 SDR SDRAM.

The nodes were connected with a GB Ethernet network with MPI latency < 25µs

and MPI bandwidth of 100 MB/s. Inferno had a slower network than Thunder or

ALC, but had similar processing power per processor. This suggests that overhead

introduced by communication will be much more significant on Inferno than on the

other two machines.

Figure 5.7 and Figure 5.8 show the benchmark timings on Thunder, Figure 5.9 and

Figure 5.10 show the benchmark timings on ALC, and Figure 5.11 and Figure 5.12

show the benchmark timings on Inferno. On all machines, there is near ideal scalabil-

ity when N/P is large enough. Batcher’s algorithm is faster than the local histogram

method in most cases. On Thunder, the local histogram method scales further and

achieves a lower execution time. As P increases, the performance difference between

Batcher’s algorithm and the local histogram method narrows. On ALC, there is

not a significant difference between Batcher’s algorithm and the local histogram

method. On Inferno, Batcher’s algorithm is faster than the local histogram method

but unlike the other machines, the local histogram method only scales further when

N is small. When N is larger, Batcher’s algorithm outperforms the local histogram

method significantly.
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Figure 5.7. The strong scalability of the smaller benchmarks on Thunder
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Figure 5.9. The strong scalability of the smaller benchmarks on ALC
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Figure 5.10. The strong scalability of the larger benchmarks on ALC
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5.3.5 Performance Model

To understand how these algorithms would perform on larger numbers of pro-

cessors, performance models were used to predict performance. Performance models

were derived from the previous complexity analysis.

The complexity of the components are the following:

Serial Sort : O(
N

P
logN),

Batcher’s : O(
N

P
log2 P ),

Local Histogram : O((P +
N

P
) logP ).

Using these complexities, the following performance models were derived:

Serial Sort : c1
N

P
log2N,

Batcher’s : (c2 + c3
N

P
)
log2

2 P + log2 P

2
,

Local Histogram : (c4P + c5
N

P
) log2 P,

where c1 represents the cost of performing one recursive step of Algorithm 3 on an

element, c2 represents the overhead in starting a merge-exchange, c3 represents the

cost of performing a merge-exchange per element, c4 represents the cost of sending

and processing on one element of the histogram, and c5 represents the cost of com-

municating and merging a single element.

Figures 5.13 and 5.14 show the timings on Thunder compared with the perfor-

mance models. The performance models used the constants found in Table 5.1. These

constants were estimated by fitting the observed times to the performance models.

A comparison between the models and the performance results provide evidence

that the complexity analysis used to derive the models is correct. The models suggest

that we can expect scaling using both Batcher’s method and the local histogram
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Table 5.1. The constants used to predict performance on Thunder
constant c1 c2 c3 c4 c5

value 3.5e−8 3e−5 2e−8 6e−7 1.6e−7

method when N
P

is large enough to overcome overhead associated with constants c2

and c4. Batcher’s method may scale better at larger numbers of processors than

the local histogram method because the histogram introduces an overhead that is

proportional to the number of processors.

Figure 5.15 and Figure 5.16 show the predicted timings up to 218 processors for

various problem sizes on a machine similar to Thunder. On the smaller problem sizes,

the local histogram method reaches the lowest time but does significantly worse if too

many processors are used. Batcher’s method also degrades in performance when too

many processors are used but in a less significant way than for the local histogram

method. Performance runs of Uintah at 98,304 cores will confirm these results in

Chapter 6. On the larger problem sizes, Batcher’s method scales to larger numbers of

processors. This is due to the overhead in the local histogram method. This suggests

that for small and moderate numbers of processors, the local histogram method may

be better than Batcher’s, but in the case of large numbers of processors, Batcher’s

should be used.

5.3.6 Conclusions and Future Work

Space-filling curves have many applications within scientific computing, particu-

larly in adaptive mesh refinement. For overall scalability, it is important that curve

generation is done quickly in parallel. We have shown that space-filling curves can be

generated quickly in parallel through sorting. The merging method that will provide

the best results depends highly on machine architecture, the number of processors,

and the size of the problem. For large numbers of processors, Batcher’s method should

perform better than the local histogram method. On the architectures considered

here, we did not see a significant benefit to premerging; however, on machines with

low latency and low bandwidth, it may be beneficial to premerge some of the data.

However, such architectures are relatively unusual.
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Figure 5.15. Predicted timings for 105 and 106 elements at large processor counts
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To increase scalability further, overheads within the algorithm must be reduced.

The primary overhead is due to communication that could be reduced through fast

compression schemes. As elements are sorted, the significant bits become equivalent.

A compression mechanism could possibly take advantage of this redundancy, greatly

reducing the amount of communication.

Generation of the space-filling curve could also be done in an incremental manner.

Storing the old curve and indices would make it possible to add new points incre-

mentally. If there are few changes to the mesh, indices could be generated for new

points and then the points could be binary inserted into the old curve. If there were

a large number of changes to the mesh, a second curve could be generated over the

new mesh points and the old and new curves could then be merged.

5.4 Summary and Conclusions

Uintah’s load balancer was designed to operate quickly in parallel and support

a wide variety of simulations [74, 76]. To achieve these design goals, Uintah utilizes

automated machine tuning to estimate the workload [74]. This can be done using

a combination of models and least squares analysis or by using filtering methods.

Both of these methods provide highly accurate estimations without requiring a large

amount of effort or knowledge from the user. This allows users to easily add an

effective load balancer to their simulation with little knowledge of the load balancing

process or the underlying simulation models.

In addition, Uintah utilizes a highly parallel space-filling curve algorithm. This

algorithm exhibits good strong scalability and executes quickly in parallel. However,

this load balancer requires global metadata. It is possible that as the number of

processors and patches increase, the cost of maintaining this global metadata may

hinder performance. In this case, it may be worthwhile to move to a distributed load

balancing algorithm like those based upon diffusion algorithms [28, 50, 51, 52, 59].

Nevertheless, the present algorithm described here was used on machines with up to

98,304 processors, as shown in Chapter 6.



CHAPTER 6

UINTAH SCALABILITY

AMR frameworks such as Uintah are a useful tool for researchers. These frame-

works reduce the burden of creating a parallel AMR simulation and are thus being

used throughout the scientific community [19, 24, 37, 41, 47, 49, 79, 85, 87, 108].

Understanding and improving the scalability of such frameworks is an important task

that could have wide-ranging impact across the research community.

This chapter analyzes the scalability of Uintah as a whole using up to 98,304

processors. The analysis includes benchmarks for both ICE and MPMICE along

with both AMR and single level mesh simulations.

6.1 Benchmarking Setup

The scalability of Uintah was tested on Kraken1 using up to 98,304 processors

for both single level and AMR problems using both ICE and MPMICE. In addition,

the scalability was tested for an array of explosives, which represents a full-physics

simulation that is currently being investigated [13]. The following sections will

describe the test problems and analyze the weak and strong scaling of Uintah in

the context of these benchmarks using up to 98304 cores.

6.1.1 ICE Benchmarks

The performance of ICE was tested in both the single level and AMR case using a

simulation of the transport of two fluids with a prescribed initial velocity of Mach two,

as seen in Figure 6.1. For this problem, the conservation of mass, momentum, and

energy equations were solved for two inviscid fluids. The fluids exchange momentum

and heat through the exchange terms in the governing equations, as described in

1Kraken is a supercomputer located at the University of Tennessee with 99,072 cores. More
information is available at http://www.nics.tennessee.edu/computing-resources/kraken.



108

Figure 6.1. The ICE scalability benchmark problem
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Section 3.2.1.1. This simulation is an explicit formulation and utilized the w-cycle

execution model for time stepping, as described in Section 3.6.1. This problem exer-

cises all of the main features of ICE and amounts to solving eight P.D.Es, along with

two point-wise solves, and one iterative solve. For more information, see Section 3.2.1.

6.1.1.1 Single Level ICE Benchmark

The single level ICE benchmark involved four runs of varying sizes with each run

using a mesh refined by a factor of two with respect to the previous run. This led

to each run containing eight times more cells than the previous run. Each mesh was

composed of patches that were 163 cells in size. The execution time for 50 timesteps

was measured. The setup for each of the four runs is described in Table 6.1.

6.1.1.2 AMR ICE

The AMR ICE benchmark involved five runs of varying sizes with each run using

a mesh that was refined by a factor of two with respect to the previous run. The

refinement algorithm used tracked the interface between the two materials, causing the

simulation to regrid often while maintaining a fairly constant sized grid, which allows

the scalability to be more accurately measured. This criteria led to each problem

being about four times as large as the previous one. This mesh was composed of

patches of 83 cells in size and the time for 50 timesteps was measured. The simulation

utilized three mesh refinement levels with each level being a factor of four more refined

than the previous level. The simulation regridded whenever the inner material moved

outside the bounds of the finest level which amounted to between 6-8 regrids per run.

The setup for each of the five runs is described in Table 6.2.

Table 6.1. The single level ICE benchmark setup
Benchmark Run # of Patches # of Processors

1 4096 24-768
2 32K 192-6144
3 262K 1536-49152
4 2.1M 12288-98304
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Table 6.2. The AMR ICE benchmark setup
Benchmark Run # of Patches # of Processors # of Regrids

1 1.5K 12-1536 6
2 6.1K 48-6144 7
3 24.5K 192-24576 6
4 98.3K 768-98304 7
5 393K 3072-98304 8

6.1.2 MPMICE Benchmarks

A simulation similar to the ICE benchmark was also used to test MPMICE. In

this simulation, a solid explosive was transported through air at Mach two, as seen

in Figure 6.2. The simulation used an explicit formulation and used the lock-step

timestepping algorithm described in Section 3.6.1. This simulation exercises many of

the same components as the ICE benchmark but also represents the explosive with

MPM particles. This benchmark also included a model for the deflagration of the

explosive [117, 120] and the material damage model ViscoSCRAM [7]. This problem

closely resembles CSAFE’s exploding container problem, as described in Chapter 1.

6.1.2.1 Single Level MPMICE

The single level MPMICE benchmark involved four runs of varying sizes with each

run using a mesh that was refined by a factor of two with respect to the previous run.

This led to each problem having approximately eight times more cells and particles

then the previous problem. The mesh was composed of patches that were 83 cells in

size and contained upwards of 4096 MPM particles. The time for 150 timesteps was

measured. The setup for each of the four runs is described in Table 6.3.

Table 6.3. The single level MPMICE benchmark setup
Benchmark Run # of Patches # of Particles # of Processors

1 1.7K 651K 12-1536
2 14K 5.1M 96-12288
3 111K 41M 768-49152
4 885M 330M 12288-49152
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Figure 6.2. The MPMICE scalability benchmark problem
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6.1.2.2 AMR

Similarly, the AMR MPMICE benchmark involved four runs of varying sizes with

each run using a mesh that was refined by a factor of two with respect to the previous

run. This led to each run being approximately eight times as large as the previous

run. The mesh was composed of patches of 83 cells in size which contained upwards

of 4096 MPM particles. The simulation utilized three refinement levels with each

level being a factor of four more refined than the previous level. The time for 150

timesteps was measured. The simulation regridded whenever a particle was relocated

outside of the bounds of the finest mesh which amounted to 3-4 regrids per run. The

setup for each of the four runs is described in Table 6.4.

6.1.2.3 Explosive Array

The final scaling test involved a full-physics simulation of an explosive array during

detonation. In this simulation, a high-pressure wave travels through an array of

explosives. The wave causes each container to detonate as it passes through, thereby

increasing the energy within the explosion. It is believed that such a detonation oc-

curred during the Spanish-Fork accident and research into the causes of the detonation

are currently being undertaken [13]. A 2D image from such a simulation can be seen

in Figure 6.3. This simulation includes a prototype model for DDT [107, 101, 102] in

addition to all the models used in the MPMICE benchmark.

The current AMR refinement criteria for MPMICE problems introduces a fine

mesh everywhere that particles exist. Since this problem has particles everywhere

within the domain, an AMR benchmark would refine the entire domain. Because of

this, only a single level version of this problem was tested. This benchmark involved

Table 6.4. The AMR MPMICE benchmark setup
Benchmark # of Patches # of Particles # of Processors # of Regrids

1 1.3K 2.1M 12-1.5K 3
2 6.8K 16.8M 96-12K 4
3 42K 134M 768-98K 4
4 301K 1.1B 6K-98K 4
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Figure 6.3. A 2D image of the explosive array benchmark
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four runs of varying sizes. Each run used a mesh that was refined by a factor of two

with respect to the previous run. This led to a mesh which contained eight times the

number of cells and particles as the previous problem. The meshes were composed of

patches of size 83 cells with each patch containing up to 4096 MPM particles. The

setup for each of the four runs is described in Table 6.5.

6.2 Scalability Results

Figure 6.4 shows the scaling results for the five benchmark tests. This figure

shows nearly ideal weak and strong scaling, as defined in Section 1.2, for the single

level ICE benchmark. The AMR ICE benchmark also exhibits good strong and

weak scalability but the performance degrades on the largest problem and also at

the largest numbers of processors. This degradation is primarily due to the cost to

migrate data after regridding and load balancing. The MPMICE benchmarks exhibit

similar scalability; however, the degradation in performance is more significant than

with the ICE benchmark. Finally, the explosive array benchmark exhibits nearly

ideal weak and strong scalability.

6.2.1 Strong and Weak Efficiency

The strong and weak efficiency metric (SWE) that was presented in Section 1.2

states the efficiency relative to the smallest data point. Table 6.6 shows this efficiency

for the single level ICE benchmark. This table shows that the single level ICE problem

scales effectively, achieving over 50% efficiency at the largest processor counts. There

is a slight decrease in efficiency when increasing the processor counts for both strong

and weak scaling.

Table 6.7 shows similar results for the AMR ICE benchmark. However, in this

Table 6.5. The explosive array benchmark setup
Benchmark Run # of Patches # of Particles # of Processors

1 1.7K 5.8M 12-1.5K
2 14K 38.5M 96-12K
3 111K 308M 768-98K
4 885K 2.5B 6K-98K
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Table 6.6. Single level ICE weak and strong efficiency metric
Strong Run 1 Strong Run 2 Strong Run 3 Strong Run 4

Weak # Cores SWE Cores SWE Cores SWE Cores SWE

1 24 1.00 192 0.98 1536 0.96 12288 0.90
2 48 1.00 384 0.96 3072 0.94 24576 0.78
3 96 0.94 768 0.91 6144 0.87 49152 0.61
4 192 0.98 1536 0.94 12288 0.85 98304 0.51
5 384 0.94 3072 0.89 24576 0.76 – –
6 768 0.86 6144 0.80 49152 0.61 – –
7 1536 0.86 12288 0.80 98304 0.47 – –
8 3072 0.65 24576 0.55 – – – –

Table 6.7. AMR ICE weak and strong efficiency metric
Strong Run 1 Strong Run 2 Strong Run 3 Strong Run 4 Strong Run 5

Weak # Cores SWE Cores SWE Cores SWE Cores SWE Cores SWE

1 12 1.00 48 0.98 192 0.96 768 0.94 3072 0.83
2 24 1.00 96 0.98 384 0.96 1536 0.92 6144 0.75
3 48 0.97 192 0.95 768 0.95 3072 0.88 12288 0.64
4 96 0.92 384 0.90 1536 0.88 6144 0.79 24576 0.50
5 192 0.82 768 0.81 3072 0.75 12288 0.64 49152 0.33
6 384 0.69 1536 0.67 6144 0.62 24576 0.47 98304 0.21
7 768 0.54 3072 0.45 12288 0.44 49152 0.30 – –
8 1536 0.36 6144 0.31 24576 0.26 98304 0.17 – –
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case, the efficiency decreases more rapidly, leading to a total efficiency of approxi-

mately 20% at the largest scales.

The MPMICE benchmark achieves a much lower efficiency in both the single level

and AMR benchmarks, as seen in Tables 6.8 and 6.9. In these cases, the efficiency

drops as low as 7.5% for the single level benchmark. The AMR benchmark achieves

a higher efficiency of 16% at the largest scales. The cause of this increase in efficiency

for the AMR case is due to a higher load imbalance in the single level problem which

will be discussed later.

Finally, the efficiency for the explosive array can be seen in Table 6.10. This

table shows that the efficiency of the explosive array benchmark is similar to single

level ICE benchmark, achieving an efficiency of 56% at the largest scales.

Table 6.8. Single level MPMICE weak and strong efficiency metric
Strong Run 1 Strong Run 2 Strong Run 3 Strong Run 4

Weak # Cores SWE Cores SWE Cores SWE Cores SWE

1 12 1.0000 96 0.9103 768 0.7423 – –
2 24 1.0998 192 0.8968 1536 0.6377 12288 0.4154
3 48 1.0234 384 0.7629 3072 0.5459 24576 0.2826
4 96 0.8083 768 0.5892 6144 0.4448 49152 0.1517
5 192 0.6650 1536 0.5510 12288 0.2624 98304 0.0934
6 384 0.4678 3072 0.3845 24576 0.1884 – –
7 768 0.2997 6144 0.2520 49152 0.1577 – –
8 1536 0.1832 12288 0.1419 98304 0.0743 – –

Table 6.9. AMR MPMICE weak and strong efficiency metric
Strong Run 1 Strong Run 2 Strong Run 3 Strong Run 4

Weak # Cores SWE Cores SWE Cores SWE Cores SWE

1 12 1.00 96 0.95 768 1.06 6144 0.95
2 24 0.81 192 0.94 1536 0.97 12288 0.74
3 48 0.69 384 0.84 3072 0.80 24576 0.50
4 96 0.60 768 0.70 6144 0.63 49176 0.29
5 192 0.52 1536 0.57 12288 0.44 98304 0.16
6 384 0.43 3072 0.46 24576 0.27 – –
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Table 6.10. Explosive array weak and strong efficiency metric
Strong Run 1 Strong Run 2 Strong Run 3 Strong Run 4

Weak # Cores SWE Cores SWE Cores SWE Cores SWE

1 12 1.00 96 0.91 768 0.82 6144 0.73
2 24 1.09 192 0.95 1536 0.83 12288 0.73
3 48 1.03 384 0.91 3072 0.78 24576 0.69
4 96 0.95 768 0.84 6144 0.71 49152 0.60
5 192 0.90 1536 0.71 12288 0.64 98304 0.56
6 384 0.75 3072 0.59 24576 0.51 – –
7 768 0.56 6144 0.41 49152 0.39 – –
8 1536 0.40 12288 0.31 98304 0.28 – –

6.2.2 Performance Breakdown

To determine what is limiting the scalability within each benchmark, it is im-

portant to separate the performance results into the following components: the

execution time (time executing tasks), the global communication (time spent with

MPI collectives), the time spent packing and unpacking messages in MPI, and the

waiting time (time spent within MPI Wait). In addition, the AMR problems also

contain the times for regridding, load balancing, scheduling, and migrating data

between grids.

6.2.3 ICE

Figure 6.5 shows strong and weak scalability breakdowns for the ICE benchmarks.

This figure shows that the components for single level ICE scale nearly ideally in the

weak and strong sense. However, in the weak scaling case, the time for communica-

tions (global communication, wait time, and message packing) does increase slightly

with the problem size.

Figure 6.6 shows the same breakdown for the AMR ICE benchmark. This figure

shows that multiple components do not scale ideally in the weak or strong sense.

In particular in the weak case, the AMR components increase significantly with the

number of processors. The time to migrate data between grids is the most significant.

The data migration step occurs after a regrid. This step is responsible for migrating

data between processors for regions of the domain that have been assigned to different

processors. In addition, this step will also create fine mesh data from the coarser mesh
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levels as necessary. It is also important to note that some of this increase is due to

the larger problems regridding more often than the smaller problems, as shown in

Table 6.2. It is also worth noting that the time for load balancing is very low and

match the predictions found in Chapter 5.

6.2.4 MPMICE

Figure 6.7 shows the same breakdown for the single level MPMICE benchmark.

This figure shows that both the strong and weak scalability for the single level problem

is limited by the wait time and the global communication time in both the weak and

strong cases.

Figure 6.8 shows the breakdown for the AMR MPMICE benchmark. This figure

shows that the wait time is the most significant factor in limiting scalability. In

addition, the time for the AMR components exhibits poor weak scaling and begin to

limit the overall scalability.

The source of the high wait times can be due to either the large amount of data and

number of messages that are communicated (communication time) or synchronization

caused by load imbalance. When weak scaling, the amount of communication per

processor should not increase significantly though the time to communicate data

may increase slightly due to increased network complexities. Thus, some increase is

expected in the wait time; however, it is more likely that the wait time is due to

an increase in synchronization time. The load imbalance for these benchmarks is

investigated further in Section 6.2.5.

Finally, the breakdowns for the array of explosives are seen in Figure 6.9. This

figure shows nearly ideal weak and strong scaling for the components. The high wait

times observed in the MPMICE benchmark were not observed in this benchmark

despite the similarity between two problems. This is due to the load imbalance which

will be presented in the next section.

6.2.5 Load Imbalance

One possible cause for the wait time is load imbalance. A load imbalance causes

processors to wait longer for other processors to finish their work. If the load
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imbalance increases, then it is expected that the wait time will also increase. Load

imbalance is defined as follows:

Lib = (1− Tavg
Tmax

)× 100, (6.1)

where the Tavg is the average time across all processors and Tmax is the maximum time

across all processors. Thus, a load imbalance of 0 implies the simulation is perfectly

load balanced (all processors have the same amount of work).

The load imbalance for the single level ICE simulations can be seen in Figure 6.10.

This figure shows the load imbalance is between .1 and .45. When strong scaling, the

load imbalance increases with the number of processors. This is expected because

the number of patches per processor is decreasing. This implies that the load balance

has less units of work to assign and thus has less flexibility in creating the patch

assignments. When weak scaling, the load imbalance stays fairly constant. The load

imbalance behaves similarly for the AMR ICE benchmark, as shown in Figure 6.11.

For this benchmark, the load imbalance ranged from .1 to .4.

The load imbalance does not behave in the same way for the single level MPMICE

benchmark, as shown in Figure 6.12. This figure shows the load imbalance is much

larger than with the ICE benchmarks with the range of imbalance being between .1

and .9, which is much higher than the ICE benchmarks. In addition, when weak

scaling, the imbalance increases with the problem size. This explains the source of

the high wait times in the MPMICE benchmarks.

The source of this imbalance is due to the distribution of particles throughout the

domain. Most patches either contain no particles or a large number of particles. In

addition, due to the burn and damage models, the work per particle is much higher

than per cell. This complicates the load balancing process greatly. One challenge for

load balancing MPMICE problems is that an ideal load balance for the ICE portion of

the algorithm is likely not ideal for the MPM portion of the algorithm and vice-versa.

Similar challenges have been observed in contact simulations which required load

balancing the particles separately from the mesh [48, 80, 106]. To achieve a better
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load balance a similar scheme may be required within Uintah. In addition, it appears

that increasing the problem size also increases the load imbalance.

The load imbalance for the AMR MPMICE problem is similar to the single level

problem with a load imbalance between .2 and .8, as shown in Figure 6.13. This

problem has less load imbalance than the single level problem due to the refinement

criteria used by MPMICE. This refinement criteria refines only where particles exist

and thus, there are no patches on the finest level that do not contain particles.

Finally, Figure 6.14 shows the load imbalance for the array of explosives bench-

mark. This figure shows the same increase in load imbalance with the problem size

as observed in the MPMICE benchmarks. However, the total load imbalance is much

lower, ranging from .1 to .6. The reason that the load imbalance is lower is due to

the homogeneity of particles throughout the domain. For this benchmark, patches all

contain a similar number of particles which significantly simplifies the load balancing

process.

6.3 Summary and Conclusions

The benchmark results presented here have shown promising results up to 98304

cores on Kraken for both single level and AMR simulations using both ICE and

MPMICE. Scalability for AMR codes is more challenging than single level codes due

to the added complexity of AMR frameworks. This is particularly true for portions

of the algorithm that contain an O(Patches) like load balancing and regridding.

The addition of particles in MPMICE increases the challenge in achieving scala-

bility over ICE. One of the challenges associated with particles is achieving a good

load balance. Particles move throughout the domain on every timestep causing the

load balance to change often. In addition, load balancing for particle calculations may

not be ideal for grid calculations or vice-versa. This is particularly true in Uintah

because the unit of work is a patch and all cells and particles within that patch are

assigned to the same processor. By load balancing particles separately from cells,

the performance within Uintah could be significantly improved. These are challenges

that can be addressed in the future which may lead to large increases in performance.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

AMR simulations are being increasingly used throughout the scientific community.

These simulations automatically refine portions of the computational domain with

large error, while maintaining a coarse mesh in other portions of the domain. This

approach results in solutions that can be as precise as those from much larger fixed

mesh simulations while requiring less computation time and memory.

Further improvements can be realized by exploiting large-scale parallelism on large

compute clusters to enable the simulation of larger or more refined problems. Paral-

lelism can reduce the time to solution significantly while also allowing the simulation

of larger problems. However, as has been shown, achieving ideal scalability at large

scales for AMR is challenging. In particular, the time for AMR operations such as

regridding and load balancing often limit the overall scalability. The scalability of

these operations is becoming increasingly important as simulations move to petascale

and eventually exascale machines.

The need for large-scale parallel multiphysics AMR simulations has led to the

development of software frameworks such as Uintah. Uintah is a large-scale multi-

physics framework which has been described in detail in Chapter 3. Users of this

framework write their code as a series of serial tasks on a single hexahedral mesh

patch. The framework then compiles these tasks into a distributed task graph which

is executed on many patches in parallel. All communication required between parallel

processing cores is automatically generated by the framework. The primary benefit

of this is that Uintah users do not need to understand the parallel complexities that

are required at large scales.

Uintah’s a component-based design allows the independent development of com-

ponents. Components can easily be added or removed from a simulation. This
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has allowed the rapid development of large-scale parallel AMR simulations where

researchers can focus on work within their research domain while limiting work outside

of their domain. This has allowed Uintah to simulate a wide variety of multiphysics

fluid-structure interaction problems such as fires and explosions.

Poor scalability of AMR components can limit the scalability of the entire sim-

ulation. This dissertation has investigated the parallel performance of widely-used

regridding and load balancing algorithms on block structured meshes.

In particular, Chapter 4 analyzed the performance of multiple parallel regridding

algorithms including the Global Berger-Rigoutsos (GBR) [9, 44, 122], Local Berger-

Rigoutsos (LBR), and Tiled algorithms. This analysis showed that the traditionally-

used GBR algorithm has performance problems at large numbers of processors which

may prevent scalability. The LBR and Tiled algorithms which were developed in our

prior work [75] do not suffer the same performance problems and scale well up to

100K processors and are predicted to scale up to 100M processors.

Chapter 5 focused on load balancing algorithms. In particular, three methods

for accurately predicting workloads using forecasting methods were presented. The

Kalman filter method [58, 123] had a lower error than both the memory filter and

model with least squares approaches. This chapter also presented a scalable algorithm

for space-filling curve generation. Space-filling curve approaches to load balancing are

commonly used throughout the scientific community because they are able to compute

an effective partition quickly. A parallel space-filling curve generation algorithm that

was originally presented in [76] was presented here. This algorithm reformulates the

space-filling curve generation as a sorting algorithm and then uses parallel sorting

algorithms to achieve a high degree of scalability. These algorithms have made

possible a fast load balancer that is able to achieve a good load balance. However,

more sophisticated load balancing algorithms are required for MPM simulations due

to the addition of particles and their associated complexities.

Finally, Chapter 6 investigated the scalability of Uintah as a whole using five

different benchmark problems. The scalability of Uintah for all five benchmarks is

shown in Figure 6.4. The single level and AMR ICE benchmarks both scaled well

to almost 100K cores. The single level and AMR MPMICE benchmarks did not
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scale as well. This was primarily due to load imbalance caused by the addition

of MPM particles, used to represent solids in Uintah. In particular, the current

assignment scheme requires all particles within a patch to be assigned to the same

processor. This is problematic when the number of particles within patches varies

significantly. In this case, load balancing to equalize the work associated with particles

provides a less than optimal load balance with respect to the work associated with

cells and vice versa. This is illustrated by the nearly ideal scalability, as shown in

Figure 6.4, for the array of explosives benchmark which is similar to the MPMICE

benchmarks, with the exception that particles are more evenly distributed across

patches than the other case. To achieve greater scalability within Uintah, the load

balancing algorithms will need to be improved. In particular, it may be necessary

to load balance particles separately from patches as has been done elsewhere in the

context of contact detection [48, 80, 106].

It is clear from the results shown here that there is no single simple approach for

achieving scalability but instead, there are a series of best practices which will help

achieve better scalability. These practices include but are not limited to the following:

• test the scalability of components individually and then as a whole,

• analyze the theoretical scalability,

• assume the number of processors (P) will be very large,

• avoid synchronization where possible:

– use asynchronous communication,

– avoid global communication,

– minimize load imbalance,

• avoid global metadata.

For an algorithm to be scalable, every portion of that algorithm must also be

scalable. Components of the algorithm should be tested and analyzed separately and

then together as a whole. As we move to more and more processors, algorithms and
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data structures that have a term in their complexity that depend on the number of

processors or patches will become problematic and should be avoided if at all possible.

In particular, these algorithms and data structures will eventually hinder both strong

and weak scaling. As the number of processors increases, the cost of synchronization

will also increase. Because of this, it is important that our algorithms avoid syn-

chronization where ever possible. This includes using asynchronous communication,

minimizing load imbalances, and avoiding global communication.

Finally, global metadata will eventually prevent scalability. This is due to the costs

of generating, storing, and communicating this data. For example, simply maintaining

a global list of patches, as is currently done in Uintah, will eventually be problematic

as the cost for generating the list of patches, which includes the time to communicate

that list to all processors, will become large. In addition, the cost to store the list of

patches will become too great when hundreds of millions of patches are required. To

achieve the highest levels of parallelism on exascale machines, algorithms will need

to avoid this type of data and instead operate completely locally.

Despite these challenges that remain for future AMR algorithms on even larger

parallel computers, it is important to remember that the scalability achieved with

AMR and Uintah was felt to be similarly challenging when this research began. In

that light, the research shown here provides a good starting point for AMR algorithms

on future petascale machines and beyond.

It is also increasingly likely that future architectures will provide more parallelism

on-node than today’s current architectures. This will likely be accomplished through

larger multicore chips and general purpose graphics processing units (GPGPU). To

take advantage of these architectures, many of our current codes will need to be

redesigned. In particular, our applications will need to incorporate hybrid MPI-

Threading and GPGPU technologies. This will provide many benefits, including the

use of shared memory which can reduce memory requirements and communication.

In addition, this will reduce the total number of MPI processes which will in turn

reduce the complexity of many of our data structures and algorithms. Previously,

there has been little motivation to move to such designs due to the limited amount
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of on-node parallelism. However, more recently, such designs are becoming increas-

ingly more common as the amount of on-node parallelism has been increasing.
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and Löffler, F. Computational models of stellar collapse and core-collapse
supernovae. Journal of Physics: Conference Series 180 (2009), 012022.

[88] Ou, C.-W., wei Ou, C., Ranka, S., and Ranka, S. Parallel remapping
algorithms for adaptive problems. In Proc. of the Symp. on the Frontiers of
Massively Parallel Computation (Washington, DC, USA, 1995), IEEE Com-
puter Society, pp. 367–374.

[89] Parker, S. G. A component-based architecture for parallel multi-physics pde
simulation. Future Generation Computer Systems 22, 1 (2006), 204–216.

[90] Parker, S. G., Guilkey, J., and Harman, T. A component-based parallel
infrastructure for the simulation of fluid structure interaction. Engineering with
Computers 22, 3-4 (2006), 277–292.

[91] Pilkington, J. R., and Baden, S. B. Dynamic partitioning of non-uniform
structured workloads with spacefilling curves. IEEE Transactions on Parallel
and Distributed Systems 7 (1995), 288–300.



145

[92] Pothen, A., Simon, H. D., and Liou, K.-P. Partitioning sparse matrices
with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications
11, 3 (July 1990), 430–452.

[93] Sagan, H. Space-Filling Curves. Springer, 1994.

[94] Sarkar, V. Partitioning and Scheduling Parallel Programs for Multiproces-
sors. MIT Press, Cambridge, MA, USA, 1989.

[95] Shee, M., Bhavsar, S., and Parashar, M. Characterizing the perfor-
mance of dynamic distribution and load-balancing techniques for adaptive grid
hierarchies. In IASTED: International Conference on Parallel and Distributed
Computing and Systems (Calagary, AB, 1999), IASTED.

[96] Simon, H. Partitioning of unstructured problems for parallel processing.
Computing Systems in Engineering 2, 2-3 (1991), 135–148.

[97] Simon, H. D., Sohn, A., and Biswas, R. Harp: A dynamic spectral
partitioner. Journal of Parallel and Distributed Computing 50, 1/2 (1998),
83–103.

[98] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra,
J. MPI-The Complete Reference, Volume 1: The MPI Core. MIT Press,
Cambridge, MA, USA, 1998.

[99] Sohn, A., and Kodama, Y. Load balanced parallel radix sort. In ICS ’98:
Proceedings of the 12th international conference on Supercomputing (New York,
NY, USA, 1998), ACM, pp. 305–312.

[100] Solomonik, E., and Kale, L. V. Highly scalable parallel sorting. In
IPDPS ’10: Proceedings of the 2010 IEEE International Symposium on Par-
allel&Distributed Processing (Washington, DC, USA, 2010), IEEE Computer
Society.

[101] Souers, P., Anderson, S., Mercer, J., McGuire, E., and Vitello,
P. Jwl++: A simple reactive flow code package for detonation. Propellants,
Explosives, Pyrotechnics 25 (2000), 54–58.

[102] Souers, P., Garza, R., and Vitello, P. Ignition & growth and jwll++
detonation models in coarse zones. Propellants, Explosives, Pyrotechnics 27
(2002), 62–71.

[103] Spiegel, M. Calculus of Finite Differences and Differential Equations.
McGraw-Hill, New York, NY, USA, 1971.

[104] Spinti, J., Thornock, J., Eddings, E., Smith, P., and Sarofim, A.
Heat transfer to objects in pool fires. In Transport Phenomena in Fires,
M. Faghri and S. D. i. H. T. B. Senden, Eds., vol. 20. WIT Press, Southampton,
U.K., 2008.



146
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